Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using...

26
Saint-Venant Torsion Problem Finite Element Analysis of the Saint- Venant Torsion Problem Using ABAQUS

Transcript of Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using...

Page 1: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem

Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS

Page 2: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Overview

Saint-Venant Torsion Problem Fully Plastic Torsion ABAQUS Model Results

Page 3: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem Prismatic Bar Longitudinal Axis: 3-axis Cross Section: Closed Curve C

in the 1-2-plane

L

2

1

3

Page 4: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem Bar is in a State of Torsion No Tractions on the

Lateral Surface Rotation at x3=0 is 0 Relative Rotation

at x3=L is θLL

2

1

3

Page 5: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem Boundary Conditions

u1= u2= 0, σ33= 0 @ x3= 0

u1= -θLx2, u2= θLx1, σ33= 0 @ x3= L

Ti= σijnj= σiαnα= 0,

where n1= dx2/ds, n2= -dx1/ds

on C, 0<x3<L L

2

1

3

Page 6: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem Stress Assumptions

σ11= σ22= σ33= σ12= 0

→ τ1 and τ2 are the only non-zero stresses

Equilibrium Equations For α= 1,2 τα,3= 0 → τ1, τ2 ≠ f(x3)

τα,α= 0 → φ(x1, x2) τ1= φ,2 and τ2= φ,1

L

2

1

3

Page 7: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Saint-Venant Torsion Problem

L

2

1

3

Satisfy Boundary Conditions ταnα= φ,α dxα/ds|C= dφ/ds|C= 0

→ φ is Constant on C Torque, T

T= -∫A xαφ,α dA= ∫A φ dA

Page 8: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Fully Plastic Torsion

Equivalent to the Mathematical Problem|φ|= k in A φ = 0 on C

This Problem has a Unique Solution Denoted φp

φp(x1, x2)=k ∙ distance from (x1, x2) to C

Page 9: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Fully Plastic Torsion

Ridge Point(x1, x2) has More than One Nearest

Point on CPlastic Strain Rates Vanish

Ridge LinesLine Consisting of Ridge Points

Page 10: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Fully Plastic Torsion

Regular Polygons

Irregular Polygons

Page 11: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

ABAQUS Model3D Analytical Rigid

3D Deformable

Page 12: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

ABAQUS Model

Torsion: Imposed Boundary ConditionsFixed at OriginImpose Rotation about 3-axis

Fixed Plate

Rotated Plate

Page 13: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

ABAQUS Model

Bar Cross SectionsTriangle

Square

Circle

Rectangle

L

Square Tube

Page 14: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

ABAQUS Model

Material PropertiesSteel

Elastic-Isotropic Young’s Modulus: 210 GPa Poisson’s Ratio: 0.3

Plastic-Isotropic Yield Stress: 250 MPa

Page 15: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Triangle

Page 16: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Triangle

Page 17: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Square

Page 18: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Circle

Page 19: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Circle

Page 20: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Rectangle

Page 21: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: L

Page 22: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results: Square Tube

Page 23: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

Results

ABAQUS IssuesTime/Processing PowerBar Mesh Size

Page 24: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

A More Complicated Problem

Page 25: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.

References

[1] W. Wagner, F. Gruttmann, “Finite Element Analysis of Saint-Venant Torsion Problem with Exact Integration of the Elastic-Plastic Constitutive Equations,” Baustatik, Mitteilung 3, 1999.

[2] J. Lubliner, Plasticity Theory, New York: Macmillan Publishing Company, 1990.

[3] F. Alouges, A. Desimone, “Plastic Torsion and Related Problems,” Journal of Elasticity 55: 231–237, 1999.

Page 26: Saint-Venant Torsion Problem Finite Element Analysis of the Saint-Venant Torsion Problem Using ABAQUS.