Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane,...

37
Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij [email protected] 5 th December, 2016 Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 1 / 24

Transcript of Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane,...

Page 1: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Ancestral Causal Inference

Sara Magliacane, Tom Claassen, Joris M. Mooij

[email protected]

5th December, 2016

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 1 / 24

Page 2: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Part I

Introduction

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 2 / 24

Page 3: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24

Page 4: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24

Page 5: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24

Page 6: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24

Page 7: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference from observational and experimental data

Holy Grail of Causal Inference

Learn as much causal structure as possible from observations,integrating background knowledge and experimental data.

Constraint-based causal discovery: use statistical independences toexpress constraints over possible causal models

Intuition: Under certain assumptions, independences in the datacorrespond with d-separations in a causal DAG

Issues:

1 Vulnerability to errors in statistical independence tests

2 No estimation of confidence in the causal predictions

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 4 / 24

Page 8: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference from observational and experimental data

Holy Grail of Causal Inference

Learn as much causal structure as possible from observations,integrating background knowledge and experimental data.

Constraint-based causal discovery: use statistical independences toexpress constraints over possible causal models

Intuition: Under certain assumptions, independences in the datacorrespond with d-separations in a causal DAG

Issues:

1 Vulnerability to errors in statistical independence tests

2 No estimation of confidence in the causal predictions

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 4 / 24

Page 9: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference from observational and experimental data

Holy Grail of Causal Inference

Learn as much causal structure as possible from observations,integrating background knowledge and experimental data.

Constraint-based causal discovery: use statistical independences toexpress constraints over possible causal models

Intuition: Under certain assumptions, independences in the datacorrespond with d-separations in a causal DAG

Issues:

1 Vulnerability to errors in statistical independence tests

2 No estimation of confidence in the causal predictions

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 4 / 24

Page 10: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (e.g. HEJ)

Weighted list of statistical independence results: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}

For any possible causal structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

“ij is not satisfied in C” = defined by causal reasoning rules

Causal inference = Find causal structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Problem: Scalability

HEJ [Hyttinen et al., 2014]

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 5 / 24

Page 11: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (e.g. HEJ)

Weighted list of statistical independence results: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}

For any possible causal structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

“ij is not satisfied in C” = defined by causal reasoning rules

Causal inference = Find causal structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Problem: Scalability

HEJ [Hyttinen et al., 2014]

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 5 / 24

Page 12: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (e.g. HEJ)

Weighted list of statistical independence results: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}

For any possible causal structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

“ij is not satisfied in C” = defined by causal reasoning rules

Causal inference = Find causal structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Problem: Scalability

HEJ [Hyttinen et al., 2014]

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 5 / 24

Page 13: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Part II

Ancestral Causal Inference

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 6 / 24

Page 14: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

A more coarse grained representation

Can we improve scalability of the most accurate state-of-the-artmethod (HEJ)?

Ancestral Causal Inference: Main Idea

Instead of representing direct causal relations use a morecoarse-grained representation of causal information, e.g., anancestral structure (a set of “indirect” causal relations).

X Y Z

Ancestral structures reduce drastically search space

For 7 variables: 2.3× 1015 → 6× 106

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 7 / 24

Page 15: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

A more coarse grained representation

Can we improve scalability of the most accurate state-of-the-artmethod (HEJ)?

Ancestral Causal Inference: Main Idea

Instead of representing direct causal relations use a morecoarse-grained representation of causal information, e.g., anancestral structure (a set of “indirect” causal relations).

X Y Z

Ancestral structures reduce drastically search space

For 7 variables: 2.3× 1015 → 6× 106

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 7 / 24

Page 16: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

A more coarse grained representation

Can we improve scalability of the most accurate state-of-the-artmethod (HEJ)?

Ancestral Causal Inference: Main Idea

Instead of representing direct causal relations use a morecoarse-grained representation of causal information, e.g., anancestral structure (a set of “indirect” causal relations).

X Y Z

Ancestral structures reduce drastically search space

For 7 variables: 2.3× 1015 → 6× 106

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 7 / 24

Page 17: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (Reprise)

Weighted list of inputs: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}, (U 99KZ , 0.8) }

Any consistent weighting scheme, e.g. frequentist, Bayesian

For any possible ancestral structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

Here: “ij is not satisfied in C” = defined by ancestral reasoning rules

Causal inference = Find ancestral structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 8 / 24

Page 18: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (Reprise)

Weighted list of inputs: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}, (U 99KZ , 0.8) }

Any consistent weighting scheme, e.g. frequentist, Bayesian

For any possible ancestral structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

Here: “ij is not satisfied in C” = defined by ancestral reasoning rules

Causal inference = Find ancestral structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 8 / 24

Page 19: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Causal inference as an optimization problem (Reprise)

Weighted list of inputs: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}, (U 99KZ , 0.8) }

Any consistent weighting scheme, e.g. frequentist, Bayesian

For any possible ancestral structure C , we define the loss function:

Loss(C , I ) :=∑

(ij ,wj )∈I : ij is not satisfied in C

wj

Here: “ij is not satisfied in C” = defined by ancestral reasoning rules

Causal inference = Find ancestral structure minimizing loss function

C ∗ = arg minC∈C

Loss(C , I )

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 8 / 24

Page 20: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Ancestral reasoning rules: Example

ACI rules: 7 ancestral reasoning rules that given (in)dependencesconstrain possible (non) ancestral relations

Example

For X , Y , W disjoint (sets of) variables:

(X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY

X ⊥⊥Y |W = “X is independent of Y given a set of variables W ”

∧ “and”

X 699KW = “X does not cause any variable in the set W ”

=⇒ = “then”

X 699KY = “X does not cause Y ”

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 9 / 24

Page 21: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Ancestral reasoning rules: Example

ACI rules: 7 ancestral reasoning rules that given (in)dependencesconstrain possible (non) ancestral relations

Example

For X , Y , W disjoint (sets of) variables:

(X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY

X ⊥⊥Y |W = “X is independent of Y given a set of variables W ”

∧ “and”

X 699KW = “X does not cause any variable in the set W ”

=⇒ = “then”

X 699KY = “X does not cause Y ”

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 9 / 24

Page 22: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

A method for scoring causal predictions

Score the confidence in a predicted statement s (e.g. X 99KY ) as:

C (f ) = minC∈CLoss(C , I + (¬s,∞))

−minC∈CLoss(C , I + (s, ∞))

≈ MAP approximation of the log-odds ratio of s

Asymptotically consistent, when consistent input weights

Can be used with any method that solves an optimization problem

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 10 / 24

Page 23: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

A method for scoring causal predictions

Score the confidence in a predicted statement s (e.g. X 99KY ) as:

C (f ) = minC∈CLoss(C , I + (¬s,∞))

−minC∈CLoss(C , I + (s, ∞))

≈ MAP approximation of the log-odds ratio of s

Asymptotically consistent, when consistent input weights

Can be used with any method that solves an optimization problem

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 10 / 24

Page 24: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Part III

Evaluation

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 11 / 24

Page 25: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Simulated data accuracy: example Precision Recall curve

Recall

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pre

cis

ion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HEJ (c=1)

ACI (c=1)

CFCI

FCI

ACI is as accurate as HEJ + our scoring method

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 12 / 24

Page 26: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Simulated data execution time

ACI is orders of magnitude faster than HEJ

The difference grows exponentially in the number of variables

HEJ is not feasible for more than 8 variables

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 13 / 24

Page 27: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Application: Reconstructing a Protein Signalling Network

Raf

Mek

Erk

Akt

JNK

PIP3

PLCg

PIP2

PKC

PKA

p38

Black edges = overlap

Consistent with score-based method [Mooij and Heskes, 2013]

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 14 / 24

Page 28: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Conclusion

Ancestral Causal Discovery (ACI), a causal discovery method asaccurate as the state-of-the-art but much more scalable

A method for scoring causal relations by confidence

Source code: http://github.com/caus-am/aci

Poster: WIML, 1.30pm - 2.30pm, poster 3

Poster: NIPS, Tuesday 6pm - 9.30pm, poster 81

Talk on extensions of ACI at “What If?” NIPS workshop, Saturday

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 15 / 24

Page 29: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

References I

Claassen, T. and Heskes, T. (2011).

A logical characterization of constraint-based causal discovery.In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pages 135–144.

Entner, D., Hoyer, P., and Spirtes, P. (2013).

Data-driven covariate selection for nonparametric estimation of causal effects.In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2013).

Hyttinen, A., Eberhardt, F., and Jarvisalo, M. (2014).

Constraint-based causal discovery: Conflict resolution with answer set programming.In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014), pages 340–349.

Magliacane, S., Claassen, T., and Mooij, J. M. (2016).

Ancestral causal inference.arXiv.org preprint, arXiv:1606.07035 [cs.LG].Accepted for Neural Information Processing Systems 2016.

Mooij, J. M. and Heskes, T. (2013).

Cyclic causal discovery from continuous equilibrium data.In Nicholson, A. and Smyth, P., editors, UAI, pages 431–439. AUAI Press.

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 16 / 24

Page 30: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Part IV

Backup slides

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 17 / 24

Page 31: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Infinite weights: Soundness

ACI is sound for predicting ancestral relations:

Theorem

The confidence scores C (X 99KY ) are sound for oracle inputs with infiniteweights, i.e.:

C (X 99KY ) =

∞ if X 99KY is identifiable,

−∞ if X 699KY is identifiable,

0 otherwise.

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 18 / 24

Page 32: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Finite Weights: Definition and Consistency

We propose two choices for the weights:

Frequentist Weights: wj = |log pj − logα|where pj is the p-value of a statistical test for ij , and α a threshold.

Bayesian Weights: wj = log p(ij | data)− log p(¬ij | data).

Under mild assumptions, such weights are consistent, i.e., as sample sizeN →∞, for the frequentist weights:

log p(N) − logα(N) P→

{−∞ H1

+∞ H0,

when α(N) → 0 at a suitable rate, or for the Bayesian weights:

wNP→

{−∞ if ij is true

+∞ if ij is false.

The probability of a type I and type II errors will then converge to 0.Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 19 / 24

Page 33: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Finite Weights: Soundness and Consistency

ACI is consistent for predicting ancestral relations:

Theorem

The confidence scores C (X 99KY ) are asymptotically consistent, i.e.:

C (X 99KY )P→

∞ if X 99KY is identifiable,

−∞ if X 699KY is identifiable,

0 otherwise.

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 20 / 24

Page 34: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Complete ACI rules

Trivial rules:

1 X 99KY ∧ Y 99KZ =⇒ X 99KZ (transitivity)

2 X 99KY =⇒ Y 699KX (acyclicity)

For X , Y , W disjoint (sets of) variables:

1 (X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY2 X 6⊥⊥Y |W ∪ [Z ] =⇒ (X 6⊥⊥Z |W ) ∧ (Z 699K {X ,Y } ∪W )

3 X ⊥⊥Y |W ∪ [Z ] =⇒ (X 6⊥⊥Z |W ) ∧ (Z 99K {X ,Y } ∪W )

4 (X ⊥⊥Y |W ∪ [Z ]) ∧ (X ⊥⊥Z |W ∪ U) =⇒ (X ⊥⊥Y |W ∪ U)

5 (Z 6⊥⊥X |W ) ∧ (Z 6⊥⊥Y |W ) ∧ (X ⊥⊥Y |W ) =⇒ X 6⊥⊥Y |W ∪ Z

6 X 699KW ∧ X 699KZ ∧ Z ⊥⊥Y |W ∪ [X ] =⇒p(Y | do(X )

)=∫p(Y |X ,W )p(W ) dW

[Claassen and Heskes, 2011], [Entner et al., 2013], [Magliacane et al., 2016]

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 21 / 24

Page 35: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Applications of causal inference

Example (Genomics)

How to infer gene regulatory networks from micro-array data?

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 22 / 24

Page 36: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Probabilistic inference vs. causal inference

Traditional statistics, machine learning

Models the distribution of the data

Focuses on predicting observations

Useful e.g. in medical diagnosis: given the symptoms, what is themost likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,will it cure the disease?

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 23 / 24

Page 37: Sara Magliacane, Tom Claassen, Joris M. Mooij - …...Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij s.magliacane@uva.nl 5th December, 2016 Sara Magliacane

Constraint-based causal discovery

Constraint-based: use statistical independences to express constraintsover possible causal models.

... but wait, correlation does not imply causation, see XCKD:

True, but it does imply something:

If A and B are correlated, A causes B or B causes A or theyshare a latent common cause. (Hans Reichenbach)

Idea: Under certain assumptions, independences in the data correspondwith d-separations in a causal graph.

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 24 / 24