Saturated formations, Schunck classes and the structure of ... · PDF file SATURATED...
date post
25-Jun-2020Category
Documents
view
0download
0
Embed Size (px)
Transcript of Saturated formations, Schunck classes and the structure of ... · PDF file SATURATED...
SATURATED FORMATIONS, SCHUNCK CLASSES
AND THE STRUCTURE OF FINITE GROUPS
Abdulmotalab M.O. Ihwil
B.Sc., A L - Fateh Univers i ty , T r i p o l i , Libya, 1979
A THESIS SUBb4ITTED I N PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
i n t h e Department
0 f
Mathematics and S t a t i s t i c s
@ Abdulmotalab M . O . Ihwi l , 1986
SIMON FRASER UNIVERSITY
Apr i l 1986
A l l r i g h t s reserved. This t h e s i s mhy not be reproduced i n whole o r i n p a r t , by photocopy
o r o t h e r means, without permission of t h e au thor .
APPROVAL
Name :
Degree:
T i t l e of Thesis :
Abdulmotalab M.O. Ihwil
Master of Science
Saturated formations, Schunck c l a s s e s and t h e s t r u c t u r e
of f i n i t e groups.
Chairman : . C . Vi l l egas
n Dr, N . R . Reilly
,dl " I /r Ti. A . R . Freedman Externa l Examiner
Assoc ia te Professor Department of Mathematics and S t a t i s t i c s
Simon F rase r Un ive r s i t y
Date approved: A p r i l 3 0 1 lgg6
PARTIAL COPYRIGHT LICENSE
I hereby grant t o Simon Fraser Un ive rs i t y t h e r i g h t t o lend
my thes i s , proJect o r extended ossay ( the t i t l e o f which i s shown below)
t o users o f t he Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r
s i n g l e copies on ly f o r such users o r i n response t o s request from t h e
l i b r a r y o f any o the r univers iyy, o r o the r educational I n s t i t u t i o n , on
I i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission f o r m u l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted
by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying
o r p u b l i c a t i o n o f t h i s work f o r f l n a n c l a l gain s h a l l no t be al lowed
wi thout my w r i t t e n permission.
T i t l e of Thes i s/Project/Extended Essay
Author:
( s igna tu re )
tnlah P f . r ) . T M l
( name
APRIL 30,1986
(da te)
Abstrac t
This i s a s tudy of t h e s t r u c t u r e of f i n i t e groups from t h e s tandpoint
of c e r t a i n c l a s s e s of groups. Examples of such c l a s s e s a r e formations,
s a t u r a t e d formations and Schunck c l a s s e s . Genera l iza t ions of Hal l
subgroups a r e t h e dominating theme, and we begin wi th t h e theorems of Hal l
and Car t e r about t h e ex i s t ence and conjugacy of Hal l and Car t e r subgroups
( r e spec t ive ly ) i n f i n i t e so lvab le groups. i
A b a s i c no t ion i n r e c e n t work i s t h a t of covering subgroups of a
f i n i t e group, where t h e main r e s u l t i s t h a t if f i s a s a t u r a t e d formation
then every f i n i t e so lvab le group has f-covering subgroups and any two of
them a r e conjugate.
A more genera l no t ion than t h a t of covering subgroups i s t h a t of
p r o j e c t o r s ; however, i n t h e case of s a t u r a t e d formations t h e covering
subgroups and p r o j e c t o r s of any f i n i t e so lvab le group coinc ide and form
a s i n g l e conjugacy c l a s s . Moreover, t h e covering subgroups (p ro jec to r s )
f o r t h e formation of f i n i t e n i l p o t e n t groups a r e t h e C a r t e r subgroups.
In a d d i t i o n , pul l-backs exis . t f o r the f -pro jec . tors a s soc ia t ed with a
s a t u r a t e d formation f of f i n i t e so lvab le groups, and y i e l d s t h e
cons t ruc t ion of c e r t a i n formations.
A n a t u r a l ques t ion i s : which c l a s s e s F g i v e r i s e t o f - p r o j e c t o r s ?
The answer i s t h a t f o r Schunck c l a s s , which a r e more genera l than
s a t u r a t e d formations, every so lvab le group has &covering subgroups iff F
i s a Schunck c l a s s . In t h i s case F-covering subgroups a r e conjugate.
( i i i )
This i s now known t o be t r u e i f "F-covering subgroups" i s replaced by
''F-proj ectors", and we prove t h i s r e s u l t using p r o j e c t o r s .
In f a c t these theorems can be extended t o f i n i t e IT-solvable groups,
and i f F i s a IT-saturated formation (or a IT-Schunck c l a s s ) then every
f i n i t e IT-solvable group has f-covering subgroups (p ro jec to r s ) and any
two of them a r e conjugate.
The ex i s t ence of p r o j e c t o r s i n any f i n i t e group i s proved; however,
they may no t be conjugate and may no t coincide with t h e covering subgroups,
which might not a t a l l e x i s t , i n t h i s ca&. But i f F is a Schunck c l a s s
then F-projec tors and F-covering subgroups do coincide i n groups i n UF,
although t h e F-pro j e c t o r s need no t be con jugate .
Acknowledgement
I wish t o thank my s e n i o r supervisor Professor J . L . Berggren f o r
suggest ing the t o p i c and f o r h i s s i n c e r e and f r i e n d l y h e l p and guidance.
I would a l s o l i k e t o thank Professor N.R. R e i l l y and Professor C . Godsil
f o r t h e i r va luab le remarks and comments. I wish a l s o t o thank a l l
f a c u l t y and s t a f f members of the Mathematics and S t a t i s t i c s Department.
My thanks a l s o t o Cindy L i s t e r f o r typing t h i s manuscript .
NOTAT ION
P \ 9
< 1>
1
Aut (G)
A \ B
g i s an element of G .
elements of groups.
s e t s , groups.
c l a s s e s of groups.
H i s isomorphic with G .
H i s a subgroup of G .
H i s a proper subgroup of G .
H is a normal subgro y p o f G .
t h e order of t h e group G .
Index of t h e subgroup H i n t h e group G .
p d i v i d e s q.
t h e i d e n t i t y subgroup.
t h e i d e n t i t y element of a group.
t h e group of automorphisms of G .
= ( x : x E A and X B B).
= ( p : P i s a prime and p \ \ G I ) .
= g-lhg where g,h C G and G i s a group.
-1 -1 = x y xy.
= .
= ( g E G : hg = h f o r a l l h E G I - t h e c e n t r e of G .
= ( g E G : hg = h f o r a l l . h E H) - t h e c e n t r a l i z e r of
PI i n G .
= ( g E G : hg E H f o r a l l 'h E H I - t h e normalizer of
H i n G .
a group with every element having order a power of t h e
prime p.
a group with every element having order a power of p ,
where p € n, and n i s a f ixed s e t of primes.
a group with every element having order a power of p ,
where p is a prime not i n n , n is a f ixed s e t of
primes.
on (G) t h e l a r g e s t normal n-subgroup of G . H x K d i r e c t product of H and K .
Maximal subgroup : proper subgroup, n o 6 contained i n any g r e a t e r proper
subgroup.
Minimal normal subgroup of G : normal subgroup M # of G which does
no t conta in normal subgroups of G except and M.
( v i i )
TABLE OF CONTENTS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approval
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abstrac t . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notation . . . . . . . . . . . . . . . . . . . . . . . . . Tab1 e of Contents
L i s t o f F i g u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 1.
Chapter 2 . P ro jec to r s and Formations . . . . . . . . . . . . . . . Chapter 3 . Pro jec to r s and S c h u n c k ~ a s s e s . . . . . . . . . . . . . Chapter 4. Covering Subgroups and Pro jec to r s i n F i n i t e
n-solvableGroups . . . . . . . . . . . . . . . . . . . Chapter 5. P ro jec to r s of F i n i t e Groups . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibliography
. ( i i )
( i i i )
(v)
. (v i ) ( v i i i )
( ix )
1
26
. 58
( v i i i )
LIST OF FIGURES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F i g u r e 1 53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2 61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F i g u r e 3 64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F i g u r e 4 66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F i g u r e 5 67 F i g u r e 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .