Schlumberger Engineer Guide (MWD/LWD)

download Schlumberger Engineer Guide (MWD/LWD)

of 58

description

M/LWD Guide

Transcript of Schlumberger Engineer Guide (MWD/LWD)

  • Schlumberger

    MWD / LWD Engineer Guide

    (Grade 9)

    Tatiana A. Silva

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 2

    INDEX

    1. DRILLING FLUIDS............................................................................................................................5 1.1. FUNCTIONS................................................................................................................................... 5 1.2. PROPERTIES.................................................................................................................................. 5 1.3. PRESSURE LOSS............................................................................................................................ 5 1.4. SOLID CONTROL EQUIPMENT ....................................................................................................... 5

    2. PORE PRESSURE ..............................................................................................................................6 2.1. SURFACE INDICATION OF OVERPRESSURE.................................................................................... 6 2.2. HYDROSTATIC PRESSURE............................................................................................................. 6

    3. DRILL STRING ..................................................................................................................................7 3.1. DRILL BITS................................................................................................................................... 7 3.2. BHA - BOTTOM HOLE ASSEMBLY ............................................................................................... 7

    3.2.1. Drill Collar ............................................................................................................................. 7 3.2.2. Heavy-weight Drill Pipe ......................................................................................................... 7 3.2.3. Stabilizers ............................................................................................................................... 7 3.2.4. Roller Reamers ....................................................................................................................... 8 3.2.5. Bit Sub .................................................................................................................................... 8 3.2.6. UBHO Subs ............................................................................................................................ 8 3.2.7. Pony / Short Drill Collars....................................................................................................... 8 3.2.8. MWD / LWD Tools ................................................................................................................. 8 3.2.9. Jars ......................................................................................................................................... 8 3.2.10. Circulation Subs ................................................................................................................ 8 3.2.11. Hole Openers ..................................................................................................................... 8

    3.3. DRILL PIPE ................................................................................................................................... 8 3.4. NEUTRAL POINT........................................................................................................................... 9 3.5. BUOYANCY FACTOR .................................................................................................................... 9 3.6. CONNECTIONS .............................................................................................................................. 9

    4. SENSORS ...........................................................................................................................................10 5. ETHERNET .......................................................................................................................................11

    5.1. TOPOLOGIES............................................................................................................................... 11 5.2. SETTING NAME CONFIGURATION ................................................................................................ 11

    6. TROUBLESHOOTING ....................................................................................................................12 6.1. PROBLEMS.................................................................................................................................. 12 6.2. STEPS ......................................................................................................................................... 12 6.3. PSAM / ASAP ........................................................................................................................... 12

    7. D&I .....................................................................................................................................................13 7.1. WELL PROFILES ......................................................................................................................... 13 7.2. UTM GRID SYSTEM ................................................................................................................... 14 7.3. WELL PLOTS .............................................................................................................................. 15 7.4. SURVEYS .................................................................................................................................... 15

    7.4.1. Components .......................................................................................................................... 15 7.4.2. Surveying Tools .................................................................................................................... 15

    7.5. INCLINATION .............................................................................................................................. 16 7.6. AZIMUTH.................................................................................................................................... 16 7.7. TOOL-FACE ................................................................................................................................ 17 7.8. D&I DATA USAGE ...................................................................................................................... 17 7.9. FE RESPONSIBILITIES ................................................................................................................. 18

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 3

    7.9.1. Pre-Run................................................................................................................................. 18 7.9.2. BHA P/up.............................................................................................................................. 18 7.9.3. IDEAL................................................................................................................................... 18 7.9.4. Job Execution ....................................................................................................................... 18

    7.10. TAKING A SURVEYS ................................................................................................................... 19 7.10.1. Procedures ....................................................................................................................... 19 7.10.2. Field Acceptance Criteria FAC .................................................................................... 19 7.10.3. Roll Test ........................................................................................................................... 19

    7.11. SURVEY OUT OF FAC................................................................................................................. 20 7.11.1. G out of FAC.................................................................................................................... 20 7.11.2. H or Dip Out of FAC ....................................................................................................... 20 7.11.3. 5-Axis Correction............................................................................................................. 20 7.11.4. D-Mag.............................................................................................................................. 20

    7.12. DRILLSTRING MAGNETIC INTERFERENCE................................................................................... 21

    8. MWD TELEMETRY ........................................................................................................................22 8.1. SIGNAL GENERATION ................................................................................................................. 22 8.2. MODULATORS ............................................................................................................................ 22 8.3. SIGNAL STRENGTH ..................................................................................................................... 22 8.4. DATA ENCODING........................................................................................................................ 23 8.5. SPTS......................................................................................................................................... 23 8.6. DATA MODULATION/DEMODULATION ....................................................................................... 24 8.7. BANDWIDTH............................................................................................................................... 25 8.8. SIGNAL PROBLEMS..................................................................................................................... 26

    8.8.1. Attenuation ........................................................................................................................... 26 8.8.2. Pump Noise........................................................................................................................... 26 8.8.3. Downhole Noise.................................................................................................................... 27 8.8.4. Electrical Noise .................................................................................................................... 28 8.8.5. Echoes and Reflections ......................................................................................................... 28

    8.9. HSPM........................................................................................................................................ 29 8.9.1. Pump Noise........................................................................................................................... 29 8.9.2. Drilling Noise ....................................................................................................................... 30 8.9.3. Motor Stalls .......................................................................................................................... 30 8.9.4. Downhole Noise.................................................................................................................... 31 8.9.5. Electrical Noise .................................................................................................................... 31 8.9.6. Echoes and Reflections ......................................................................................................... 32 8.9.7. MWD Failure........................................................................................................................ 32

    8.10. NO SIGNAL................................................................................................................................. 33 8.10.1. Dark Blue spectrogram.................................................................................................... 33 8.10.2. Pump noise but no tool signal in the telemetry band ....................................................... 33 8.10.3. Tool at a different mode................................................................................................... 33 8.10.4. Low Signal on only 1 SPT................................................................................................ 33 8.10.5. Low Signal on both SPT................................................................................................... 33 8.10.6. SPT-B............................................................................................................................... 33

    9. MWD TOOLS....................................................................................................................................34 9.1. ALL TOOLS................................................................................................................................. 34 9.2. POWERPULSE ............................................................................................................................. 35

    9.2.1. Components .......................................................................................................................... 35 9.2.2. MMA Considerations............................................................................................................ 35 9.2.3. MEA Sub Components .......................................................................................................... 36 9.2.4. MGR Gamma Ray.............................................................................................................. 36 9.2.5. MTA Considerations............................................................................................................. 37 9.2.6. MDC Considerations ............................................................................................................ 37 9.2.7. IWOB / MVC......................................................................................................................... 37 9.2.8. Some Specifications .............................................................................................................. 38

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 4

    9.2.9. PPL Jamming ....................................................................................................................... 38 9.2.10. IWOB Calibration............................................................................................................ 39

    9.3. TELESCOPE ................................................................................................................................ 39 9.4. DOWNLINK................................................................................................................................. 40

    9.4.1. Legacy................................................................................................................................... 41 9.4.2. Manual Fast.......................................................................................................................... 41

    10. LWD TOOLS .....................................................................................................................................42 10.1. ARC........................................................................................................................................... 42

    10.1.1. Some specifications.......................................................................................................... 43 10.1.2. Rt measurement................................................................................................................ 43 10.1.3. Gamma Ray measurement ............................................................................................... 47 10.1.4. ARC 6/7/8 Checklist......................................................................................................... 48 10.1.5. Resistivity Interpretation.................................................................................................. 51 10.1.6. APWD .............................................................................................................................. 52

    11. BIBLIOGRAPHY..............................................................................................................................58

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 5

    1. Drilling Fluids

    Water based Mud WBM Water or brine as base fluid Oil Based Mud OBM Crude oil, diesel as base fluid

    Synthetic based Mud SBM Pseudo oil as base fluid Pneumatic based Mud PBM Air, Foam or natural gas as base fluid

    1.1. Functions

    Control Formation Pressure Hole Cleaning Suspend Solids. Lubrication and cooling of drill string Gathering information Provide Buoyancy

    Transmit power Prevent corrosion Stabilization of the exposed rock

    formation Minimize formation damage Isolate fluid from formation

    1.2. Properties

    Density (ppg, g/cc, psi/ft) Rheology: Viscosity and Gel Strength Fluid Loss (Filtration) Inhibition

    1.3. Pressure Loss

    PStdpipe = PSurf.Eq + PDrill String + PMWD/Motor + PBit + PAnnulus

    1.4. Solid Control Equipment

    Shale Shaker Degasser Desander Desilter Mud Cleaner

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 6

    2. Pore Pressure

    2.1. Surface Indication of Overpressure

    Increase in background and connection gas. Gas Ratio C2/C3. Increase in ROP. Presence of splintered cavings at the shakers. Increase in torque and Drag. Reduction in return mud weight.

    2.2. Hydrostatic Pressure

    Hydrostatic Pressure = 0.052 x Mud Weight (ppg) x TVD (ft)

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 7

    3. Drill String

    3.1. Drill Bits

    3.2. BHA - Bottom Hole Assembly

    3.2.1. Drill Collar

    Provide weight Slick Collars / Spiral Drill Collar

    3.2.2. Heavy-weight Drill Pipe

    Standard / Spiral

    3.2.3. Stabilizers

    Integral Blade Sleeve and Mandrel

    Welded Blade Clamp-On

    Insert PDC Natural Diamond Milled Tooth

    Milled Tooth Bits Insert Bits

    By Cutting Structure

    Roller Bearing Journal Bearing

    By Bearing System

    Roller Cone Bits

    PDC bits

    Natural Diamond TSP Impregnated Bits

    Diamond Bits

    Fixed Cutter Bits

    Drill Bits

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 8

    Straight blades or spiral blades String(box / pin) or Near Bit (box / box) types

    3.2.4. Roller Reamers

    Substitute for Stabilizers ONLY run in the BHA between Drill Collars

    3.2.5. Bit Sub

    It is used when a Near Bit Stabilizer is not required It can be used to contain one of the following:

    Float Valve Survey Baffle / Totco Ring

    3.2.6. UBHO Subs

    3.2.7. Pony / Short Drill Collars

    3.2.8. MWD / LWD Tools

    3.2.9. Jars

    3.2.10. Circulation Subs

    3.2.11. Hole Openers

    HOLE SIZE COLLAR SIZE TOOL SIZE 36 22 14 9 11

    16 17 9 8 9 12 12 8 7 8 9 7/8 8 6 6 6

    6 5 7/8 4 4 5 4 3 -

    3.3. Drill Pipe

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 9

    3.4. Neutral Point

    Tension = 0 Stress = 0

    3.5. Buoyancy Factor

    5.65)(1 ppgMudWeightctorBuoyancyFa =

    AirWeightctorBuoyancyFaightBuoyancyWe =

    )(CosightBuoyancyWeghtAvaibleWei =

    3.6. Connections

    For Collars we simply call it a Connection For Drill Pipe it is called a Tool Joint

    Making a Connection:

    Keep it dry / clean Apply Dope Stab Tong Placement Screw in Torque

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 10

    4. Sensors

    SENSORS INPUT OUTPUT PSAM ASAP WIRES Hookload

    Pump pressure SPT-FA

    24 V 4 20 mA 2 10 V 1 5 V V S+

    Torque 24 V 0 3 V 0 6 V 0 3 V V S+

    Gnd

    SPT-BE 24 V 6 V 6 V 6 V V S+ S-

    Gnd

    SPT-HA 24 V 7 V 7 V 7 V

    V S+ S-

    Gnd Spare

    Depth Encoder 12 V 5 V 5 V 5 V V S+ S-

    Gnd

    Pump Stroke 12 V 12 V 5 V 5 V V S+

    Calibration:

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 11

    5. Ethernet

    5.1. Topologies

    Bus (serially) Star (IEH IDEAL Ethernet Hub)

    5.2. Setting name configuration

    Start Ideal Utilities W2KNetConfig

    Name Node IP Address IDEAL1 ASLAV1 163.185.21.30 IDEAL2 ASLAV2 163.185.21.31 HSPM1 ASLAS1 163.185.21.32 HSPM2 ASLAS2 163.185.21.33 IRCT ASLAX1 163.185.21.34 ICPC ASLAX2 163.185.21.35

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 12

    6. Troubleshooting

    6.1. Problems

    Sensor related Junction Box Related Cabling related PSAM / ASAP related HSPM related

    6.2. Steps

    Stop. Assess the situation. Make a plan Do not leave the unit (assuming the cables are connected) Focus your attention on the PSAM / ASAP Trace the problem one step at a time

    6.3. PSAM / ASAP

    Check for correct wiring Check Jumper settings Check fuses Check barriers Check voltages

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 13

    7. D&I

    7.1. Well Profiles

    Straight Well (Vertical) S-Type Well

    Slant Well (J-Type) Horizontal Well

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 14

    7.2. UTM Grid System

    Divides world into 60 equal longitudinal zones (6 deg wide each) UTM Grid Reference include: Zone Number + Hemisphere (N/S) Range of Eastings are: ~200,000m ~800,000

    33 33

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 15

    7.3. Well Plots

    7.4. Surveys

    7.4.1. Components

    Measured Depth Inclination Azimuth

    7.4.2. Surveying Tools

    Inclination only (TOTCO and AnderDrift) Inclination & Azimuth

    MN Referenced (Single Shot, Multi Shot and MWD) TN Referenced (Gyro)

    Target Section

    Plane of Proposal Displacement North/South

    Horizontal Displacement

    (HD)

    Surface Reference Point

    Displacement East/West

    Closure Angle

    Plane of Proposal Angle

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 16

    7.5. Inclination

    It is the angle of deviation from vector g Tri-Axial Accelerometers 1000 counts = 1g Tg is stable (Roll Test)

    7.6. Azimuth

    It is the angle between North Reference and a horizontal projection of wellbore

    Tri-Axial Magnetometers 1 Tool H = 50 Gammas / 1 NanoTesla = 1 Gamma Magnetic Dip Angle = Cos-1 (HC/H) (HC = horizontal component) DIP 90 Close to Poles / DIP 0 Close to Equator Th is stable (Roll Test)

    Magnetic declination is the angle between TN and MN measured from TN

    Final Azimuth = Mag. Az. + Mag. Declination Grig Conv.

    22 GzGyTg +=

    2 2 Hz Hy Th + =

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 17

    7.7. Tool-Face

    Orientate a motor high-side Low inclination magnetometers Magnetic Tool-Face (MTF) High inclination accelerometers Gravity Tool-Face (GTF)

    MTF GTF Previous Regular MTF/GTF Switch Drift < 5 Drift > 8 5< Drift < 8

    Low MTF/GTF Switch Drift < 2.5 Drift > 3.5 2.5 < Drift < 3.5

    7.8. D&I Data usage

    Data Use Real-time Last Survey GFH QA All G HFH QA All H DIP QA All G, all H

    Inclination Wellpath All G Azimuth Wellpath All G, all H

    MTF Steering Gy, Gz, Hy, Hz Gx, Hx GTF Steering Gy, Gz

    Cont_inc Steering Rgx Gy, Gz Cont_azi Steering Rgx, Rhx Gy, Gz, Hy, Hz

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 18

    7.9. FE Responsibilities

    7.9.1. Pre-Run

    Check Calibration of MWD Tool (D&I calibration 6 months) Check requirements (TN or GN?) Calculate EDI (< 0.5) Program the Tool

    7.9.2. BHA P/up

    Measure the Tool-face correction (from ROP to motor scribe line, clockwise, looking downhole)

    360=CircARCTFC

    7.9.3. IDEAL

    D&I Inits Geomag o Inputs: Long, Lat, Date and Elevation o Outputs: Loc G, Loc H, Mag. Dec. and Mag. Dip Angle

    Tie In Point Platform Reference BHA DLIS SAVE

    7.9.4. Job Execution

    SHT o Gx 1000 counts o Gy and Gz 0 o Tool G Loc G o Inc 0 o Pay attention: flow rate, standpipe pressure and tur_rpm

    Surveys

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 19

    7.10. Taking a Surveys

    7.10.1. Procedures

    Off Bottom Stop Rotating Work pipe (to remove trapped torque), last movement up. Stop ALL movement, chain down break. Drop pumps below min flow rate until you see signal loss. Bring pumps up above minimum flow. No pipe movement before the pre-cursor. Complete a written survey record

    7.10.2. Field Acceptance Criteria FAC

    G = Reference 2.5 mg (2.5 counts) H = Reference 6 counts (300 nT) Mag Dip = Reference 0.45o Inc, Az and DLS are based on the previous surveys

    7.10.3. Roll Test

    4 rotation surveys taken at the same depth ( 1 meter) Tg must be constant

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 20

    7.11. Survey out of FAC

    7.11.1. G out of FAC

    Possible causes What should I do Pipe Movement (erratic G and H) Watch the Driller Failed Sensor (accelerometers: 0 or stuck values)

    Repeat the survey Roll Test Checkshot or Benchmark

    Incorrect MWD Calibration Checkshot or Benchmark

    7.11.2. H or Dip Out of FAC

    Drillstring Magnetism External source Failed Sensor (magnetometers: erratic values) Incorrect MWD Calibration

    7.11.3. 5-Axis Correction

    This method can be used in a sensor failure It is not recommended:

    o Gy or Gz in vertical holes, o Gx in horizontal holes, o Hy or Hz when drilling North or South with inclination close to

    magnetic dip angle. o Hx when perpendicular to magnetic dip angle

    7.11.4. D-Mag

    Only Drill string magnetism can be corrected It is necessary around 10 good surveys

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 21

    7.12. Drillstring Magnetic Interference

    Acts along the X axis of the tool (effects Hx)

    It depends on:

    Inclination

    Horizontal Component (HC) error = Drillstring error * Sin (inclination)

    Mag Dip Angle

    Horizontal Component (HC) = H * Cos (Magnetic Dip Angle)

    Direction

    Error increases when drilling in an east/west direction

    BHA

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 22

    8. MWD Telemetry

    8.1. Signal Generation

    1) Modulator in open position mud flows through 2) Modulator in closed position mud flow is blocked 3) Kinetic energy pressure 4) Varying the speed of rotation the frequency changes 5) Slowing down or speeding up for a short period original frequency the phase changes

    8.2. Modulators

    PowerPulse SlimPulse

    8.3. Signal Strength

    Signal power = (signal strength)2 Signal energy is signal power x time

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 23

    GAP

    Signal Strength Erosion

    GAP Flow Rate

    LCM

    Depth

    Mud Viscosity

    Mud Solids

    * Increased mud weight has the same effect as increased flow rate - they both increase signal strength.

    8.4. Data Encoding

    Binary Phase Shift Keying Quadrature Phase shift Keying Minimum Shift Keying

    No shift 180o BPSQ 0 1 0 90 180 270 QPSK 00 01 11 10

    fc-fb/4 * fc+fb/4 * MSK SymbolRate = 2(Fa-Fb) 0 1

    * Where fc is the carrier frequency and fb is the bit rate

    PowerPulse QPSK, BPSK, MSK 12/6 bps IMPulse QPSK, BPSK, MSK 6 bps TeleScope QPSK, MSK 48/24 bps SlimPulse MSK 1/0.5 bps

    8.5. SPTs

    SPT-H / dynamic output frequencies from 0.5 to 24Hz SPT-H / static output frequencies from 0 to 2 Hz

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 24

    8.6. Data Modulation/Demodulation

    Signal SPT USP board (ASAP/PSAM) digital filters receiver binary frame decoder data IDEAL

    Data from the MWD tool is sent from downhole as a stream of binary bits. 1s and 0s.

    A group of 1s and 0s is called a WORD. A WORD can vary in size (typically 2 to 12 bits). A group of WORDS is called a FRAME. A Frame is always preceded by a Frame Sync Word and Frame

    Identification number (FID).

    * The survey is taken during the precursor!

    Precursor Survey Frame Utility Frame

    Precursor:1 1 1 1 ... 1111 001101011...10

    Repeating Pattern Special Precursor

    Survey Frame:

    Frame Sync Data CRC

    Utility Frame:

    Frame Sync Data

    FID

    FID

    Repeating Frame Repeating Frame

    Repeating Frame:

    Frame Sync DataFID

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 25

    8.7. Bandwidth

    Bandpass = Fc (0.75 x symbol rate) = Fc (0.75 x bit rate / bit/symbol)

    Fc = Carrier FrequencySignal-to-Noise Ratio

    Bit Rate (bps) = Symbol Rate x bits/symbol

    If the average SNR is > 15 dB then it is safe to double the bit rate If the bit rate is doubled then the SNR will drop by at least 3 dB If the SNR drops below 10 dB reduce the bit rate

    Bandwidth

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 26

    8.8. Signal Problems

    8.8.1. Attenuation

    Factors Survey quality

    Mud Viscosity (Max. = 65 cp)

    Gas in the Mud

    Depth

    Frequency

    Radiation Loss

    Flow Rate

    Pipe ID

    The mud viscosity decreases with increasing temperature Changes in Pipe ID can cause reflex! WBM better surveys/SBM very compressible/OBM bad surveys

    8.8.2. Pump Noise

    Harmonic = 60

    SPM

    Information: Flow Rate = FR gpm, the number of pumps is P and a pump gives V gps So

    Flow Rate @ each piston = P

    FR

    SPM = VpistonFR @

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 27

    SOLUTIONS:

    Check the mud conditions (viscosity, gas) Change the Stroke R Stagger the pumps (increase the strokes in one and decrease in the

    other one) Check the pulsation dampeners (1/3 to of standpipe pressure) Use Dif. Filter (SPT1 and SPT2 spacing = wavelength apart at

    the carrier frequency) Pump Noise Canceller Force retraining Change band pass Use notch filter Try a downlink (telemetry / frequency / bps / FSL)

    IMPORTANT:

    If the SPTs are located between 1/8 and 3/8 of a wavelength apart the telemetry waves at each SPT will interfere constructively and result in increased signal strength. Separations of 3/8 wavelength will cause a reduction in signal strength.

    c = f (c = speed of sound, f = carrier frequency, = wavelength)

    8.8.3. Downhole Noise

    Bit/Drilling Noise Rotary Noise Motor Noise

    SOLUTIONS:

    Change Flow Rate (motor RPM) Change WOB Change the motor

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 28

    8.8.4. Electrical Noise

    Loose electrical connection Faulty SPTs Moisture in the AJB Sensor cable near by a power source/cable Ground problems

    8.8.5. Echoes and Reflections

    Changes in Pipe ID

    SOLUTIONS:

    Try the Adaptive Equalizer (HSPM) Use a stronger SPT Change the SPT position

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 29

    8.9. HSPM

    8.9.1. Pump Noise

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 30

    8.9.2. Drilling Noise

    8.9.3. Motor Stalls

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 31

    8.9.4. Downhole Noise

    8.9.5. Electrical Noise

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 32

    8.9.6. Echoes and Reflections

    8.9.7. MWD Failure

    Null in telemetry band

    Tool shuts off

    temporarily

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 33

    8.10. No Signal

    8.10.1. Dark Blue spectrogram

    Dead sensor. Bad connection. Bad wiring

    Bad PSAM/ASAP Bad USP board (Check with loop back

    connector)

    8.10.2. Pump noise but no tool signal in the telemetry band

    Tool Dead

    8.10.3. Tool at a different mode

    Bad configuration Accidental downlink

    8.10.4. Low Signal on only 1 SPT

    Sensor plugged with dry mud Bad sensor Bad position

    8.10.5. Low Signal on both SPT

    Washout Tool erosion Mud property changes Flow change Air/gas trapped in mud. Changes of ID in pipes

    SPT on wrong standpipe (dual standpipe rigs)

    Sensors should be on the main flow line Open or leaking valve in surface piping Tool with a bypass valve above the

    MWD tool

    8.10.6. SPT-B

    Offset: -150 to 150 psi (DSPScope) Offset = -250 non connected SPT-B

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 34

    9. MWD Tools

    9.1. All Tools

    SlimPulse IMPulse PowerPulse TeleScope

    Retrievable Collar-Based Collar-Based Collar-Based

    1-3/4 OD 4-3/4 OD 6-3/4 9-1/2OD 6-3/4 9-1/2OD

    Battery Powered Turbine Turbine Turbine

    35 1200 gpm 100 400 gpm 225 2000 gpm 275 2000 gpm

    0.1875 0.625 Hz 0.25 12 Hz 0.75 24 Hz 0.75 24 Hz

    0.5 bps max. 6 bps max. 12 bps max. 48 bps max.

    LCM < 50 ppb LCM < 50 ppb LCM < 50 ppb LCM < 50 ppb

    Bits Sent Risk Level PowerPulse IMPulse SlimPulse 1. 2. Shk>50 Gs Shk>50 Gs Shk>50 Gs 0 No Risk cps < 1 cps < 1 cps < 2

    1 Med Risk 1 < cps < 5 1 < cps < 5 2 < cps < 30

    2 High Risk 5 < cps < 10 5 < cps < 10 30 < cps < 100

    3 Tool Failure Imminent cps > 10 cps > 10 cps > 100

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 35

    9.2. PowerPulse

    The PowerPulse can measure inclination, azimuth, GTF, MTF, transverse shocks and tool temperature. Formation gamma ray, DWOB, DTOR, MVC and APWD are optional

    It has downlinking capabilities to change the bit rate, frequency, FSL and telemetry mode

    There isnt power supply for the up-extender in MTF

    9.2.1. Components

    MMA - M10 Modulator Assembly MEA - M10 Electronics Assembly MTA - M10 Turbine Assembly MDC - M10 Drill Collar MGR - M10 Gamma Ray MDI - M10 D&I MGD - M10 Gamma Ray Dummy MVC - M10 Vibration Chassis MTK_A - M10 Kit MSSX - Saver Subs

    9.2.2. MMA Considerations

    Rotor/Stator Gap Zero gap = 0.08

    Oil Level Reservoir 360 cc Oil leak 0.5 cc Status flag 30 cc Hours remaining 60 hrs

    Flow Configuration 225 2000

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 36

    LCM < 50 ppb well mixed pumped w/ toll turned off

    Failure Open position small drop in the standpipe pressure Closed position large increase in the standpipe pressure

    Cold Start PPL/ BPSK/ 1Hz/ 0.5bps/ low temp/ jamming at pump up restart the tool

    9.2.3. MEA Sub Components

    MEC - M10 Electronics Chassis LTB 24 V ROP 12 V

    MDI - M10 Direction & Inclination Package D&I is 7.71 ft / 2.35 m from ROP

    MGR/D - M10 Gamma Ray/Dummy Package MVC - M10 Vibration Chassis MEH - M10 Electronic Housing

    9.2.4. MGR Gamma Ray

    Sources of natural gamma ray: thorium, potassium, and uranium The effect of the potassium (mud) on the MGR cannot be corrected Plateau type scintillation detector

    GR NaI (thallium) light flash photocathode electron photomultiplier many electrons discriminator circuit

    GRHV at a certain range of high voltages the number of counts registered by the device does not change as the voltage increases (the readings plateau). A value in the middle of this range is then picked as the GRHV for the tool

    Corrections: mud weight, collar size (tool size) and bit size Real time sample rate 11 sec The PP averages the GR measurement every 30sec

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 37

    9.2.5. MTA Considerations

    Oil Level Reservoir 850 cc Oil leak 1.5 cc Status flag 50 cc Hours remaining 33 hrs

    Turbine configuration X flow range 300 - 600 gpm (standard) 400 - 800 gpm (standard) 600 - 1200 gpm (standard)

    9.2.6. MDC Considerations

    Connection integrity (do not exceed the DLS limits) Connection torque ROP/IWOB port integrity Extender preparation (clean / dry / DC111)

    Go / No Go Resistance ~ M

    Fishing diagram

    9.2.7. IWOB / MVC

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 38

    9.2.8. Some Specifications

    Collar Size 6.75 8.25 9 / 9.5 Pressure Drop Const.* 16000 NF 16000 HF 29000 29000

    * C

    ppgMWGPMPDROP)(2 =

    9.2.9. PPL Jamming

    Cycle pumps Rotate, if possible Work the drill string, if possible Vary flow rate Drill ahead for a while Reduce LCM content in mud Change shaker screens Pump the water pill (low-viscosity sweep basically)

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 39

    9.2.10. IWOB Calibration

    IDEAL MWD Init DWOB

    Tool 3 ft of the bottom Pumping and rotating Wait for the DWOB reading be stabilized Zero DWOB YES

    DTOR Stop rotating Work the drillstring Tool 3 ft of the bottom Pumping Wait for the DTOR reading be stabilized Zero DTOR YES

    9.3. TeleScope

    Benefits: Accurate well Placement Large power generation capacity 2 Mb memory

    Considerations: IDEAL 10 HSPM 10 TSIM2 Can support 80 dpoints Clock battery must be replaced each 3 months

    Collar size 675 825 900 DLS_rotating 4.5 4 3.5 DLS_sliding 15 12 10 Pressure (Kpsi) 25 25 25 Pressure drop const 16000 16000 29000 29000

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 40

    9.4. Downlink

    PowerPulse SlimPulse TeleScope IMPulse

    Legacy

    Manual Fast * *

    * IMPulse requires V8.1_B06 or higher software * PowerPulse requires V8.0_B93 or higher software

    PowerPulse SlimPulse TeleScope IMPulse

    Telemetry

    Frequency

    Baud Rate

    FSL

    Record Rate * * Auto DLK Bit Time

    VPWD Power

    * Only using Manual Fast Downlink

    Baud PowerUP telemetry bit rate (bps): 1=0.5 | 2=0.75 | 3=1 | 4=1.5 | 5=2 | 6=3 | 7=6 | 8=12 | 9=16

    Modfreq PowerUP modulator carrier frequency (Hz): 3=0.625 | 4=0.75 | 5=1 | 6=2 | 7=10.5 | 8=12 | 9=13.5 |10=16 | 11=21 | 12=24

    Telemod PowerUP telemetry mode: 2=QPSK | 3=MSK

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 41

    9.4.1. Legacy

    Minimum Drop for Downlink 500 Turbine RPM

    Low Motor Inhibit Level: 1200 Turbine RPM after the tool is turned ON 1500 Turbine RPM before the tool is turned ON

    High Motor Inhibit Level: 4300 to 4700 Turbine RPM (electronics controlled)

    Downlink frame 12Hz, 1.5 bps, BPSK

    9.4.2. Manual Fast

    High state Flow near to your drilling flow rate ~ 500 GPM

    Low state Flow of 10% less ~ 450 GPM

    Stay in high state for a minimum of 15 seconds before sending a command

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 42

    10. LWD Tools

    Measurements: Resistivity Density Porosity Gamma ray Annular pressure / temperature

    10.1. ARC

    Electromagnetic propagation tool Collar sizes 3 1/8, 4 , 6 , 8 & 9 5 transmitters and 2 receivers Transmitter spacing:

    Arc312/475: 10, 16, 22, 28, 34 in. Arc6/8/9: 16, 22, 28, 34, 40 in.

    Dual frequency: 2 MHz and 400 KHz (except older Arc475 tools)

    52 MB memory with Motorola chips Annular Pressure While Drilling (APWD)

    (except Arc475 tools) 20 Kpsi / 25 Kpsi AIM receiver antenna 30 restivities (2 MHz/ 400 KHz/ Blended) Resistivity Scan-rate: Old min = 5 sec used 6 sec W/MR06 min = 2 sec used 3 sec (MR06 Low noise tools) Resistivity Record-rate = Scan-rate GR Update-rate = 28 sec

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 43

    10.1.1. Some specifications

    Collar size 675 825 900 DLS_rotating 8 7 4 DLS_sliding 16 14 12 Pressure (Kpsi) 20/25 16/25 16/25 Pressure drop const 121000 970000 970000

    10.1.2. Rt measurement

    Locate hydrocarb. (w/ GR and density porosity) Estimate the volume of hidrocarb. Correlate logs Invasion determination Anisotropy determination Fracture determination Geosteering

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 44

    Measurements:

    Attenuation better depth of investigation Att = 20Log

    21

    AA

    dB

    Phase Shift better vertical resolution PS = P2-P1

    Rm mud Rmc mudcake Rxo flushed zone

    Rt uninvaded zone Rmf mud filtrate Rw formation water

    Phase Attenuation

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 45

    Environment:

    Resistors in parallel

    RtRxoRmeasered

    111+=

    Ideal environment Rm > 10 Rt (resistive mud OBM)

    Dielectric Constant:

    Important at high resistivities 55.10835.0 += rRt

    Limitations due dielectric effects:

    Transmitter Spacing (inches) Resistivity in Ohm.m 16 22 28 34 40 Phase 0.2-200 0.2-200 0.2-200 0.2-200 0.2-200 Attenuation 0.2- 20 0.2- 30 0.2-50 0.2-50 0.2-50

    Conductive formation:

    More ions to absorb the energy of the wave Depth of investigation Vertical resolution

    Resistive formation:

    Depth of investigation Vertical resolution

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 46

    10.1.2.1. Depth of Investigation

    It is defined as 50% of IRGF (integrated radial geom. factor) Deeper DOI less mud effect Long space better than short space transmitters 400 KHz better than 2MHz Att better than PS Resistive better than conductive formation

    10.1.2.2. Vertical resolution

    It is defined as the 50% point of the vertical response function Higher vertical resolution smaller formation beds / more accurately Qualitative: the bed can be detected

    Correlate logs Must be corrected before formation evaluation

    Quantitative: the toll read at least 90% of the Rt Correlate logs Formation evaluation

    No transmitting space effect 2 MHz better than 400 KHz PS better than Att Conductive better than resistive formation

    10.1.2.3. 400Khz Advantages

    Depth of investigation Less noise signal Less eccentricity effect More sensible to bad calibration

    10.1.2.4. Borehole Compensation (rugosity)

    RT1 (16) T1 T2 T3 RT2 (22) T1 T2 T3 RT3 (28) T2 T3 T4 RT4 (34) T3 T4 T5 RT5 (40) T3 T4 T5

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 47

    10.1.2.5. Borehole Corrections

    Bit size Mud resistivity (at bottom hole temperature)

    10.1.3. Gamma Ray measurement

    Sources of natural gamma ray: thorium, potassium, and uranium Real-time curves

    ARC_GR_UNC_RT [GAPI]: Calibrated GR ARC_GR_RT [GAPI]: Calibrated and environmentally corrected GR

    Recorded-mode curves GR_ARC_RAW[CPS]: Uncalibrated GR_ARC_CAL[GAPI]: Calibrated GR_ARC_FILT [GAPI]: Calibrated and filtered (averaged) GR_ARC [GAPI]: Calibrated, filtered and environmentally corrected

    GR GAIN factor: 0.8 1.2

    Environmental Corrections:

    Bit size Tool size Mud weigh Potassium % Barite (ON/OFF)

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 48

    10.1.4. ARC 6/7/8 Checklist

    PRE-RUN

    1) Visual inspection 2) Check connections 3) Torque in the sub 4) Torque on the extender 5) Go-no-go 6) Resistance 7) ROP voltages 8) Fishing Diagram

    BATTERIES

    1) Check the jam nut o-ring 2) Grease 3) Depassivation

    Resistors 4 W / 100 Ohms OCV 21 V LV 19 V

    PROGRAMMING

    1) Test communication 2) Edit job file 3) Load cal record

    a. Read from tool i. Max Temp = 150

    ii. Max Pressure = 20 iii. GRHV and GR Gain OST iv. No-APWD POFF = 0 v. APWD

    1. APRS ~ 14 psi 2. RPRS ~ 117 psi 3. POFF = RPRS APRS

    b. D:\TOOLDATA\Run\ARC ARC#SN#RUN.CAL 4) Edit configuration Rates

    a. System 5 b. Resis 6

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 49

    i. System you can put 60 ii. Raw_@2M 6

    iii. Raw_@400K 6 iv. Res_Misc you can put 60 v. Blend_Res you can put 0

    vi. Others 0 c. Gamma 6

    i. Gamma n x 6 ii. CGamma 0

    d. IAB i. No-APWD 0

    ii. APWD 12 1. Pres_IAB 12 2. Con_Pres 12 3. IAB_Frame 0

    5) Edit configuration Coefficients a. GammaRay PGR_Rate

    GR_Rate = )/()/(23600

    hftROPftdp

    b. DefFreqSel 1 / 1 6) Edit job profile

    a. Add b. Forever c. Enter mem. size

    7) Initialize the tool 8) F9 9) Status words F7 10) Check calibration 11) Diagnostic Recorded mem. Summary 12) Diagnostic Snapshot (STATE.DAT)

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 50

    TLSW Tool status word 0 ABAM 300 400 ABBM Batteries current (mA) ~ 10 ABAT Battery voltage 18 V ISBS Internal serial bus status error 0 ALTB LTB voltage 0 ARVP 10 0.2 ARVN Power supply (V) -10 0.2 TIMP Temperature Amb. SCNT Shock count 0 ACCL Accelerometer voltage (shock) 10 DERR Data error on ISB bus 0 RESS Resistivity error from res sub-system 0 AMC2 Amplitude control @ 2 M: T5|T4|T3|T2|T1 77777 AMC4 Amplitude control @ 400 K: T5|T4|T3|T2|T1 77777 GRHV GR high voltage OST 10 PGRA GR_Raw (API) PGRP GR_Avarage (cps) GRAP GR_Avarage_Real_Time APRS Annular pressure (w/offset) ~ 14 psi ATMP Annular temp. Amb. RPRS Annular pressure (w/out offset) ~ POFF + 14 psi

    POST-RUN

    1) Process Process now 2) Utilities ASCII Time Frame Non wave form 3) Utilities Tech Log

    ABAM / ABBM / TEMP / ABAT / ALTB / ARCSTAT / SHKLV 4) Check:

    a. STATE.DAT compare pre and post run b. DUMP.DAT elapsed PC time = elapsed tool time c. RESET.DAT number of resets (must be empty)

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 51

    10.1.5. Resistivity Interpretation

    POLARIZATION HORN

    High relative dip angles ( 50 deg) High contrast in resistivity Rps > Rad (spikes) Long > Short

    BED BOUNDARIES

    Thin beds Rps and Rad will cross In the middle, Rps will spike 2MHz is more sensible

    ANISOTROPY

    High relative dip angles ( 60 deg) Anisotropic formation Rps > Rad Long > Short

    DIELECTRIC EFFECT

    Resistive formations Rad > Rps Short > Long

    RESISTIVE INVASION

    Sand Usually OBM (Rmf > Rt) Rps > Rad Short > Long

    CONDUCTIVE INVASION

    Sand WBM (Rmf < Rt) Rad > Rps Long > Short

    BAD CALIBRATION

    Curve separation in Rps (all log) Long > Short

    FRACTURING

    OBM Shale Rps > Rad Short > Long

    ECCENTRICITY

    OBM Wet rock Big hole / small tool Only 2MHz is affected (spikes) Mitigation: blended resistivity

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 52

    10.1.6. APWD

    The Annular Pressure While Drilling (APWD) measures the hydrostatic pressure of the mud column in the annular space and this value may be used to compute circulating and static mud densities

    Important Information:

    Principal Functions:

    Monitoring hole cleaning Monitoring the pressure/fracture gradient w/ ECD Kick/influx detection

    Some Concepts:

    Pore pressure (fluid pressure) Fracture pressure (breakdown pressure) Hydrostatic pressure (column of drilling fluid pressure) Leak-off pressure (Maximum Allowable Annular Surface Pressure)

    o It is defined as the difference between fracture and hydrostatic pressures at the casing shoe

    Differential pressure o Difference in pressure the hydrostatic head of the mud column

    and the formation pore pressure Surge

    Viscous mud + BHA going in mud is forced into the formation Swab

    Viscous mud + BHA going out formation fluid influx to the well

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 53

    Factors that affect APWD:

    Mud weight Hole depth (true vertical depth) Cutting load in mud Mud temperature Mud viscosity and gel strength Drillstring speed and rotation rate Pump pressure Mud flow rate and flow regime (Laminar or turbulent flow)

    D-points in the utility frame:

    To provide ESD during connections o PMAX o PMIN o PESD

    To provide a LOT or a FIT o PMAX o PMIN o PESD

    o PMAT o PMIT o ESDT

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 54

    EQUIVALENT STATIC DENSITY (ESD)

    Pumps turned off

    ( )[ ]EHEDTVDgessureAnnularESD

    =

    Pr_

    EQUIVALENT CIRCULATING DENSITY (ECD)

    Pumps turned on It is corrected for friction pressure losses in the annulus

    ( )[ ] LossessureAnnularEHEDTVDgessureAnnularECD _Pr_Pr_ +

    =

    ( )[ ]EHEDTVDgAPLLossessureAnnular

    =_Pr_

    RETURN TO SEA FLOOR ( )

    ( )[ ]gapAirWDTVDgPP

    ESD waterseaannulus_

    _

    +

    =

    ( )( )[ ] LossessureAnnulargapAirWDTVDg

    PPECD waterseaannulus _Pr_

    _

    _ ++

    =

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 55

    ESD AND MEASUREMENT

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 56

    LEAK OFF TEST

    PTD = SPPA x Gain + Offset

    STATICMAX SPPSPPPESDPMAXGain

    = ( )GainSPPPESDOffset STATIC =

    FIT Formation Integrity Test LOT Leak-off Test ELOT Extended Leak-off Test

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 57

    INTERPRETATION GUIDE

  • Engineer Guide (Grade 9) Dez - 2006

    Tatiana A. Silva 58

    11. Bibliography

    1. ENG 1 Presentations; United Kingdom Training Centre, 2006

    2. PowerPulse Operations Reference Manual; Barry Cross & Kuatrinnus Wijaya, 2004

    3. TeleScope Operations Reference Manual; Kuatrinnus Wijaya, 2005

    4. ARC 6/8/9 Uniform Operating Procedures; Schlumberger, 2000

    5. APWD Self-Learning Package; Schlumberger, 2001

    6. InTouch3866229 Extended Leak Off Test procedures; Randy Green, 2006