Sarah Azimi Boyang Du Luca Sterpone - Indico at ESA ... · SET: mitigation radiation test results !...

48
Politecnico di Torino CAD Group – Dipartimento di Automatica e Informatica Torino - Italy Sarah Azimi Boyang Du Luca Sterpone

Transcript of Sarah Azimi Boyang Du Luca Sterpone - Indico at ESA ... · SET: mitigation radiation test results !...

  • Politecnico di Torino CAD Group – Dipartimento di Automatica e Informatica Torino - Italy

    Sarah Azimi Boyang Du

    Luca Sterpone

  • Goal ¨  Analysis of Single Event Transients (SETs) occurrency ¨  Effective SET mitigation

    2

  • Outline ¨  SET effects on Flash-based FPGAs ¨  Single Event Transient Analysis (SETA) tool

    ¨ Analysis ¨ Mitigation ¨ Experimental results

    ¨  Conclusions and future activities

    3

  • SET effect 4

    ¨  A Single Event Transient (SET) is generated by the injunction of charge collection ¨  A charged particle crosses a junction area ¨  It generates an amount of current, provoking a “glitch” ¨  SET can be indistinguishable from normal signal and

    exist for notable distances

    SET width SET amplitude Rise ΔV/ΔT Fall ΔV/ΔT

  • Circuits on Flash-based FPGAs 5

    0   0   0   0   0   0  

    0   0   0   0   0   0  

    0   0   0   0   0   0  

    0   0   0   0   0   0  

    0   0   0   0   0   0  

    0   0   0   0   0   0  

    Flash  configura/on  memory   FPGA  array  

  • Circuits on Flash-based FPGAs 6

    Flash  configura/on  memory   FPGA  array  

    Configura/on  process  

    0   1   0   0   0   0  

    1   0   0   0   0   0  

    1   1   0   0   0   0  

    0   0   0   0   1   0  

    0   1   0   1   0   0  

    0   0   0   0   0   0  

  • SET scenario 7

    ¨  Considering a place and route design on FPGA ¨  Fixed logic cells

    ¨  Defined number of routing segments

    Source of SET

  • SET scenario 8

    ¨  Considering a place and route design on FPGA ¨  Fixed logic cells

    ¨  Defined number of routing segments

    Source of SET Propagation through Gates

    Propagation through Routing

  • SET scenario 9

    ¨  Considering a place and route design on FPGA ¨  Fixed logic cells

    ¨  Defined number of routing segments

    Source of SET Propagation through Gates

    SET Classification

    FFs / IOs

    Propagation through Routing

  • SET Propagation through gates 10

       For  a  1→0→1  transi,on    Δtp  is  defined  as:                                            Δtp  =  tpHL  –  tpLH    For  a  0→1→0  transi,on  Δtp  is  defined  as:                                                Δtp  =  tpLH  –  tpHL      

     

    Fist  Region:        If(τn  <  k*tp  )        then        τn+1  =  0      Second  Region:        If  (τn  >  (k+3)*tp)        then        τn+1  =  τn  +  Δtp    Third  Region:        If  ((k+1)*tp    <  τn  <  (k+3)*tp)        then        τn+1  =  (τn2      -‐      tp2  )/  τn    +  Δtp    Fourth  Region:    If  (k*tp    <  τn  <  (k+1)*tp)        then        τn+1  =  (k+1)*tp(1    -‐    e(k  –  (  τn  /  tp  ))  )  +  Δtp    

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    [Wirth  et  al,  NSREC  2008]  

  • SET Propagation through gates 11

       For  a  1→0→1  transi,on    Δtp  is  defined  as:                                            Δtp  =  tpHL  –  tpLH    For  a  0→1→0  transi,on  Δtp  is  defined  as:                                                Δtp  =  tpLH  –  tpHL      

     

    Fist  Region:        If(τn  <  k*tp  )        then        τn+1  =  0      Second  Region:        If  (τn  >  (k+3)*tp)        then        τn+1  =  τn  +  Δtp    Third  Region:        If  ((k+1)*tp    <  τn  <  (k+3)*tp)        then        τn+1  =  (τn2      -‐      tp2  )/  τn    +  Δtp    Fourth  Region:    If  (k*tp    <  τn  <  (k+1)*tp)        then        τn+1  =  (k+1)*tp(1    -‐    e(k  –  (  τn  /  tp  ))  )  +  Δtp    

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V

    [Wirth  et  al,  NSREC  2008]  

  • SET Propagation through routing 12

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V

    [Sterpone  et  al,  RADECS  2014]  

  • SET Propagation through routing 13

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V

    [Sterpone  et  al,  RADECS  2014]  

    Propagation Induced Pulse Broadening

  • SET Propagation through routing 14

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V

    [Sterpone  et  al,  RADECS  2014]  

    Propagation Induced Pulse Broadening

    Gate to Gate Characterization

  • SET Propagation through routing 15

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V

    [Sterpone  et  al,  RADECS  2014]  

    V

    Propagation Induced Pulse Broadening

    Gate to Gate Characterization

  • SET classification on FFs and IOs 16

    ¨  A tool has been developed: ¨  Single Event Transient Analyzer (SETA)

    HDL

    Synthesis and Implementation

    (Place and Route)

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    IO/FF expected Pulses

    SETA Tool

  • SETA tool 17

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Gate PIPB Characterization

  • SETA tool 18

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection

    Gate PIPB Characterization

  • SETA tool 19

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    Gate PIPB Characterization

  • SETA tool 20

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    Gate PIPB Characterization

  • SETA tool 21

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    Gate PIPB Characterization

  • SETA tool 22

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    Propagation is performed up to “terminal” nodes

    (IOs / FFs)

    Gate PIPB Characterization

  • SETA tool 23

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    SET classification on FFs or IOs

    Gate PIPB Characterization

  • SETA tool 24

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V

    Netlist

    Constraints

    Physical Design Description (PDD)

    Sensitive nodes selection SET propagation

    SET classification on FFs or IOs

    V

    Gate PIPB Characterization

  • SET classification on FFs and IOs 25

    ¨  The classification identifies the number of SET: ¨  Totally filtered

    ¨  Partially filtered ¨  Equally propagated ¨  Broadened

  • SETA results – EUCLID project (WP1) 26

    0"5000"10000"15000"20000"25000"30000"35000"40000"45000"

    0,1"ns" 0,3"ns" 0,45"ns" 0,7"ns" 1"ns" 1,5"ns" 2,0"ns" 2,5"ns" 3,0"ns" 4,0"ns"

    Combina2onal"Path"7"Single"Event"Transient"sensi2vity"

    Filtered" Par2ally"Filtered" Equal" Broadened"

    !

  • SETA results – EUCLID project (WP1) 27

    0"5000"10000"15000"20000"25000"30000"35000"40000"45000"

    0,1"ns" 0,3"ns" 0,45"ns" 0,7"ns" 1"ns" 1,5"ns" 2,0"ns" 2,5"ns" 3,0"ns" 4,0"ns"

    Combina2onal"Path"7"Single"Event"Transient"sensi2vity"

    Filtered" Par2ally"Filtered" Equal" Broadened"

    !Total number of analyzed SET

    Type of SET per injected pulse

  • SET: mitigation 28

    ¨  Selective guard gate (GG) mapper ¨  Inserting a GG logic structure in the input of the

    selected FF

    [Sterpone  and  Du,  IEEE  ETS  2014]  

  • SET: mitigation solution 1 29

    ¨  Selective guard gate (GG) mapper ¨  Inserting a GG logic structure in the input of the

    selected FF

    [Sterpone  and  Du,  IEEE  ETS  2014]  

    Filtering estimated on the basis of the SETA

    report

  • SET: mitigation solution 2 30

    ¨  Accurate placement acting on the critical paths ¨  Distance between gates is modified in order to

    maximize the electrical filtering effect

    [Sterpone  and  Du,  IEEE  ETS  2014]  

  • SET: mitigation solution 2 31

    ¨  Accurate placement acting on the critical paths ¨  Distance between gates is modified in order to

    maximize the electrical filtering effect

    [Sterpone  and  Du,  IEEE  ETS  2014]  

  • SET: mitigation solution 2 32

    ¨  Accurate placement acting on the critical paths ¨  Distance between gates is modified in order to

    maximize the electrical filtering effect

    [Sterpone  and  Du,  IEEE  ETS  2014]  

  • SET: mitigation results 33

    Different place and route constraints

    Average SET sensitivity

  • SET: mitigation results 34

    Different place and route constraints

    Average SET sensitivity

    Original RISC circuit

    Post SETA RISC circuit

  • SET: mitigation results 35

    Different place and route constraints

    Average SET sensitivity

    Effective mitigation of SET

  • SET: mitigation radiation test results ¨  Heavy ions test performed at the Cyclotron of the

    Université Catholique de Louvain (UCL) ¨ Kripton ion with a fluence of 3.04E8 (particles) ¨ Average flux 1E4 (particles/sec) ¨ RISC working frequency of 20MHz on ProASIC3

    A3P250 RISC processor version SEE Cross-section

    [MeV cm2/mg]

    Unhardened 1.45E-9

    Full TMR + GG 6.37E-10

    Our Approach 3.12E-12

    36

  • SET: in conclusion… 37

    ¨  SETA tools are available ¨  Effective analysis of SET propagation

    ¨  Effective overall SET mitigation

  • SET: in conclusion… 38

    ¨  SETA tools are available ¨  Effective analysis of SET propagation

    ¨  Effective overall SET mitigation

  • SET: in conclusion… 39

    ¨  SETA tools are available ¨  Effective analysis of SET propagation

    ¨  Effective overall SET mitigation

  • SET: in conclusion… 40

    ¨  SETA tools are available ¨  Effective analysis of SET propagation

    ¨  Effective overall SET mitigation

    Source of SET Propagation through gates Propagation through routing SET classification on FFs or IOs

    V V V

    X

  • Physical Design Description 41

    ¨  The circuit is modeled as a graph ¨  Cell functionality

    ¨  Routing model

    AND

    OR INV

  • SET generation phenomena 42

    ¨  Particle hitting a sensitive node ¨  Generate a SET pulse

    ¨  Propagates through the logic

    AND

    OR INV

  • SET generation phenomena 43

    [Azimi  and  Sterpone,  IEEE  DDECS  2016]  [Azimi,  Du,  Sterpone,  Micro  Rel,  2015]  

    ¨  SET generation is related to ¨  Linear Energy Transfer (LET) ¨ VersaTile architecture ¨ Technology

  • Why SET generation ? ¨  The type of source SET is mandatory to understand

    the exact type of propagation ¨  Mitigation GG insertion is related to SET length

    ¨  It is necessary to establish the absolute SET count ¨ Calculation of the realistic IOs/FFs error rate for

    the whole space mission duration

    44

  • Why SET generation ? 45

    0"5000"10000"15000"20000"25000"30000"35000"40000"45000"

    0,1"ns" 0,3"ns" 0,45"ns" 0,7"ns" 1"ns" 1,5"ns" 2,0"ns" 2,5"ns" 3,0"ns" 4,0"ns"

    Combina2onal"Path"7"Single"Event"Transient"sensi2vity"

    Filtered" Par2ally"Filtered" Equal" Broadened"

    !

  • Identification of source SET length 46

    0"5000"10000"15000"20000"25000"30000"35000"40000"45000"

    0,1"ns" 0,3"ns" 0,45"ns" 0,7"ns" 1"ns" 1,5"ns" 2,0"ns" 2,5"ns" 3,0"ns" 4,0"ns"

    Combina2onal"Path"7"Single"Event"Transient"sensi2vity"

    Filtered" Par2ally"Filtered" Equal" Broadened"

    !Effective source SET designer must care

  • Identification of effective SET counts 47

    0"5000"10000"15000"20000"25000"30000"35000"40000"45000"

    0,1"ns" 0,3"ns" 0,45"ns" 0,7"ns" 1"ns" 1,5"ns" 2,0"ns" 2,5"ns" 3,0"ns" 4,0"ns"

    Combina2onal"Path"7"Single"Event"Transient"sensi2vity"

    Filtered" Par2ally"Filtered" Equal" Broadened"

    !Effective source SET designer must care

    Effective SET counts

  • Thank you! ¨  [email protected]

    48