Salmon atlántico expo

44
Salmón del Atlántico ( Salmo salar)

Transcript of Salmon atlántico expo

Page 1: Salmon atlántico expo

Salmón del Atlántico (Salmo salar)

Page 2: Salmon atlántico expo

Distribución World Wildlife Fund, 2001

Page 3: Salmon atlántico expo

Alevines

Adultos

Hábitos Alimenticios

Page 4: Salmon atlántico expo

Reproducción

Page 5: Salmon atlántico expo

Adulto Maduro (migración río arriba para desovar y morir) Huevos fertilizados

Alevín

Fry

Juveniles

Smolt (migran río abajo a aguas marinas)

Sub-Adulto y adulto (fase de crecimiento marino)

Ciclo de vida generalizado de Salmón del Pacífico.

Agua Marina

Agua Dulce

Encyclopedy of fish physiology, 2011.

Page 6: Salmon atlántico expo

"todos los mecanismos vitales, por muy variados que sean, tienen un fin, mantener la constancia del medio interno, ...lo que es la condición de la vida libre“ (Claude Bernard).

“Organization for Physiological Homeostasis” ó "una relativa constancia del medio interno“ (Walter B. Cannon, 1928).

HOMEOSTASIS

Page 7: Salmon atlántico expo

Tres forma de Diadromía: B = Nacimiento, G = Crecimiento, y R = Reproducción

Page 8: Salmon atlántico expo

Chinook Salmon (Oncorhynchustshawytscha)

Absorbe agua a través de la branquias y piel

Obtiene sales a través de la células cloruro y del alimento

Perdida de sales vía heces

Remueven mucha agua y algunas sales vía orina diluida

1. Beben muy poca agua

2. Tienen numerosos glomérulos, grandes y bien desarrollados

3. Reabsorben sales a lo largo de la longitud de sus túbulos contorneados

4. Produce grandes cantidades de orina muy diluida (5-12% del peso corporal por día)

Page 9: Salmon atlántico expo

El exceso de agua se filtra de la sangre a través de los glomérulos que transportan todo tipo de sustancias, además de agua, tales como sales y azúcares, que se reabsorben en el torrente sanguíneo a Través del epitelio de los túbulos renales.

Glomérulo: Un riñón típico de un pez de agua dulce tiene miles de glomérulos grandes, cada una con un suministro de sangre bien desarrollado. Grandes cantidades de agua pasan a través de ellos. El glomérulo, a continuación, es un dispositivo que proporciona un filtrado que se puede modificar selectivamente por el túbulo renal.

Neck Región: La región del cuello está revestida de cilios. El ciliaryaction juega un papel importante en la ayuda a movimiento de materiales en el túbulo. Esto es particularmente importante en los sistemas de filtración de baja presión de peces.

En primer segmento proximal: Aquí es donde la reabsorción de muchas moléculas de macro, como la glucosa y las proteínas se lleva a cabo, sino también la excreción de ácidos orgánicos tóxicos.

Segundo segmento proximal: Esta es la región más grande del túbulo, donde hay una alta actividad metabólica, es decir, mecanismos de transporte activos que son responsables de la reabsorción de muchas sales, tales como Mg + +, SO4 -, Ca + +, P, Na +, Cl - y HCO3-

Segmento distal: esta porción del túbulo participa en la reabsorción activa de Na + y algunos iones Cl. También es un altamente ciliatedarea que ayuda en la propulsión de fluido a lo largo del túbulo. En un pez de agua dulce es importante para mover el fluido a través de la longitud de los túbulos tan rápido como sea posible para minimizar la reabsorción pasiva de agua.

Túbulo colector o conducto: funciona principalmente para reabsorber iones monovalentes, la mayoría de Na + y Cl-.

Page 10: Salmon atlántico expo

Lo que queda es una orina diluida que contiene principalmente agua, pero también algo de creatina y creatinina (alcaloides), algunos aminoácidos, y un poco de urea y amoníaco.

Algunos residuos nitrogenados se pierde a través de la orina, pero esto equivale a sólo 7 al 25% del nitrógeno total excretado por un pez de agua dulce. La mayor parte pasa a través de las branquias en la forma de amoníaco.

El resto es principalmente urea y otros compuestos simples de nitrógeno que también abandona el cuerpo a través de las branquias.

El riñón por sí sola no puede reabsorber las sales suficientes para mantener osmoregularity. Para compensar esta deficiencia de las branquias y las membranas orales han desarrollado la capacidad para absorber iones por mecanismos de transporte activo en las células especiales llamadas células cloruro. Todos los tipos de iones se reabsorben de esta manera: fosfato de ácido (HPO4-), bromo (Br-), calcio (Ca + +), cloruro (Cl-), litio (Li +), sodio (Na +), sulfato (SO4 -) iones, etc

Page 11: Salmon atlántico expo

Chinook Salmon (Oncorhynchustshawytscha)

NaNa++, Cl, Cl- -

Gana agua y sales por la ingestión de agua de mar y alimentos

Perdida de sales vía heces

Pierden sales y poco agua a través de poca orina.

Pierde agua a través de branquias y piel

1. Beber agua de mar 2. Tienen menos y más pequeños glomérulos 3. Excretan sales a lo largo de la longitud de sus túbulos contorneados 4. Producir pequeña cantidad de orina muy concentrada (tan poco como 2,5 ml por kg de peso corporal por día)

Células cloruro

Page 12: Salmon atlántico expo

Casi todos los peces óseos marinos muestran una reducción en el número y tamaño de los glomérulos, que culminaron en algunas formas que han perdido glomérulos. Además de su capacidad para producir una orina altamente concentrada, tejidos especializados en la región branquial han evolucionado para excretar activamente grandes cantidades de sal.

Glomérulo: Los glomérulos de teleósteos marinos son pequeñas, poco vascularizado, y la presión arterial en los glomérulos es baja. Formas en que los glomérulos son pocos, pequeños, y degenerada se llaman pauciglomerular.

Algunas especies prosperan sin glomérulos en absoluto-se les llama aglomerular. Los ejemplos incluyen los guardiamarinas (género Porichthys) y el rape (Lophius género).

La región del cuello: Esta región se puede perder por completo, especialmente en el caso de las especies aglomerular.

En primer segmento proximal: Aquí, al igual que en los peces de agua dulce, hay reabsorción de macromoléculas tales como la glucosa y las proteínas.

Segundo Segmento Proximal: En lugar de la reabsorción activa de muchas sales como vimos en los peces de agua dulce, esta parte de la nefrona es un sitio de la secreción activa de sales, tales como Mg + +, SO4-, Ca + +, P, Na +, Cl-y HCO3 -. También es responsable de la secreción activa de la producción de residuos nitrogenados como la urea, la creatinina y creatina.

Page 13: Salmon atlántico expo

Segmento distal: Esta parte, que en formas de agua dulce está fuertemente ciliadas y ayuda a impulsar el fluido a lo largo del túbulo, está ausente en peces marinos. El requisito aquí es para minimizar el movimiento de fluido, de modo que haya tiempo para la cantidad máxima de difusión pasiva de agua de nuevo en la sangre.

Túbulo colector o conducto: participa reabsorción de algunos iones de Na + y Cl-.

Lo que queda es un pequeño volumen de orina altamente concentrada, que contiene creatinina, creatina, algo de urea y amoníaco, además de otros compuestos nitrogenados.

Pero el 90 por ciento de los productos de desechos nitrogenados, no se excreta por los riñones, sino que es eliminado por las agallas como amoníaco y urea.

Una vez más, al igual que en los peces de agua dulce, las branquias son muy importantes en el equilibrio iónico. Sólo los riñones no pueden eliminar todas las sales en exceso. Cualquier cosa que ellos no pueden manejar se excreta por las agallas, para que la mayor parte de los iones monovalentes, especialmente iones cloruro, pasan a través de las branquias.

Esto se hace por un proceso de transporte activo que tiene lugar en las células secretoras especiales llamados células cloruro aunque son responsables también de la secreción de otros iones. Estas células cloruros son ricas en mitocondrias, un sitio de gran actividad metabólica.

Page 14: Salmon atlántico expo

Orina ConcentradaOrina Diluida

Page 15: Salmon atlántico expo

Células Cloruro (PNA +).- son células grandes con abundante mitocondriasCélulas pavimento.- células pequeñas aplanadas que pueden tener abundantes mitocondrias (PNA-), o unas pocas.

Regulación de iones en las branquias está mediada por los dos tipos de células con abundantes mitocondrias.

Peces de agua dulce: debe obtener Na +, Ca2 + y otros iones del agua contra el gradiente electroquímico.

Las Células Pavimento ocupan Na + y las Células Cloruro importan Cl-

Peces de agua salada: deben evitar una excesiva absorción de iones y limitar la pérdida de agua Las Células Cloruro, son esenciales para excretar iones

Page 16: Salmon atlántico expo
Page 17: Salmon atlántico expo

Célula Cloruro

PCPC

activaactiva

pasivapasiva

Célula CloruroCélula Cloruro

Agua de MarAgua de Mar

internointernomitocondriamitocondria

Sistema tubularSistema tubular

NaNa++

KK++ NaNa+ + KK+ + ATPasaATPasa

NaNa++, , ClCl--

NaNa++

ClCl--

ClCl--

ClCl--ClCl--

IntestinoIntestino

TransporteTransporteBombaBomba

Célula pavimentoCélula pavimentoPCPC Célulasaccesorio

Page 18: Salmon atlántico expo
Page 19: Salmon atlántico expo

TEMPERATURA

Efectos generales

Bentley, P.J. 1998. Comparative vertebrate endocrinology. 3ª ed. Cambridge University Press,Cambridge. 526 págs.

Page 20: Salmon atlántico expo

Enzima

Sitio activoSitio activo

SustratoSustrato

(Tsukuda, 1975; Hochachka y Somero, 1977, 1984).

Capacidad, volumen y numero enzimático de las mitocondrias

TemperaturaTemperatura

los tamaños de las células del hígado y su núcleos (Campbell y Davis, 1978),

número de citocromos musculares (Sidell, 1977; Demin et al, 1989).

Afinidad de oxígeno

El ciclo del ácido tricarboxílico es inhibida y la oxidación se separa de la fosforilación.

Glucólisis, (oxaloacetato, piruvato, lactato)La hexosa monofosfato y derivaciones de fosfato de pentosaFosforilación oxidativa

Page 21: Salmon atlántico expo

Glicolíticas:

(fosfohectoquinasa, aldolasa, lactato deshidrogenasa) Derivación de la hexosa monofosfato:

(6-fosfogluconato deshidrogenasa)

Ciclo de Krebs y la Transferencia de electrones:

(succinato deshidrogenasa, malato deshidrogenasa, citocromo oxidasa, succinato de citocromo-c -reductasa, NADH citocromo-c-reductasa)

Síntesis de proteínas:

(aminoaciltransferasa) y Na + K +-ATPasa

Page 22: Salmon atlántico expo

Liza salmonete sp. aumenta el contenido de lípidos neutros en el músculo inhibiendo el catabolismo aeróbico (Soldatov, 1993).

la síntesis de lípidos neutros es mayor en peces adaptados al frío (Hochachka y Hayes, 1962); en medio ambiente más caliente , es mayo r la demanda de lípidos de la dieta (Gershanovich et al, 1991.).

Page 23: Salmon atlántico expo

Las proteínas contrácti les

Page 24: Salmon atlántico expo

colágeno

Page 25: Salmon atlántico expo

Los Lípidos

Page 26: Salmon atlántico expo

Las gl icoproteínas y otras sustancias

Page 27: Salmon atlántico expo

Preferencia de temperatura

Page 28: Salmon atlántico expo

SALINIDAD Equil ibrio mineral

Potts et al. (1970) identificaron componentes rápidos y lentos en la adaptación de smolts de salmón a los cambios de salinidad.

Chernitsky et al. (1993) la concentración de sodio interna de smolts, se elevó en 1 h, pero regresó ya adaptado en 1.5 h. "sistema de emergencia" de la extrusión o secuestro, de acuerdo a la salinidad externa.

Page 29: Salmon atlántico expo

Requerimientos de energía

La energía es suministrada por el ATP del metabolismo del glucógeno hepático, la actividad de ATPasa aumenta cuando los peces se transfieren desde el agua dulce a salada.

Transferencia de la trucha arco iris al agua de mar (Soengas et al, 1993) aumento la glucógeno fosforilasa y una disminuye la glucógeno sintetasa , así el nivel de glucógeno hepático desciende y el de glucosa en la sangre se eleva.

A 30 ppt, casi un tercio de la energía consumida se utiliza para osmoregulación (Farmer y Beamish, 1969; Rao, 1969).

el salmonete en una solución salina isotónica con sus propios fluidos internos, utiliza un mínimo de energía para la osmorregulación.

Los alevines de trucha arco iris se desarrollan mejor en agua dulce, el aumento de la salinidad sólo a 0-5% causa un aumento en lactato en condiciones aeróbicas y disminuye la concentración de glucosa en la sangre (Krumschnabel y Lackner, 1993), por lo que la ventaja de usar solución salina isotónica varía de acuerdo con la etapa de desarrollo.

Page 30: Salmon atlántico expo

Salinidad y Densidad

Page 31: Salmon atlántico expo

HormonasLa adrenalina, inhibe la excreción de sodio y cloruro en la trucha arco iris, pasada al agua de mar (Girard, 1976).

En juveniles de salmón coho, el estrés crónico provoca un aumento gradual en la concentración de prolactina circulante y un aumento más rápido en el cortisol, Avella et al. (1991) . El estrés agudo, aumentó sólo el nivel de cortisol. La prolactina es la hormona importante en la adaptación de los peces transferidos de agua salada a fresca.

El cortisol en peces transferidos de agua dulce a la marina (revisado por Johnson, 1973).

salmón rojo (sobrevivieron) de agua dulce a agua de mar incrementaron cortisol y los iones del plasma, pero luego bajaron a sus niveles normales.

En salmón que no logró adaptarse, el cortisol y las concentraciones iónicas se mantuvieron elevadas, los peces se deshidrataron y murieron.

Page 32: Salmon atlántico expo

El cambio del salmón de parr a smolt de agua dulce a el medio marino aumenta las hormonas tiroideas (Boeuf, 1987). La actividad de la tiroides en el agua del mar es mayor que en agua fresca.

Page 33: Salmon atlántico expo

Salinidad y Composición de Lípidos

Los lípidos del parr de salmón del Atlántico son típicos de peces de agua dulce , pero cambian el tipo en salmón adulto (marino), cuando la parr cambia a la forma de smolts, mientras esta todavía en el río, algunas características de los lípidos de peces de agua dulce se mantienen, Lovern (1934 ).

Peces de agua dulce los fosfolípidos dominantes fosfatidilcolina (saturado) , en agua de mar, la fosfatidil etanolamina (monoinsaturado). Este último podría modificar la permeabilidad a los iones.

De acuerdo con Hansen (1987), Sólo los ácidos grasos mono-insaturados están involucrados en la proliferación de las mitocondrias, células de cloruro son ricos en ellas. (Trucha arco iris: Hansen et al, 1995).

Page 34: Salmon atlántico expo

Los compuestos nitrogenados

Page 35: Salmon atlántico expo

NIVEL DE OXÍGENO

Page 36: Salmon atlántico expo

PRESIÓN Y DINAMISMO

Page 37: Salmon atlántico expo

ALIMENTOS Y FACTORES

RELACIONADOS

Page 38: Salmon atlántico expo

RIÑONGlomerulo: filtraciónTubo contorneado proximal: reabsorción de sales, agua y nutrientesAsa de Henle: concentra la orinaTubo contorneado distal: reabsorbe agua y salesTubo colector: concentra la orina

Page 39: Salmon atlántico expo

OSMORREGULADORESMantienen su concentración osmótica interna en un nivel constante, aun con cambios en el medio externo.

Page 40: Salmon atlántico expo

Peces Dulceacuicolas

Page 41: Salmon atlántico expo

HIPOOSMORREGULADORES

Problema: Hipoosmoticos con el medioSolución:

Transporte activo con control nervioso y endocrinoAdaptaciones morfologicas (piel altamente permeable)

Organos reguladoresGlomerulosTubos de MalpighiRiñon

Page 42: Salmon atlántico expo

Peces Marinos

Page 43: Salmon atlántico expo

PECES DIADROMOSNumerosos animales acuáticos presentan migraciones entre ambientes de diferente salinidad. Diádromos: peces que migran de diferentes medios osmóticos. Patrones de migraciones variados varias estrategias:

Anádromos: peces que pasan la mayor parte de su vida en el mar y migran al río para la reproducción (ejemplos: salmones, esturiones). Catádromos: peces que pasan la mayor parte de su vida en el río y migran al mar para la reproducción (ejemplo: robalos, anguilas). Anfídromos: peces que migran de mar a río o de río a mar durante algunas etapas de su vida no relacionado con la reproducción (ejemplos: Plecoglossus alltivelis, algunas especies de clupeidos).

Page 44: Salmon atlántico expo