Scholz, 1988 B-Ptransition

download Scholz, 1988 B-Ptransition

of 10

Transcript of Scholz, 1988 B-Ptransition

  • 8/17/2019 Scholz, 1988 B-Ptransition

    1/10

    319

    Geologische Rundschau 77 /1 ] 319--328 ] Stuttgart 1988

    T h e b r i t t l e p l a s t i c t r a n s i t i o n a n d t h e d e p t h o f s e i s mi c f a u l t i n g

    By C. H. SCI-IOLZ,Palisades*)

    With 4 f igures

    Zusammenfassung

    Ein einfaches rheologisches Modell ftir Schervorg~inge n der

    LithosphEre, das eine weite Akzeptanz erreicht hat, ist das

    Zweilagenmodell m it einer oberen sprSden Z one, in der De-

    formation tiber Reibungsgleitung entlang diskreter St6rungs-

    fl~chen stattfindet, und einer unteren d uktilen Zone. H ier er-

    folgt die De for m atio n d utch plastisches Flief~en. Beide Zo-

    hen wer den durch einen abrupten spr6d-plastischen Obergang

    voneinander getrennt, der vermutlich durch die untere G renze

    der nac hweisba ren Seismizit~it angeze igt wird. Expe rimentelle

    Un tersuchu ngen wie auch die Deformationsgeftige in Mylo-

    niten zeigen hingegen, dai~ ein breites lJbergangsfeld m it semi-

    spr6dem Verhal ten zwischen diesen beiden Extremen l iegt .

    H ier befindet sich ein B ereich ,,gemischter

  • 8/17/2019 Scholz, 1988 B-Ptransition

    2/10

    3 2 0 C . H . S CH OL Z

    L ' & u d e d e s s t r u c t u r e s m y l o n i t i q u e s a i n s i q u e l e s m e s u r e s

    e x p & i m e n t a l e s i n d i q u e n t c e p e n d a n t q u ' u n l a r g e c h a m p d e

    transi t ion ~ caract~re , .

    K p a T K 0 e c o ~e p x ~a H H e

    On14car~a peoa mr14 ,~ec~aa M ozm m, ~a ~ 143yqeH14~ qbeHo-

    MeHa IleqbopMaIa14Hwm~a c~IB~ra (cI T2 ), T. e. 14axo~r~Tc~ Ha 1414~r~efI rpa H~ t~e ~14Ha-

    M 1 4q ec Ko ro n o B e ~ e r m a ~ p e r m z ~ p er1 40 H e c n o ~ y x p y n -

    KHM COCTO~IHHeMMaTep14ayia~ ~TO np14M ep140 COOTBeTCT-

    ByeT MaK cHM yMy C14JIt,I 3eMJIeTpflceHH~.

    3 o H a M e x ~ y T 1 H T 2 n p o ~ B J ~ e T M e 1 4~ m m ee cs ~ n o B e ~ l e -

    14~e N01aCTW-tHO~I xeKyqecT14 B nep 40~I M e ~ I y Ce~C-

    M14qeCKO ~I aKTHBHOCTBtO 4 ~14HaM14tIeCK14M cK onb YK e-

    HH eM BO BpeM ~l 6OJIBILIHX 3eMJIeTpflceH14I;I.

    ~)Ta 301-Ia xapaK Tep1 43yeT c~I np14cyT CTB IaeM MHYIOH14TOB

    14 TeCHO CB~I3aHHbIX C H14MH nCeB~OT paXHTO B~ a Tagx ~e

    0 6 pa 30 B aH / Ie M c g p o c o B . K p o M e

    TOFO,

    B 3O He n e p e x o ~ a

    T1 t l3MeH~IeTCSI Mexa14H3M o6pa3oBaH14It 6 p e~ 1 4 k Tp e-

    H14f l. ~)TO 143Me14eH14e BblpaX

  • 8/17/2019 Scholz, 1988 B-Ptransition

    3/10

    The brittle-plastic transition and the depth of seismic faulting 321

    I

    W

    r ~

    STRENGTH

    TLE

    DUCTILE

    B R I T T L E

    D U C T I L E

    T R A N S I T I O N

    Fig. 1. A simple m od el for the rheo logy o f the lithosphere.

    th is m ode l w i th obse rva tions of the de form a t ion m e-

    chanisms of fau l t zone rocks and ear thquake hypo cen-

    tra l depth dis t r ibut ions and found a rough corres-

    po nd enc e be tween the br it tle-plas tic t rans i t ion pre-

    dicted b y this mo del , the depth a t wh ich evidence for

    crys ta l plas t ic i ty can be found in faul t rocks , and the

    m ax im um d epths of earthquakes. This seemed to pro-

    v ide s t rong co nf i rma t ion fo r th is mo de l and so detai l-

    ed re f inements and appl ica t ions were made , in which

    of ten minor va r ia t ions in the depth d i s t r ibu t ion of

    seismicity were, for example, ascribed to variations in

    hea t flo w (SIBSON, 19 84 ; DOSER & KANAMORI, 1986;

    SMITH & BRUHN, 198 4).

    M ore recent ly, a nu m be r o f fund am enta l dif ficul ties

    in this s imple m ode l have been pointed out . H oBBs e t

    al. (1986) an d STI~EHLAU 19 86 ) have no ted th at m os t

    of the r eg ion in the lower pa r t o f th i s mo de l does no t

    cor re spond to the h igh t empera ture f low reg ime but

    rathe r to sem i-britt le de for m atio n (CARTER & KmBY,

    1978). Thi s i s a mixed m ode of de form a t ion for wh ich

    the f low law is no t kn ow n for any ma ter ia l bu t w hich

    is fundam enta l ly d i f f eren t f rom h igh t empera ture f low

    in that it has a pressure sensitive strength (KIRBY,

    1983) . As a consequence , the extrapola t ion of high

    tempera ture f low laws into the region of the br i t t le -

    plastic tran sition is no t valid. Ru'rT~i~ (19 86 ) has

    discussed in de tai l the pro blem s in the use of the te rm

    >~brittle-ductile transitiom< fo r wh at is pr op erl y a

    britt le-plastic tran sition in the mo del show n in Fig. 1.

    The t e rm duc t i l i ty r e fe r s on ly to the prope r ty of

    bein g able to sustain a substantial strain with m acro-

    scopica l ly hom ogen eous d e forma t ion and i s the re fore

    no t mechanism-specific, app lyin g equ ally to semi-

    br i t t le and plas t ic deformation. He a lso points out

    tha t the t rans i t ion is not abrupt : be ing ini t ia ted by a

    trans i t ion f rom br i t t le faul t ing to ca tac las t ic f low

    (semi-britt le beh avio r) in w hic h the streng th is stil l

    pressure sensi tive, and b e ing con clude d by a t rans i t ion

    at greater depth to plasticity, the latter transition oc-

    curr ing near the peak in s t rength.

    HOBBS et al. (198 6) an d ST~eHLAW 19 86 ) ther efo re

    proposed three l aye r mode ls in which the p la s t i c a l ly

    f lowing region was separa ted f rom the br i t t le region

    by a t rans i t iona l layer of po or ly defined, semi-bri tt le

    rheology . In an independent deve lopment , Ts~ &

    Rice (1986) explored a model based ent i re ly on a ra te

    and state variable friction law similar to that f irst de-

    scr ibed by DmTRICH (1978) , in wh ich the y were able

    to show tha t th e r e s t r ic t ion o f ea rthquakes to sha l low

    depths could be comple te ly expla ined by a t rans i t ion

    f rom ve loc i ty weakening to ve loc i ty s t r engthening

    with increasing temperature, as predicted by the ex-

    per im enta l da ta of STESKY (1975) , w itho ut any re-

    quirement for a br i t t le -duct i le t rans i t ion. These two

    deve lopments r emoved the unde rp innings of the

    lower pa r t o f the m ode l show n in F ig. 1 and l ead one

    to suspect tha t the apparent success of tha t m ode l was

    mis leading, and tha t the physics of the t rans form ation

    fro m se ismic to aseismic faul t ing is fa r mo re com plex.

    Th e pu rpose of this paper is to discuss the br i t t le -

    plas tic t rans i t ion in m ore de ta il , for bo th the case of

    bulk deformation and f r ic t ional s l iding, and to deve-

    lop the re f rom a mode l tha t i s more cons i s ten t w i th

    these recent findings and the relevent observational

    f a c e s .

    T h e b r i t t l e - p l a s t i c t r a n s i t i o n

    Th e br it tle-plas tic t rans i t ion is usua l ly und ers too d

    to mean the t r ans i t ion f rom ent i r e ly br i t t l e behavior

    to de forma t ion tha t occur s en t i r e ly by c rys ta l l ine

    plasticity. T his transition , even for the simplest crys tal

    types , cann ot o ccur a t a surface in P-T4 space but m ust

    occur ove r some f i e ld w i th in which the de forma t ion

    occurs by a mixture of these processes (PATERSON,

    1978). Th is is th e semi-brittle field, referred t o earlier.

    Also, since we are here dealing with faults , we must

    con sider two cases of the brittle-plastic transitio n, th e

    t r ans i tion a s i t occur s in the b u lk d e forma t ion of the

    rock, and the t rans i t ion as i t occurs in f r ic t ional s l id-

    ing . A t some sha l low depth , f au l t ing occurs pr im ar i ly

    by f r ic t ional s l iding (with, presumably, some dis t r ib-

  • 8/17/2019 Scholz, 1988 B-Ptransition

    4/10

    322 C . H . SCHOLZ

    uted de forma t ion w i th in i ts zone of wear produc ts ) by

    the mechanism of br i t t le f rac ture of contac t ing asper-

    i t ies . At suff ic ient depth, the same deformation takes

    place as plas t ic f low in bulk as a con t inu um with in an

    associated ductile shear zone. In the transition be-

    tween these extremes there is l ike ly to be a region in

    which the de forma t ion t akes p lace pa r t ly by f r i c t ional

    s l id ing and pa r t ly by bulk de forma t ion . I t i s a com-

    m on misconcept ion in geology to cons ide r fr i c tion to

    be synonymous wi th br i t t l e behavior , whe reas the

    br i t t le process was only involved in the formation of

    the s l iding surfaces , and not necessar i ly with the ir

    cont in ued s lip. Fr ic t ion of meta ls , for example , occurs

    a lmost ent i re ly by the plas t ic deformation of contac-

    t ing asper it ies. Thu s the presence of duct i ly deform ed

    rock in a faul t zone cannot be used to rule out f r ic -

    t iona l s l iding as a contr ibut ing, or even major , me-

    chanism of t r anspor t .

    The br i t t l e -p la s t i c

    t r a n s i t i o n f o r b u l k d e f o r m a t i o n

    The br i t t le -plas t ic t rans i t ion for any polycrys ta l l ine

    mater ia l wil l take place in a f ie ld somewhat l ike tha t

    shown schematica l ly in Figure 2, in which plas t ic i ty

    is favored by elevated temperature and pressure. The

    br i t t le regime is separa ted f rom the regime of ful l

    plas t ic i ty by a semi-br i t t le fie ld in which the deforma-

    t ion occurs by a mixture of br i t t le and plas t ic pro-

    cesses . For monominera l ic rocks , the width of the

    semi-bri t tl e f ie ld w i ll be & m ark ed by the condi t ions

    und er whic h the eas iest s l ip sys tem becomes ac t iva ted

    on the one s ide and on the other those in which suff i -

    c ient s l ip sys tems become ac t iva ted to sa t is fy the von

    Mises-Taylor criterion for fully plastic flow (PaTER-

    SON, 1978) . For mu l t i - comp onent rocks the semi-

    br i t t le f ie ld wil l typica l ly be broader , owing to the

    ductili ty contrast of the different mineral species.

    The rheology through the semi-br i t t le f ie ld is bes t

    il lustrated for calcite marble, which has been studied

    across the ent i re f ie ld a long the constant tempera ture

    pa th A-B by SCHOLZ 1968) and EDMOND & PmERSON

    (1972) . At ro om temp era ture this ro ck typ ica l ly passes

    into the semi-br i t t le f ie ld a t qui te low conf ining pres-

    sure, in wh ich the beha vior is macro scopica l ly duct ile

    but th e interna l con tr ibu t ion of br i t t le processes is re -

    vea led by pronounced di la tancy and a s t rong pressure

    sensi t ivi ty of the s t rength ( in the exper imenta l l i te ra-

    ture this behavior is often referred to as cataclastic

    f low, but we avoid this te rm here because i t might

    cause confus ion wi th the mechanism of forma t ion of

    ca tac las t i tes , which are predominant ly wear products

    of friction al sliding). As co nfin ing p ressure is raised,

    di la tancy is suppressed and the pressure sens i t ivi ty

    decreases, indicating that the role of plastic processes

    is increasingly dominant over britt le processes. Final-

    ly, a t some cr i t ica l pressure both di la tancy and the

    pressure sens i t ivi ty vanish and the rock has entered

    the ful ly plas t ic f ie ld. The width of the semi-br i t t le

    f ie ld a t room tempera ture is typica l ly about 300 MPa.

    Rheologica l da ta of this qual i ty is not ava i lable for

    the more refractory silicates in the semi-britt le field.

    By infe rence f rom mic roscopic s tud ies o f de form a t ion

    textures, however, we can trace the same transition in

    ~ 1 ~ P L A S T I C

    ~ N I ~ /F U L L PLASTICITYOF

    ::D N ~ i ~ OST BRITTLECOMPONENT

    ~ li~ E M IR I T T L E

    A - ~ - B

    ONSETOF PLASTICITYOF

    ii~ MOST DUCTILECOMPONENT

    P R E S S U R E

    Fig. 2. Schematic diagram of the

    b r i t t l e - p l a s t i c

    transition for bulk flow.

  • 8/17/2019 Scholz, 1988 B-Ptransition

    5/10

    The brittle-plastic transition and the depth of seismic faulting 323

    the de fo rma t ion of g ran it e th a t was s tud ied a long the

    pa th C-D by TULLIS & Yt~ D (1977, 1980). Fo r d ry

    grani te they found tha t the semi-br i t t le f ie ld was

    ente red a t abou t 300-400 ~ wi th the onse t o f f low in

    quar tz . As tempera ture was increased there was a

    gradua l t r ans i t ion f rom abundant mic roc racks , to a

    uni form dens i ty of d i s loca t ions w i th r ec rys ta l l i z ed

    gra ins and no microcracks , and tha t dis loca t ions did

    not becom e dom inan t in f e ldspa r un t i l 550- -650 ~ For

    wet granite these transition temperatures were reduced

    by 150--200 ~ for b oth feldspar and quar tz .

    These experimental results are difficult to extrapo-

    la te to na tura l condi t ions , so for the present we must

    re ly on geologica l observa t ions to es t imate the condi-

    t ions un der wh ich the br it tle-plas tic t rans i t ion occ urs

    in na ture . Since both quar tz and fe ldspar have only

    limited slip systems, fully plastic flow in those ma-

    ter ia ls cannot occur by gl ide a lone , but must be asso-

    c iated w ith re cov ery and recrys ta l l iza t ion. F or qua r tz ,

    this appears at ab ou t 300 ~ (VoLL, 197 6; Kn~RICH et

    a i. , 1 977 ) , and for fe ldspar , a t ab ou t 450--50 0 ~

    (WHITE, 19 76; VOLE, 1976 ) . Th us qu ar tz begins to

    f low a t abou t the begin ning o f greenschist fac ies me-

    tam orph ism, bu t f eldspar does no t beg in to f low unt i l

    wel l into the am phib ol i te grade . We take 300 ~ and

    450 ~ then , a s the u ppe r and lower bou nds of the semi-

    br i t t le f ie ld for quar tzo-fe ldspathic rocks . Between

    these two states these rocks behave as composite

    materials, w ith qu artz flo win g and the feldspar re-

    spon ding in a r ig id , b r i tt l e manne r , fo rmin g porphy -

    roc las ts , as is so commonly observed in myloni tes .

    Any ex t rapola t ion of a f low law f rom the fu l ly

    plastic field into th e semi-britt le field, as was don e in

    the m od el illustrated in Fig. 1, will always un der-

    es t imate the s t rength there , and tha t underes t imat ion

    wil l worsen the fur ther the extrapola t ion is taken.

    This is because, as we traverse this field from D to C,

    say, plastic m ech anis m s will gradu ally be eliminated,

    f i r s t in one component and then in anothe r , which

    wil l increase the f low s trength, and microscopic br i t -

    tle processes will become increasingly necessary to ac-

    com m oda te the st ra in , and which ca r ry w i th them a

    pressure sens i t ivi ty of s t rength, w hich was no t inc lud-

    ed in the extrapola t ion.

    T h e b r i t t l e -p l a s t ic t r a n s i t i o n f o r f ri c t i o n a l s l i d i n g

    Just as in the above , where we considered enter ing

    the t rans i t ion to the semi-br i t t le f ie ld f rom below, for

    th i s p rob lem we mus t a l so cons ide r wha t occur s when

    the semi-br i t t le f ie ld is entered f rom the br i t t le s ide

    above . On ly in th is c a se we m us t cons ide r h ow i t af -

    fec ts f r ic t ional s l iding, s ince tha t is the condi t ion of

    deformation tha t occurs there . That is : what a re the

    changes in f r i c t ion tha t o ccur when the m echanism o f

    shea ring o f asperities changes fro m britt le fracture,

    which commonly domina te s f r i c t ion in s i l i c a te rock

    at low temperature, to plastic flow, as occurs in the

    fr ic t ion o f metals, and a t high tem pera ture , for rock?

    As far as it affects the gross frictional strength, the

    answer is : no t a t a l l . This is because i t i s fundam enta l

    to f r ic t ion th a t the real a rea of con tac t , A is a lways

    les s than the nom ina l a rea A , and i s de te rmined b y a

    s t rength parameter c lose ly re la ted to the s t rength re -

    quired to shear th rou gh A r (BoWDEN& TABOR, 1964).

    Since A increases with no rm al s t ress , so mus t the

    shear s t ress required fo r s l ip, in a jus t com pen sa t ing

    wa y so tha t the s t reng th can be descr ibed with a sim-

    ple f r ic t ion coefficient . Fo r this reason roc k f r ic t ion is

    independent of l i thology and tempera ture (BYERLE~,

    1978; SCHOLZ, 1977). We sho uld therefo re no t expect

    tha t the re should be an abrupt t r ans i tion f rom f r i c t ion

    to bu lk de forma t ion a t the po in t whe re the f i r s t mi -

    nera l becomes duct i le , as is implied in the model

    shown in Fig. 1, s ince this t rans i t ion wil l only take

    place when the f r ic t ion surfaces become welded, i .e .

    A = A , which can be expected to occur on ly much

    fur ther into the semi-br i t t le f ie ld. So be low the point

    a t which the f i rs t yie lding and f low of minera ls is

    observed s t rength should cont inue to increase l inear ly

    wi th pressure a long a no rm al f r ic t ion curve . Th e peak

    in s t rength should be expected wel l within the semi-

    br i t t le f ie ld and no t a t its uppe r bo und ary, as indica ted

    in Fig. 1.

    The re a re , however , oth er im po rtan t e f fec ts of the

    tran sition on friction . T he effect of the britt le-plastic

    t r ans i tion on f r i c tion i s show n schem a t ica l ly in F igure

    3 . The t r ans it ion a long the p a th A-B was s tud ied b y

    SHIMAMOTO (19 86 ), usin g halite as a n ex per im ent al

    gouge mater ia l sandwiched be tween sandstone sur-

    faces in triaxial fri cti on experimen ts. Since halite be-

    comes duct i le a t modera te pressures and room tem-

    perature, these experiments are analogous to the mar-

    ble exper iments descr ibed above . At the lowest

    pressures he found tha t the f r ic t ion was ve loc i ty-

    weakening ( the ve loc i ty dependence of f r i c t ion i s

    negative) and hence unstable, exhibiting stick-slip. At

    higher normal s t ress , when the ha l i te had entered i ts

    sem i-britt le field, the rh eo lo gy was stil l fr ictional, in

    the sense tha t s t r ength con t inued to r is e sha rp ly w i th

    con f ining pressure, b ut th e s ign o f the ve lo c i ty depen-

    dence changed , i e f r ic t ion became ve loc i ty-s t rength-

    ening, and hence stable. Finally, at the highest pres-

    sures, wh ere th e halite was in its fully plastic field, the

    s trength of the san dw ich becam e insensit ive to

    pressure. A t tha t p oin t t rans la t ion o f the op pos ing sur-

  • 8/17/2019 Scholz, 1988 B-Ptransition

    6/10

    324 C .H . SCHOLZ

    faces was taking place by cont inuous plas t ic shear of

    the ha l ite layer, whic h h ad co m ple te ly welded the sur-

    faces (SHIMAMOTO& LOGAN, 1986).

    Fr ic t ion of grani te w as s tudied a long the pa th C-D

    to 700 ~ by ST~SKY 197 5, 1978). H e fo un d the same

    pa t te rn , in which a t low tempera ture the f r i c t ion

    show ed ve loc i ty-weaken ing and s tick-sl ip, b ut tha t

    above 300 ~ wh ere quar tz begins to f low, i t becam e

    ve loc i ty- s t r engthening and s tab le . He found tha t the

    rheology was f r ic t ional , wi th a s t rong pressure e ffec t

    on s t rength, a t a l l tempera tures s tudied, but tha t this

    effect was dim inish ed at the high est temperatures. Th e

    mo del of Tsz & RICE (1986) was based o n Stesky's

    results.

    Th e onse t of plas t ic i ty in th e sem i-br i tt le f ield is

    thus seen to co inc ide w i th a change f rom ve loc i ty-

    weakening to ve loc i ty- s t r engthening in f r i c t ion and

    hence to a t rans i t ion f rom an unstable f r ic t ional f ie ld

    to a s table f r ic t ional f ie ld. Wh en asper i ty deform ation

    is la rge ly br i tt le , ve loc i ty-w eakening can ar ise f ro m a

    c lass of environmenta l ly a ided processes of the type

    discussed by SCHOLZ & ENGELDER (19 76 ) and DIET-

    RICH (1978) . W he n asper it ies beco m e duct ile, how -

    ever , they de form accord ing to a f low law w i th an in -

    t r ins ic pos i t ive s t ra in ra te dependence and the cor-

    re sponding f r i c t ion becomes ve loc i ty- s t r engthening

    R A B I N O W I C Z , 1965; SHIMAMOTO,1986) . The t rans i t ion

    to cont inuous f low, however , occurs a t much higher

    tempera ture and pressure where the surfaces become

    welded, nearer the t rans i t ion to ful l plas t ic i ty for bu lk

    de forma t ion .

    The t rans i t ion f rom unstable to s table f r ic t ion thus

    appear s to co r re spond to the t r ans i tion f ro m br i t tl e to

    semi-bri tt le beh avior o f the roc k. T here is a lso an im-

    por tan t change in the mechanism of wea r a t th i s

    bounda ry . A t low tempera ture s wea r occurs by the

    br i t t le f rac ture of asper i t ies , resul t ing in the produc-

    tion of loose wear particles. This is called abrasive

    w e a r R A I 3 I N O W l C Z ,

    1965) , and is the p r im ary mecha -

    nism of generation of cataciastites. Wear stil l occurs

    when the asperities deform plastically, as they would,

    in part, in the sem i-brittle field, bu t this typ e of wear,

    which i s commonly obse rved for the duc t i l e me ta l s

    and is called adhesive wear, occurs by ductile shearing

    ou t of asper it ies , of ten with t ransfer of m ater ia l to the

    oppos i t e sur face . This wea r mechanism would thus

    resul t in rocks with myloni t ic fabr ics and micros truc-

    ture , even though the mac roscopic behavior of the

    fault was stil l fr ictional. Thus the first appearance of

    myloni t ic rocks cannot be taken as f i rm evidence tha t

    the re la t ive motion across the shear zone is taken up

    ent i r e ly by bulk shea r a s a cont inuum in the shea r

    zone . Often, for example , the rocks in shear zones in

    the semi-bri tt le f ie ld a re S-C mylon i tes , wh ich con ta in

    discrete planes (the C planes) which offset markers

    and a long w hic h s lip has thus occu red (e .g. Lis-rn< &

    =

    ~FRCTIONAL PLASTC

    I ~ CONTNUUM

    STABLE ~ FLOW

    \ AD.ES,VE

    .

    -

    I d N S E T O F

    r

    W E L D I N G

    r

    I I

    P L A S T I C I T Y O F G O U G E

    P R E S S U R E

    Fig. 3. Schem atic diagram of the brittle-plastic transition for frictional sliding.

  • 8/17/2019 Scholz, 1988 B-Ptransition

    7/10

    The brittle-plastic transition and the depth of seismic faulting 325

    SvoK~, 1984) . In these cases , though the deformation

    is dear ly not br i t t le , the shear zone may s t i l l be par-

    tially frictional in its character, which in terms of its

    rheology means tha t i ts s t rength is s t i l l pressure

    dependent .

    A s y n o p t i c sh e a r z o n e m o d e l

    We are now ready, based on the points made above ,

    to incorpora te some improvements in the s imple

    mo de l o f Fig. 1 and to deve lop a somewh a t m ore r e -

    a l is t ic , though necessar i l ly more complica ted, model

    of a shea r zone , which is shown in F igure 4 . Thi s m o-

    del is intended for quar tzo-fe ldspathic rocks , so the

    pr inc ipa l f iducia l p oints , s ho wn on the le ft ax is , a re

    300 o and 450 ~ t aken a s the onse t o f qua r tz and

    feldspar plasticity. The depth axis is based on the as-

    s u mp t i o n o f a c o m m o n l y us ed g e o t h e rm mo d e l f o r

    the San An dreas fault (LAcH~N~UCH & SASS, 1980,

    m od el B). This d epth sca le sho uld no t be regarded to o

    ser iously s ince even for mu ch of the San And reas faul t

    i t unde re s tima te s the d epth o f the t r ans i t ions by 3- -5

    k m .

    Th e 300 ~ isotherm is taken as T1, the t rans i t ion

    from br i t t le to semi-br i t t le behavior . The semi-br i t t le

    f ie ld is bounded by T1 a t the top and by the t rans i-

    t ion to ful l plas t ic i ty a t T~, a t the bot tom, where

    feldspar beco m es plastic. T he tran sition f rom cata-

    clastites to m ylo nites (S~BsON, 197 7) occ urs at t he up-

    per boundary, T~, which, however , is not a t rans i t ion

    f rom f r i c t ion to bu lk f low but a t r ans i t ion f rom

    abrasive to adhesive wear, in which the latter is do-

    minated by duct i le f low within a f r ic t ional regime.

    The a sym met r ic hourg la s s shape of the shea r zone i s

    somewhat fanc iful , and is based on a wear model

    (ScHoLZ, 198 7) in w hich wear ra te and thus faul t

    thickness increases with no rm al s t ress , and h ence

    depth. The neck in the hourglass is caused by the

    change in wear mechanism, s ince usual ly adhesive

    wear is assoc ia ted with much lower wear ra tes than

    abrasive

    wear (RABINOWICZ,

    1965). Th ere is no da ta a t

    present to suppor t this idea , and even in the upper

    pa r t the re a re obse rva t ions of bo th th ickening and

    th inning of f au l t zones w i th depth (F~vG & McEvIL-

    ~Y, 198 3; ANDERSON et al., 198 3). The hy po the tica l

    shape shown would on ly occur i f the rock was of

    un iform com po si t ion over a ll depths (ScHoLZ, 1987)

    and w ould on ly b e preserved in the case of s tr ike-s lip

    faulting.

    Th e se ismic b ehav ior o f the faul t is descr ibed us ing

    the f r ic t ion rate param eter A -B (RuINA, 1983). I f A-B

    is negative, frictio n is velo city-w eake ning and instable;

    if i t is positive, i t is velocity-strengthening and stable.

    This parameter is plot ted schematica l ly in the middle

    frame of Figure 4, and follows c lose ly the in pu t m ode l

    b of TsE & Ric~ (1986) , which was based on the re -

    sults of SWSKY (1975). We have, in add ition, add ed a

    region o f ve loc i ty-s t reng thening near the surface . W e

    expect this be havio r because of the presence there o f

    unconsol ida ted a nd/o r c lay r i ch f au l t gouge . Such

    materials are no t ob served to stick-slip in the labo-

    ra tory, and this provides an upper s tabi l i ty boundary,

    T4, to expla in why ear thquakes a re not observed to

    nucleate at depths less tha n ca. 2 k m on w ell developed

    faul ts . The lower s tabi l i ty boundary, where A-B be-

    com es posi t ive a t depth, is appro xim ate ly a t T1, as in-

    depend ent ly de te rmined f rom Ste sky 's r esu lt s. Thu s

    A

    ( I [ ( D

    a c ~ 3 0 0 ~

    4 5 0=

    Fig. 4. A

    F R I C T I O N

    G E O L O G IC F A U L T R O C K R A T E

    F E A T U R E S M E C H A N I S M S B E H A V I O R( A - B )

    S E I S M I C S T R E N G T H

    B E H A V I O R

    __ •CLAY

    I

    4 . . . G_O~E

    --1 1K M T t ~ , '.~ J '.= ~ - -Q U A R T Z ~ , ~ , 4 = ~ 4 ~ S I T I O N

    P L A S T I C IT Y ~ z

    / ~ /

    t n Q ~ h

    . . . .

    A M P H I B O L I T E

    ( - ) T J + )

    _ _ ~ _ ~ U P P E R

    S T A B I L I T Y

    / l i l ~ N U C L E A T IO N

    9 Z O N E

    ( S E I S M O G E N I C

    I I ~ ~ L A Y E R )

    O F L A R G E A R T HQ U A K E

    ~ 1 ~ 'L O W E R T A B I L IT Y '

    M A X I M U M

    R U P T U R E E P T H

    ( L A R G EE A R T H Q U A K E )

    ~ ~ L O N G ERM

    I

    /

    S S

    synoptic shear zone mo del, illustrating the major geological and seismological features.

  • 8/17/2019 Scholz, 1988 B-Ptransition

    8/10

    326 C .H . SCHOLZ

    ear thquakes can on ly nucleate be tween T 4 and T1,

    which defines the seismogenic layer. Large earth-

    quakes, which rupture the entire seismogenic layer,

    a n d ma y a l s o c o mmo n l y b r e a k t h r o u g h t h e t h i n

    stable re gio n above T 4 to t he surface, are m ost l ik ely

    to o r igina te near the base of the se ismogenic layer

    whe re A-B is a m in im um (TsE & RIcE 1986. ) This

    same expec ta t ion i s ob ta ined f rom cons ide r ing the

    dynam ics of rup ture propaga t ion in a s i tua t ion wh e re

    s trength and s t ress drop increase with depth (DA s &

    SCHOLZ, 19 83 ). Th at large earthquakes do indeed

    typica l ly or igina te f rom near the base of the se ismo-

    genic layer has been known for a long t ime, and this

    fac t was former ly the source of some cons te rna t ion

    (MACELWANE, 19 36) .

    I f T 1 i s a bo und a ry be tween ve loc ity-weakening

    and ve loc i ty-s t reng thening f r ic t ion, as is the thes is be-

    ing explored he re , then mo de l ing has show n tha t dur -

    ing a la rge ear thquake rupture wil l extend dynamica l-

    ly w ell into the sem i-britt le field below T 1 (DAs,

    1982; TSE & RICE, 198 6). As STRELAU (19 86 ) has

    noted, seismological evidence is either ambiguous or

    c ircular on this po int . Th e dep th o f the deepes t a f ter -

    shocks wil l be l imited by T1, s ince tha t is the depth

    l imit of nuclea t ion, but they do not necessar i ly, as is

    so commonly assumed, de l inea te the tota l depth of

    the m a inshock . Ne i the r s ei smic nor geodet ic me tho ds

    have had sufficient resolut ion to def ine the m axim um

    de pth of faulting. Fo r example, THATCHER (1975)

    poin ted ou t tha t the geode t ic da ta for the 1906 San

    Francisco earthquake are insufficient to resolve slip

    benea th 10 km a t the 1 m leve l. Th e m os t r ecent

    seismological techniques appear to bear out this pre-

    dictio n, however. J . NABELEK pets. co m m ., 1987) has

    foun d, in the case of the 1983 Borah Peak earthquake ,

    s ignif icant moment re lease down to a depth of 16

    km s, whereas the a f te rshocks cut off abru pt ly a t 12

    kms .

    We thus con clude tha t large earthquakes wil l pro-

    pagate be low T 1 to som e grea ter depth, T 3 and tha t

    the region be tween T 1 and T3 is one of a l te rna t ing

    behavior , wi th co-se ismic dynamic s l ip and inter-

    seismic semi-britt le flow. Th ere is a grow ing bo d y of

    geological evidence for such an alternating zone, con-

    s is ting of shear zones in wh ich m yloni tes a re fou nd in-

    te r laced with pseudotachylytes and brecc ias (SmsoN,

    1980; STEL, 19 81 , i986; WEN K ~ WEISS, 19 82 ; PAS-

    SCHIER, 1984); HOBBS et al. ( 19 86 ) developed a m od el

    of duct i le ins tabi l i ty in an a t tempt to expla in this

    phenomena. Their model , however , shows tha t i t i s

    unl ike ly for such an ins tabi l i ty to ini t ia te within the

    a l te rna ting zone . Assuming the rh eolog y of we t qua r t -

    zite and a strain rate of 10-12sec-1, they found that

    flow was stable at temperatures greater than abo ut

    200 ~ i .e . wel l above T 1. Th us one m ight n ot ex-

    pec t

    nucleation

    with in the a l t e rna t ing zone , bu t one

    can use the i r mode l to show tha t an ea r thquake

    should be expected to

    propagate

    well into this zone .

    An ea r thquake impinging on T I f rom above wi l l im-

    pose there a strain rate some 108 times the in-

    terseismic rate, so that the co-seismic strain rate will be

    abou t 10-4sec -1, which f rom the ir m odel w il l a llow

    progagat ion to much grea ter depth.

    The consequences of th i s mode l on the s t r ength of

    the l i thosph ere is show n on the r igh t f rame of Fig. 4.

    The shear zone s t rength is f r ic t ional f rom the surface

    to T3, so it increases w ith dep th over that interval. T 1

    represents a change in the m icrom echa nism o f f r ic t ion

    f rom br i t tl e to duc t il e which p roduces a change f rom

    veloc i ty-weakening to ve loc i ty-s t rengthening and

    fro m abrasive wear to adhesive wear, bu t n o significant

    break in th e s t rength profi le . HoBBs e t a l . (1986) and

    SVRELAU (198 6) bo th intr od uce d transitio nal region s

    in the ir s t rength prof i les but for unexpla ined reasons

    assumed tha t th e s t rength w as constant be low T 1. As

    was pointed out above , however , as long as the

    behavior is essentially frictional, regardless of the

    micromechanism, s t rength should increase approx-

    imate ly l inear ly with normal s t ress , and hence depth.

    Thu s the peak in s tr ength shou ld no t occur a t T~ but

    a t some greater dep th w here welding has occurred. We

    place this approx imate ly a t T 3. Below this depth we

    expect the s t ren gth to sag, joining a high tempera ture

    f low law a t T 2. Th e welding and s t rength decrease

    be low the peak i s p robably no t p roduced by p la s t i c

    flow alone, but is aided by , ,pressure solution

  • 8/17/2019 Scholz, 1988 B-Ptransition

    9/10

    T h e b r i t t le - p l a s ti c t r a n s i t i o n a n d t h e d e p t h o f s e i sm i c f a u l t in g 3 2 7

    R e f e r e n c e s

    ANDERSON, J. L . , R . OSBORNE & D. PALMER (1983):

    Ca tac las t ic r ocks of the San G abr ie l f au l t - - an expr es -

    s ion of de f or mat ion a t deeper c r us ta l l eve l s in the San

    A ndr eas f au l t zone . - - Tec tonophys . , 98 , 209- - 251 .

    BOW D EN , E A . & D . TA BO R ( 1964) : The F r ic t ion and

    Lub r ica t i on of Sol ids, Pa r t I I. - O xf or d , C la r en do n

    Press , 544 pp.

    BRACE, W. E & D. KOHLSTEDT (1980) : Lim its on l i tho -

    s p h e r i c s t re s s i m p o s e d b y l a b o r a t o r y e x p e r i m e n t s . - - J .

    G e o p h y s . Res . 85, 6248- - 6252.

    BYERLEE, J . D. (1978) : Fr ict ion of rocks . - - P ure Ap pl.

    G eophys . 116 , 615- - 626 .

    CARTER, N. L. & S. KIRBY (1978) : Tran sien t cre ep and semi-

    br i t t l e beh avio r of c r ys ta l l ine r ocks . - Pur e A ppl .

    G eophys . , 116 , 807- - 839 .

    D A S, S . ( 1982) : A ppr opr ia te boundar y condi t ions f or

    m o d e l i n g v e r y l o n g e a r t h q u a k e s a n d p h y s i c a l c o n s e -

    quences . - - Bull . Seismol. Soc. Amer . , 72, 1911--1926.

    - - & C. SCH OLZ ( 1983) : W hy la r ge ea r thqu akes do not

    nuc lea te a t sha l low depths . - - N a tur e , 305 , 621- - 623 .

    D IETRI CH , J . (1978): T im e dep end ent f r i c t ion and the

    mechanics of s t i ck- s l ip . - - Pur e A ppl . G eophys . , 116 ,

    79O--8O6.

    DOSER, D. & H . KANAMORI (1986) : De pt h of seismic i ty in

    the I mper ia l V a l ley r eg ion ( 1977- - 1983) and i t s r e la t ion-

    sh ip to hea t f low , c r us ta l s t r uc tur e , and the O c tober 15 ,

    1979 ea r thquak e . - J . G eop hys . Res . , 91 , 675- - 688 .

    EDMOND, J . & M. PATERSON (1972) : Volu me chang es d ur-

    ing the de f or mat ion of r ocks a t h igh pr es sur es . - - I n t . J .

    Rock Mech. Min. Sci . , 9, 161--182.

    ETHERIDGE, M ., V. WA LL, S. C o x & R. VERNON (1984):

    H i g h f l u i d p r e s s u r e s d u r i n g r e g i o n a l m e t a m o r p h i s m :

    i m p l i c a t i o n f o r m a s s t r a n s p o r t a n d d e f o r m a t i o n m e -

    chanism s . - J . G eop hys . Res . , 89 , 4344- - 4353.

    FENG, R. & T. McEvILLY (1983) : Interpretat ion of seismic

    r e f l e c ti o n p r o f i l i n g d a t a f o r t h e s t r u c t u r e o f t h e S a n A n -

    dreas fault zone. - - Bull . Seismoi. Soc. Mer . , 73,

    1701--1720.

    HOBBS, B. E. , A. OR b & C. TEYSSIER (1986) : Ear t hq uak es

    i n t h e D u c t i l e R e g i m e ? - - P u r e A p p l . G e o p h y s . , 1 2 4 ,

    309- - 336 .

    KERRICH, R. (1986) : F lu id in f i l t ra t ion i nto fault zones:

    chemica l , i so top ic , and mechanica l e f f ec t s . - - Pur e A ppl .

    G eophys . , 124 , 225- - 268 .

    - - , R. BECHINSDALE & J . DURHAM (1977): T he tran si t i on

    b e t w e e n d e f o r m a t i o n r e g i m e s d o m i n a t e d b y i n t e r -

    c r ys ta l l ine d i f f us ion and in t r ac r ys ta l l ine c r eep eva lua ted

    b y o x y g e n i s o t o p e t h e r m o m e t r y . - - T e c t o n o p h y s . , 3 8 ,

    241- - 257 .

    KIRBY, S . (1980) : Tectoni c s tress in the l i tho sph ere: con -

    s t r a i n t s p r o v i d e d b y t h e e x p e r i m e n t a l d e f o r m a t i o n o f

    r ocks . - - j . G eophys . Res . , 85 , 6353- - 6363.

    - - ( 1983) : Rh eolo gy of the l i thospher e . - - Rev . G eop hys . ,

    21, 1458--1487.

    LACHENBRUCH, A. & J . SASS (1973) : Th erm o-m ech an ica l

    aspec ts o f the San A ndr eas . - - I n : P roc . C onf . on th e Tec-

    t o n i c P r o b l e m o f t h e S a n A n d r e a s f a u l t S y s t e m , e d i t e d

    b y R . K o v a c h a n d A . N u r - - S t a n f o r d U n i v . P u b l . G e o l .

    Sci. , 13, 192--205.

    LISTER, G. & A. SNORE (1984) : S-C m ylon ites . - - J . S truc t .

    G eol . , 6 , 617- - 638 .

    MACELWANE, J . (1936) : Prob lem s and p rogress on the Geo -

    logico-seismologicai f rontier . - - Science, 83, 193--198.

    MEISSNER, R. & J. STRELAU (1982): L im its of stress in con -

    t i n e n t a l c r u s t a n d t h e i r r e l a t i o n t o t h e d e p t h - f r e q u e n c y

    r e la t ion of sha l low ea r thquakes . - - Tec tonics , 1 , 73- - 89 .

    PASSCHIER, C. (1984) : Th e g ene rat io n of duc ti le an d br i t t le

    d e f o r m a t i o n b a n d s i n a l o w - an g l e m y l o n i t e z o n e . - J .

    S t r u c t . G e o l . , 6 , 2 7 3 - 2 8 1 .

    PATERSO N, M. S . ( 1978) : Exp er im enta l Roc k D ef o r ma t ion

    the Br i t t l e F ie ld . - - Spr inger - V er lag , 254 p .

    RABINOWICZ, E. (1965) : Fr ict ion and Wear o f Mater ials . - -

    John W i ley and Sons , N ew - Y or k , 243 p .

    RU I N & A . ( 1983) : S l ip ins tab i l i ty and s ta te va r iab le f r i c t ion

    laws. - J . Geo phy s. Res ., 88, 10,359--10,370.

    RU TTER E . H . ( 1986) : O n the no me nc l a tur e of mod e of

    f a i lu re t r ans i t io ns in r ocks . - Tec tono phys . , 122 ,

    381- - 387 .

    SCH O LZ, C . ( 1968) : Mic r of r ac tu r ing and the ine las t ic de f or -

    ma t ion of r ock in compr ess ion . - J . G eop hys . Res ., 73 ,

    1417--1432.

    ( 1977) : A d i scuss ion on the s ta te of s tr es s on f au l ts . - - I n :

    P r o c . C o n f . E x p e r i m e n t a l p r o b l e m s i n r o c k f r i c t i o n

    w i t h a p p l i c a t i o n t o e a r t h q u a k e p r e d i c t i o n , U . S . G e o l .

    Sur vey , Menlo Par k , Ca l . , 289- - 293 .

    ( 1987) : W ear and gouge f or mat ion in br i t t l e f au l t ing . -

    G eology , 15 , 493- - 495 .

    - - & T . EN G ELD ER ( 1976) : r o le of a sper i ty in den ta t io n a nd

    plo ugh ing in r ock f r ic t ion , 1 : a sper i ty c r eep and s t i ck-

    sI ip. - - Int . J . Rock Mech. Min. Sci . , 13, 149--154.

    SIBSON, R. (1977) : Faul t rocks a nd fault m ech anis ms. - J .

    Geol . Soc. (Lond. ) , 133, 191--214.

    ( 1980) : T r ans ien t d i scont inu i t i e s in duc t i l e shea r zones .

    - - J. S t r uc t . G eol . , 2 , 165 - 171 .

    ( 1982) : Faul t zone mode ls , hea t f low , and the depth

    d i s t r i b u t i o n o f s ei s m i c i ty i n t h e c o n t i n e n t a l c u r s t o f t h e

    U n i te d S ta tes . - - Bul l . Se i smol . Soc. A mer . 72 , 151- - 163 .

    ( 1984) : Roughness a t the base of the se i smogenic zone :

    cont r ibu t ing f ac tor s , J . G eophys . Res . , 89 , 5791- - 5799.

    SHIMAMOTO, T. (1986) : A tra nsi t io n be twe en f r ic t io nal s l ip

    a n d d u c t i l e f l o w u n d e r g o i n g l a rg e s h e a ri n g d e f o r m a t i o n

    a t r oo m tem per a tur e . - Sc ience , 231 , 711-- 714 .

    - - & J. LO G A N ( 1986) : V e loc i ty - depend ent be hav ior of

    s imula ted ha l i t e shea r zones : an ana log f or s i l ica tes . - - I n :

    Ear thquake Sour ce Mechanics , ed i ted by S . D as , J . Boa t -

    w r i g h t a n d C . S c h o l z , A G U G e o p h y s . M o n o . 3 7 ,

    W ashington , D .C. , 49- - 64 .

    SMITH, R. & R . BRUH N (1984) : Intraplate exte nsio nal tec-

    ton ics of the eas te r n Bas in- Range : in f e r ences on s t r uc -

    tur a l s ty le f r om se i smic r e f lec t ion da ta , r eg iona l t ec -

    t o n i c s a n d t h e r m a l - m e c h a n i c a l m o d e l s o f b r i t t l e - d u c t il e

    de f or mat ion . - - j . G eophys . Res . , 89 , 5733- - 5762.

    STEL, H. (1981) : Cry stal gro wt h in cataclas t i tes : diagnost i c

    m i c r o s t r u c t u r e s a n d i m p l i c a t i o n s . - - T e c t o n o p h y s . , 7 8 ,

    585- - 600 .

  • 8/17/2019 Scholz, 1988 B-Ptransition

    10/10

    328 C .H . SCHOLZ

    -- (1986): Th e effect of cyclic oper at ion of bri t t le and d uc-

    t i l e de format ion on the metamorphic as semblage in

    cataclas t i tes and myloni tes . -- Pure and Appl . Geophys . ,

    124, 289--307.

    STESKY, R. (1975): T he mech anical beha vior of faul ted ro ck

    at high temperature and pressure. -- Ph.D. thes is , Mass .

    Ins t . of Tech. , Camb ridge, Mass. , 275 pp.

    (1978): Mechanisms of high temperature fr ic t ional

    s l iding in Westerly grani te . -- Can. J . Earth Sci . , 15,

    3 6 1 - 3 7 5 .

    STt~ELAU,J . (1986): A discuss ion of the dep th extent of rup-

    ture in l arge cont inenta l ea r thquakes . - - In : Ear thquake

    Source Mechanics , edi ted by S. Das , J . Boatwright and

    C . Scholz , A G U G eophys . M ono. 37, Washington , D .C . ,

    131--146.

    THATCHER, W. (1975): Strain acc um ula tion and release

    mec han ism of the 1906 San Francisco earthqu ake. - - J .

    Geophys . Res . , 80, 4862--4872.

    TSE, S. & J . RICE (1986): Crustal earthqu ake ins tabi l i ty in

    re la t ion to the depth va r i a t ion of f r i c t iona l s l ip proper -

    ties. -- J . Geop hys . Res., 91, 9452--94 72.

    TULLIS, J . & R. YUND (1977): Ex per ime ntal defo rma t ion of

    dry Westerly grani te . -- J . Geophys . Res . , 82,

    5705--5718.

    (1980): Hyd roly t i c w eakening of exper imenta l ly de form -

    ed Westerly grani te and Hale albi te rock. -- J . Struct .

    Geol . , 2, 439--451.

    V ol i , G . (1976) : Recrys ta l l iza t ion of quar t z , b io t i te , and

    feldspars from Ers tfeld to the Levant ina nappe, Swiss

    Alps , and i ts geological implicat ions . -- Schweiz. Miner.

    Petrogr. Mit t . 56, 641--647.

    WENK, H. & L. WEISS (1982): A l-r ich calcic pyro xene in

    pseudotachyly te : an ind ica tor of h igh pressure and h igh

    temperature? -- Tectonophys . , 84, 329--341.

    WHITE, S. (1975): Tectonic deformat ion and recrys tal l iza-

    t ion of ol igoclase. -- Con tr . Mineral . Petrol . , 50,

    287--304.