SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov,...

24
SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration Meeting February 2008

Transcript of SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov,...

Page 1: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

SC dipole magnet for CBM

E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov,

E.I. Litvinenko, A.I. Malakhov

JINR, Dubna

CBM Collaboration Meeting February 2008

Page 2: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 2

Outline

• Original specifications• Conceptual design• Cryostat and the excitation windings• Field map calculations• Geant geometry• Further steps

Page 3: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 3

The original specifications for the magnet

The magnet should provide:

An integral value of the magnetic field along Z-axis

about 1.5-2 T x m.

The maximal value of the magnetic field in a magnet

gap should amount to 2 T.

The working gap acceptance should be within 50º in

height (1.4 m) and 60º in width (1.6 m).

Page 4: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 4

The conceptual project of the magnet

Page 5: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 5

3D view of the magnet yoke

Page 6: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 6

The details of the magnet design

Yoke shape: window frame (consists of top and bottom beams and

lateral racks). The set of three pairs of the top and bottom beams

forms the magnet’s poles. Yoke material: the magnetic steel with low carbon content (Steel

1010). Cryostats for excitation windings position: fixed on the magnet’s

yoke. Cryostat vacuum casing material: stainless steel (12Ch18N10T) Windings shape - ‘Duck nose’ form Winding material - superconducting cable with the cross-section of

7 x 4.5 mm². The cable consists of superconducting wires with

niobium-titanic strings put in a copper matrix. The ratio of the cross-

section of the superconductor area to the copper’s matrix is 1/3; the

ratio of the superconducting wires to the aluminium matrix is 1/12. Magnetic screen covers the winding in the magnet’s outlet to

reduce a field outside of the magnet.

Page 7: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 7

The conceptual project of the magnet(x-y projection)

Lateral racks: Fill in device

Page 8: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 8

The conceptual project of the magnet (z-y projection)

3 top beams:

3 bottom beams

Magnetic screen

Connector (vacuum-cryostats adapters)Support

basic

Top winding

Page 9: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 9

The excitation windings (top winding)

Page 10: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 10

The conceptual project of the magnet (winding cross-section)

Tubes with circulating liquid helium

Support legs (made fromKevlar)

Copper tubes

Vacuum casing

Heliumvessel

NitricscreenSuperisolation

4.5˚K 70-80˚K 300˚K

Page 11: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 11

(X-Y) gap of the magnet along the beam

from left to right yoke edges

left screen edge

right screen edge

1.0

7 m

1.4

m

1.6

m

1.6 m

1.1 m 0.77 m0.77 m

last STS station (needs >=1.12m)

from left to right yoke edges

left screen edge

right screen edge

1.0

7 m

1.4

m

1.6

m

1.6 m

1.1 m 0.77 m0.77 m

last STS station (needs >=1.12m)

Page 12: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 12

(X-Y) gap of the magnet available for the detector replacement

from target from magnet outlet

1.0

7 m

1.4

m

1.6

m

1.6 m

1.1 m 0.77 m0.77 m

last STS station (needs >=1.12m)

Page 13: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 13

Software used for the field calculation

• TOSCA finite element solver for the analysis of all magnetostatic, electrostatic and current flow problems in 3 dimensions(part of the OPERA 3D Software for electro-magnetic design by Vector Field) http://www.vectorfields.com/content/view/27/50/

• Preliminary field calculations have been performed using RADIA - multiplatform software dedicated to 3D magnetostatics computation, optimized for the design of undulators and wigglers made with permanent magnets, coils and linear/nonlinear soft magnetic materials. http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia/DocumentationInterfaced to Mathematica (http://www.wolfram.com/ ) via MathLink.

Page 14: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 14

Magnet geometry under Opera 3D

Page 15: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 15

The field map “FieldMuon2”

Page 16: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 16

|B|(x,y) after the magnet

10 cm after the magnet

screen edge

End of the magnetic screen

Page 17: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 17

Comparison of |By| (z,y) x=0 and x=100:

MuonMagnet and Muon2a

Page 18: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 18

Comparison of |B| (z,y) x=0 and x=100:

MuonMagnet and Muon2a

Page 19: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 19

The Geant geometry created for cbmroot framework

Page 20: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 20

“magnet_muon2.geo” & “sts_standard.geo”

0.5 m

Page 21: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 21

Option: Muon2 -> Muon2a

The study: the magnet length along Z axis was decreased to 20 cm

Page 22: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 22

Comparison of |By| and |B| (z,y) x=0: Muon2 and Muon2a

Page 23: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 23

By(z) for Muon2 (blue) and Muon2a (green)

Field Integral [Tm] for Muon2 and

Muon2a:

[-50,50]: (2) 1.21699 (2a) 1.09416

[-30,70]: (2) 1.18609 (2a) 1.0205

[-20,80]: (2) 1.13681 (2a) 0.952771

[-10,90]: (2) 1.06949 (2a) 0.871026

[10,110]: (2) 0.896442

Page 24: SC dipole magnet for CBM E.A.Matyushevskiy, P.G. Akishin, A.V. Alfeev, V.S. Alfeev, V.V. Ivanov, E.I. Litvinenko, A.I. Malakhov JINR, Dubna CBM Collaboration.

Elena Litvinenko CBM Collaboration Meeting 29 February 2008 24

Conclusion

• The engineering design of the window-frame dipole magnet for CBM on the basis of superconducting winding with indirect cooling is proposed.

• The proposed magnet yoke construction ensures the formation of the magnetic field in the gap which corresponds to CBM requirements.

• The cryostat design with indirect cooling system for windings with using liquid helium and nitric is proposed.

• Weight of the magnet is about 80 tons (the basement is not included ), and the flow rate of helium should be about 7 liters per hour.

• The windings can be produced in Dubna, and the yoke - in Kramatorsk.

• Magnet meets the requirements laid down in the draft, which, however, were slightly overstated for the integral of the field.

• The design of the magnet yoke (and cryostat) allows for a change of certain sizes while maintaining the required angular acceptance and retention integral field at 1 Tm.

• The corresponding field map and the Geant geometry for this magnet were created and can be used under cbmroot framework.