Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad...

15
Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry Ali Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray, Carole Webb and Royston Goodacre Supplementary Information: Experimental Sampling and analysis of cell extracts by HPLC-UV To investigate the role of efflux pumps which extrude toluene from P. putida cells, all bacterial cells were normalised to an optical density at 660 nm (OD 660 ) of 0.2 in 50 mL of LB medium and then incubated in an orbital shaker for 4 h at 30 o C and 200 rpm. Once P. putida cultures reached the mid-log phase, samples were divided into two groups. One group was challenged with 0.2% (v/v) toluene and the second group was kept as an unexposed control. All flasks were sealed with Suba-Seal and incubated for an additional 30 min. Cells (45 mL) were pelleted by centrifugation (3000 ×g, 10 min, 1 o C) and the supernatant was removed, while the cell pellets were washed once with 10 mL of 0.9% saline solution and centrifuged again to ensure the complete removal of LB medium. The pellets were suspended in 1.5 mL of 100% methanol and transferred into a fresh 2 mL Eppendorf tube. To 1

Transcript of Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad...

Page 1: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry

Ali Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray, Carole Webb and Royston Goodacre

Supplementary Information: Experimental

Sampling and analysis of cell extracts by HPLC-UV

To investigate the role of efflux pumps which extrude toluene from P. putida cells, all

bacterial cells were normalised to an optical density at 660 nm (OD660) of 0.2 in 50 mL of LB

medium and then incubated in an orbital shaker for 4 h at 30oC and 200 rpm. Once P. putida

cultures reached the mid-log phase, samples were divided into two groups. One group was

challenged with 0.2% (v/v) toluene and the second group was kept as an unexposed control.

All flasks were sealed with Suba-Seal and incubated for an additional 30 min.

Cells (45 mL) were pelleted by centrifugation (3000 ×g, 10 min, 1oC) and the supernatant

was removed, while the cell pellets were washed once with 10 mL of 0.9% saline solution

and centrifuged again to ensure the complete removal of LB medium. The pellets were

suspended in 1.5 mL of 100% methanol and transferred into a fresh 2 mL Eppendorf tube. To

permeabilize the cells, the freeze-thaw cycles liquid nitrogen method was performed three

times according to the method of Winder et al. (Winder et al. 2008). The samples were then

pelleted by centrifugation (13500 ×g, 5 min) and an aliquot (1200 µL) of supernatant

(intracellular extracts) was normalised according to OD660. Finally, an aliquot (300 µL) of

intracellular extracts was placed in a LC vial and analysed by high-performance liquid

chromatography (HPLC-UV).

All measurements were carried out using HPLC system (Agilent Technologies) equipped

with an Agilent 1260 Infinity Quaternary Pump, auto-sampler and programmable UV Diode

1

Page 2: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Array Detector. The output signal was monitored at 218 nm. The chromatographic separation

was performed in a C18 column (100 x 4.6 mm) and the column temperature was maintained

at 20 oC. HPLC separations were carried out by injecting 15 μL with an isocratic mobile

phase methanol (100%) at a flow rate of 1 mL min-1. The total analysis time was 30 min.

2

Page 3: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Supplementary Information: Results

3

1.45

5A)1.

119

1.38

2

C)

1.45

7

D)

1.45

9

E)

1.46

1

Retention time (min)

Fig. S1 Chromatograms for (A) 0.01% toluene, (B) P. putida DOT-T1E (no toluene), exposed cells to 0.2% toluene (C) P. putida DOT-T1E, (D) P. putida DOT-T1E-PS28 and (E) P. putida DOT-T1E-18 obtained from HPLC-UV. Toluene eluted with retention time of 1.458 ± 0.003 min.

Page 4: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

4

1000

1500

2000

2500

DOT-T1E DOT-T1E-PS28 DOT-T1E-18

P. putida

Pea

k ar

ea (m

AU

)

Fig. S3 Box-whisker plot representing the toluene level in P. putida strains exposed to 0.2% (v/v) toluene for 4 replicates. The red lines indicate the median of the peak area. DOT-T1E is the wild type, DOT-T1E-PS28 is the mutant (lacking the TtgGHI pump) and DOT-T1E-18 is the mutant (lacking the TtgABC pump). Error bars are standard deviations of 4 replicates.

y = 7368.4x + 655.25R² = 0.9884

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.2 0.4 0.6 0.8 1 1.2

Peak

are

a (m

AU)

Toluene concentration (mM)

Fig. S2 Calibration curve obtained from toluene ranging from 0.001 to 1 mM for 3 replicates using HPLC-UV. Points are means of the 3 replicates and error bars are standard deviations.

Page 5: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

5

-80 -60 -40 -20 0 20 40 60 80-20

-15

-10

-5

0

5

10

15

20

25

30

DF 1

DF

2

C.

-40 -30 -20 -10 0 10 20 30 40 50-4

-3

-2

-1

0

1

2

3

4

DF 1

DF

2

B.

-20 -15 -10 -5 0 5 10 15-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

DF 1

DF

2A.

Fig.S4 Validated PC-DFA models of (A) P. putida DOT-T1E, (B) DOT-T1E-PS28, (C) DOT-T1E-18 upon toluene stress. Symbol coding: control with no toluene (circles), cells exposed to 0.1% (v/v) toluene (squares), toluene via gas phase (triangles), and toluene via gas phase and 0.1% (v/v) toluene (upside down triangles). Closed symbols represent the training set while open symbols represent the test set that was projected into the PC-DFA scores space constructed from the training set.

0

1

2

3

4

5

6

0 5 10 15 20 25 30

OD

@66

0nm

Time (h)

DOT (cotton)

DOT (sub-seal)

PS28 (cotton)

PS28 (sub-seal)

18 (cotton)

18 (sub-seal)

Fig. S5 Effect of oxidative stress on P. putida strains growth. Symbols and colours represent different strains. (Closed black diamonds) represents the wild-type DOT-T1E, (Closed red circle) the mutant DOT-T1E-PS28, and (Closed green triangles) the mutant DOT-T1E-18. (Solid lines) represent the growth curves of the control cells, while (dotted lines) cells exposed to oxidative stress.

Page 6: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

6

Glucose

Glucose 6-phosphate

Glyceraldehyde 3-phosphate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Acetyl-CoA

Citrate

OxoglutarateFumarate

Malate

Oxaloacetate

Succinyl-CoA

Serine Glycine

Cysteine

Chorismate

Anthranilate

Tryptophan

Phenylalanine

Tyrosine

Alanine

Valine

Leucine

Glutamine

GlutamateOrnithine

Aspartic acidLysine

Homeserine

Isoleucine Threonine

Methionine

TCA

C T G GT C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GTC T G GT

C T G GTC T G GT

C T G GT

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 30

0.07

0.075

0.08

0.085

0.09

0.095

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 24

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 12

0.15

0.2

0.25

0.3

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 15

0.004

0.006

0.008

0.01

0.012

0.014

0.016

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 65

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 47

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 54

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 112

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 52

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 82

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 68

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 44

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 18

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 41

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 28

A.

Glucose

Glucose 6-phosphate

Glyceraldehyde 3-phosphate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Acetyl-CoA

Citrate

OxoglutarateFumarate

Malate

Oxaloacetate

Succinyl-CoA

Serine Glycine

Cysteine

Chorismate

Anthranilate

Tryptophan

Phenylalanine

Tyrosine

Alanine

Valine

Leucine

Glutamine

GlutamateOrnithine

Aspartic acidLysine

Homeserine

Isoleucine Threonine

Methionine

TCA

C T G GT C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GTC T G GT

C T G GTC T G GT

C T G GT

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 30

0.05

0.06

0.07

0.08

0.09

0.1

0.11

C T G GT

(Pea

k In

tens

ities

)Variable id. = 24

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 12

0.1

0.15

0.2

0.25

0.3

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 15

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 65

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 47

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 54

0.01

0.015

0.02

0.025

0.03

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 112

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 52

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 82

0.15

0.2

0.25

0.3

0.35

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 68

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 44

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 18

0.005

0.01

0.015

0.02

0.025

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 41

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 28

B.

Fig. S6 Schematic metabolic diagram of central carbon metabolism in P. putida DOT-T1E-PS28 adapted to toluene. Metabolites were detected and identified by GC-MS. Metabolites indicated in black were observed, while metabolites indicated in grey were not detected. (A) Represent the level of metabolites at 10 min after toluene exposure, and (B) at 60 min. Box-whisker plot showing the changes in metabolite levels in control and cells exposed to toluene for 4 biological replicates. The red lines indicate the median m/z intensity. Codes: control - no toluene (C), cells exposed to 0.1% (v/v) toluene (T), toluene gas (G), and toluene gas and 0.1% (v/v) toluene (GT).

Page 7: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

7

Glucose

Glucose 6-phosphate

Glyceraldehyde 3-phosphate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Acetyl-CoA

Citrate

OxoglutarateFumarate

Malate

Oxaloacetate

Succinyl-CoA

Serine Glycine

Cysteine

Chorismate

Anthranilate

Tryptophan

Phenylalanine

Tyrosine

Alanine

Valine

Leucine

Glutamine

GlutamateOrnithine

Aspartic acidLysine

Homeserine

Isoleucine Threonine

Methionine

TCA

C T G GT C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GTC T G GT

C T G GTC T G GT

C T G GT

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 30

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 24

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 7

0.0 4

0.0 6

0.0 8

0.1

0.1 2

0.1 4

0.1 6

0.1 8

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 12

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 15

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 47

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 54

0.01

0.0 15

0.02

0.0 25

0.03

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 65

0.01

0.015

0.02

0.025

0.03

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 112

0.1

0.2

0.3

0.4

0.5

0.6

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 52

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 82

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 68

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 44

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 18

0.005

0.01

0.015

0.02

0.025

0.03

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 41

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 28

A.

Glucose

Glucose 6-phosphate

Glyceraldehyde 3-phosphate

3-Phosphoglycerate

Phosphoenolpyruvate

Pyruvate

Acetyl-CoA

Citrate

OxoglutarateFumarate

Malate

Oxaloacetate

Succinyl-CoA

Serine Glycine

Cysteine

Chorismate

Anthranilate

Tryptophan

Phenylalanine

Tyrosine

Alanine

Valine

Leucine

Glutamine

GlutamateOrnithine

Aspartic acidLysine

Homeserine

Isoleucine Threonine

Methionine

TCA

C T G GT C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GT

C T G GTC T G GT

C T G GTC T G GT

C T G GT

0

0.05

0.1

0.15

0.2

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 30

0.05

0.1

0.15

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 24

0

0.05

0.1

0.15

0.2

C T G GT

(Pea

k In

tens

ities

)

Variab le id. = 7

0

0.05

0.1

0.15

0.2

0.25

0.3

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 12

0.1

0.2

0.3

0.4

0.5

0.6

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 15

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 65

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 47

0

0.05

0.1

0.15

0.2

0.25

0.3

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 54

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 112

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 52

0

0.05

0.1

0.15

0.2

0.25

0.3

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 82

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 68

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 44

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 18

0

0.01

0.02

0.03

0.04

0.05

0.06

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 41

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

C T G GT

(Pea

k In

tens

ities

)

Variable id. = 28

B.

Fig. S7 Schematic metabolic diagram of central carbon metabolism in P. putida DOT-T1E-18 adapted to toluene. Metabolites were detected and identified by GC-MS. Metabolites indicated in black were observed, while metabolites indicated in grey were not detected. (A) Represent the level of metabolites at 10 min after toluene exposure, and (B) at 60 min. Box-whisker plot showing the changes in metabolite levels in control and cells exposed to toluene for 4 biological replicates. The red lines indicate the median m/z intensity. Codes: control - no toluene (C), cells exposed to 0.1% (v/v) toluene (T), toluene gas (G), and toluene gas and 0.1% (v/v) toluene (GT).

Page 8: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Table S1 Results from the toluene MIC experiments using P. putida DOT-T1E, DOT-T1E-PS28 and DOT-T1E-18. Culture growth was recorded after overnight incubation.

P. putida strains Toluene concentration (% (v/v))

Toluene concentration (mM) Growth (+/-)*

DOT-T1E

0 0 +0.3 30 +0.5 50 +0.7 70 +0.8 80 +1 100 +2 200 +3 300 ± or +4 400 ±5 500 -

DOT-T1E-PS28

0 0 +0.3 30 +0.5 50 ± or +0.7 70 ±0.8 80 -1 100 -2 200 -3 300 -4 400 -5 500 -

DOT-T1E-18

0 0 +0.3 30 ± or +0.5 50 ±0.7 70 -0.8 80 -1 100 -2 200 -3 300 -4 400 -5 500 -

*(+) indicates growth, (±) slight growth, and (-) no growth

Table S2 The level of toluene in P. putida strains

P. putida strains Toluene concentration (µM)

DOT-T1E 33 ± 2DOT-T1E-PS28 71 ± 11

DOT-T1E-18 277 ± 18

8

Page 9: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Table S3 List of the top 30 significant variables from MB-PCA loading.

Conditions time strains7 13 412 15 1413 16 1514 19 1915 22 2018 23 2219 26 2320 31 3122 33 3323 38 3625 44 4326 45 4428 49 4530 50 4931 52 5235 56 6236 57 6343 59 6444 60 6945 61 7549 63 8052 65 8853 68 9054 69 9756 74 9957 75 10358 76 10559 82 10760 83 11061 84 111

9

Page 10: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Table S4 List of the top 30 significant variables from N-way ANOVA test.

Order of most

significant

Conditions time strains

variable p-value FDR variable p-value FDR variable p-value FDR

1 25 8.78E-16 8.96E-15 13 9.08E-05 2.59E-03 14 2.15E-25 2.15E-252 29 7.10E-10 3.62E-09 99 4.81E-05 2.74E-03 99 6.98E-24 6.98E-243 101 6.09E-08 1.24E-07 91 3.16E-04 5.99E-03 36 1.92E-19 1.92E-194 109 3.94E-08 1.34E-07 58 10.85E-04 1.55E-02 20 1.85E-17 1.85E-175 45 5.58E-08 1.42E-07 64 1.38E-12 1.38E-126 91 2.39E-07 4.06E-07 62 1.27E-11 1.27E-117 36 6.34E-07 9.24E-07 25 1.91E-11 1.91E-118 43 1.67E-06 1.70E-06 13 2.24E-10 2.24E-109 99 1.59E-06 1.80E-06 111 1.94E-09 1.94E-0910 108 1.48E-06 1.89E-06 15 2.17E-09 2.17E-0911 62 2.86E-06 2.65E-06 4 1.16E-08 1.16E-0812 14 3.17E-06 2.70E-06 16 1.38E-08 1.38E-0813 7 5.95E-06 4.67E-06 45 1.53E-08 1.53E-0814 30 8.96E-06 6.53E-06 91 3.96E-08 3.96E-0815 54 1.24E-05 8.43E-06 43 1.21E-07 1.21E-0716 111 1.43E-05 9.09E-06 72 2.14E-07 2.14E-0717 34 2.25E-05 1.35E-05 97 5.28E-07 5.28E-0718 114 1.85E-04 9.95E-05 21 1.09E-06 1.09E-0619 112 1.77E-04 1.01E-04 81 1.83E-06 1.83E-0620 52 2.43E-04 1.12E-04 73 5.31E-06 5.31E-0621 28 2.42E-04 1.17E-04 108 5.83E-06 5.83E-0622 87 2.66E-04 1.18E-04 65 6.84E-06 6.84E-0623 44 2.33E-04 1.19E-04 87 1.25E-05 1.25E-0524 58 3.13E-04 1.33E-04 47 1.38E-05 1.38E-0525 41 3.37E-04 1.38E-04 110 1.45E-05 1.45E-0526 9 3.75E-04 1.47E-04 48 1.45E-05 1.45E-05

10

Page 11: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Order of most

significant

Conditions time strains

variable p-value FDR variable p-value FDR variable p-value FDR

27 64 5.68E-04 2.07E-04 92 1.81E-05 1.81E-0528 72 5.5E-04 2.08E-04 88 3.26E-05 3.26E-0529 12 10.13E-04 3.56E-04 80 3.43E-05 3.43E-0530 96 11.04E-04 3.75E-04 113 3.54E-05 3.54E-05

11

Page 12: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

Table S5 A list of detected metabolites by GC-MS. All identifications are based on minimum metabolite reporting standards (Sumner et al. 2007).

Variables ID RT RI Metabolite MSI ID level

7 389.978 1100 Alanine 112 470.578 1227.9 Valine 115 479.478 1242 Leucine 118 498.828 1272.7 Isoleucine 124 529.928 1322.1 Glycine 126 545.628 1347 Phosphate 128 555.528 1362.7 Threonine 130 563.478 1375.4 Serine 236 617.228 1460.7 Uracil 141 658.228 1535.7 Aspartic acid 144 692.778 1611.6 Methionine 145 702.478 1632.9 Arabinose 147 717.278 1665.4 Glutamine 149 732.628 1699.2 Pyroglutamic acid 152 749.528 1736.3 Phenylalanine 254 768.978 1779.1 Ornithine 156 775.128 1792.6 Mannose 265 796.628 1839.8 Citric Acid 268 812.028 1873.7 Lysine 182 864.578 2007.7 Tyrosine 289 886.878 2066.9 Tyramine 192 907.178 2120.8 Adenine 1

100 966.728 2278.9 Octadecanoic acid 1112 1046.68 2491.2 Tryptophan 2

Code: ID, identifier on plots; RT, retention time; RI, retention index; MSI, Metabolomics Standards Initiative

12

Page 13: Sampling and analysis of cell extracts by HPLC-UV10.1007... · Web viewAli Sayqal, Yun Xu, Drupad K. Trivedi, Najla AlMasoud, David I. Ellis, Howbeer Muhamadali, Nicholas J. W. Rattray,

References

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211-221.

Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., & Goodacre, R. (2008). Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80, 2939-2948.

13