Schrodinger Wave Equation

11
P460 - Sch. wave e qn. 1 Schrodinger Wave Equation Schrodinger equation is the first (and easiest) works for non-relativistic spin- less particles (spin added ad-hoc) guess at form: conserve energy, well-behaved, predictive, consistent with =h/p free particle waves K for operator is dx d m m p K p k dx d momentum for operator is dx d i p i ik dx d Ce x ikx 2 2 2 2 2 2 2 2 2 2 2 ) (

description

Schrodinger Wave Equation. Schrodinger equation is the first (and easiest) works for non-relativistic spin-less particles (spin added ad-hoc) guess at form: conserve energy, well-behaved, predictive, consistent with l =h/p free particle waves. Schrodinger Wave Equation. - PowerPoint PPT Presentation

Transcript of Schrodinger Wave Equation

Page 1: Schrodinger Wave Equation

P460 - Sch. wave eqn. 1

Schrodinger Wave Equation

• Schrodinger equation is the first (and easiest)

• works for non-relativistic spin-less particles (spin added ad-hoc)

• guess at form: conserve energy, well-behaved, predictive, consistent with =h/p

• free particle waves

Kforoperatorisdx

d

mm

pK

pk

dx

d

momentumforoperatorisdx

di

piik

dx

d

Cex ikx

2

222

2

22

2

2

22

)(

Page 2: Schrodinger Wave Equation

P460 - Sch. wave eqn. 2

Schrodinger Wave Equation• kinetic + potential = “total” energy K + U = E

• with operator form for momentum and K gives

operatorEist

iorit

etxifinspectionby

eqnDSchEUdx

d

mtkxi

)(

2

22

),(

..12

Giving 1D time-dependent SE

titxtxV

dx

d

m

),(),(2 2

22

For 3D:2

2

2

dx

d

Page 3: Schrodinger Wave Equation

P460 - Sch. wave eqn. 3

Operators• Operators transform one function to

another. Some operators have eigenvalues and eigenfunctions

Etieigenvalue

pkxieigenvalue

soandikffx

eigenvalue

efioneigenfunctforsolve

fOfoperatorsaret

andx

tkxi

/:

/:

:

)(

In x-space or t-space let p or E be represented by the

operator whose eigenvalues are p or E

Only some functions are eigenfunctions.

Only some values are eigenvalues

Page 4: Schrodinger Wave Equation

P460 - Sch. wave eqn. 4

Interpret wave function as probability amplitude for being in interval dx

dxt

iE

commutetdoesndxx

ip

commutesdxxx

fofvalueaveffdxf

objectfornormalizedifdx

x

*

*

2

*

2

)'(

)(||

.

11||

Page 5: Schrodinger Wave Equation

P460 - Sch. wave eqn. 5

evenxxelsewhere

ax

aine

a

xAtx iE

)()(.022

cos),( /

No forces. V=0 solve Schr. Eq

Ema

ti

xm

2

22

2

22

2

2

Find average values

0sincos

)(0

*

*

XdxXCdxxi

p

evenoddevendxxx

x

Example

Page 6: Schrodinger Wave Equation

P460 - Sch. wave eqn. 6

57.0

)(

18.)(

033.0)16

(2

cos

2

2

22*

2

22

2

22*2

22

22

2

2

2222222

pxapp

adx

a

dxx

ip

axxxx

aa

dxxAdxxx

rms

x

Page 7: Schrodinger Wave Equation

P460 - Sch. wave eqn. 7

Solving Schrodinger Equation

• If V(x,t)=v(x) than can separate variables

GV

ixtxV

txtxassume

ixV

dtdi

mdx

d

dtd

dx

dm

tx

txm

1

)()()(

)()(),(

)(

2

22

2

22

2

22

2

2

),(2

G is separation constant valid any x or t

Gives 2 ordinary diff. Eqns.

Page 8: Schrodinger Wave Equation

P460 - Sch. wave eqn. 8

/)( iGtdtdi etG

G=E if 2 energy states, interference/oscillation

/

2

22

)(),(

2iEtextx

EVmdx

d

1D time

independent

Scrod. Eqn.

Solve: know U(x) and boundary conditions

want mathematically well-behaved.

2

2

)(

x

x

x

No discontinuities. Usually

except if V=0 or =0

in certain regions

Page 9: Schrodinger Wave Equation

P460 - Sch. wave eqn. 9

Solutions to Schrod Eqn

• Gives energy eigenvalues and eigenfunctions (wave functions). These are quantum states.

• Linear combinationsof eigenfunctions are also solutions

1

......),(

2

*

/

2211

i

ijjii

tiEii

nn

cnormalized

dxorthogonal

eeach

ccctxi

Page 10: Schrodinger Wave Equation

P460 - Sch. wave eqn. 10

Solutions to Schrod Eqn

• Linear combinationsof eigenfunctions are also solutions. Asuume two energies

• assume know wave function at t=0

• at later times the state can oscillate between the two states

/22

/11

2211

21

),(tiEtiE ecec

cctx

275

172)0,( x

)(

||||||/)(

1*2

/)(2

*121

222

211

2

2112 tEEitEEi eecc

cc

Page 11: Schrodinger Wave Equation

P460 - Sch. wave eqn. 11

The normalization of a wave function doesn’t change with time (unless decays). From Griffiths:

dxdxtx ttdtd )(|),(|

**2

Use S.E. to substitute for tt /,/ *

),()(

)(*

2

*2

2

2

*2

*2

2

txJxxxmi

x

xxmi

t

J(x,t) is the probability current. Tells rate at whichprobability is “flowing” past point xsubstitute into integral and evaluate

|)(**

22

xxmi

dtd dx

The wave function must go to 0 at infinity and so this is equal 0