SAB2513 Hydraulic Chapter 7

download SAB2513 Hydraulic Chapter 7

of 37

Transcript of SAB2513 Hydraulic Chapter 7

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    1/37

    1

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    2/37

    Introduction Water distribution network analysis provides the basis for the

    design of new systems and extension of existing systems.

    The design criteria are that specified minimum flow rates andpressure head~ must be attained at the outflow points of the

    network.

    The flow and pressure distributions across a network areaffected by the arrangements and sizes of the pipes and the

    distribution of outflows.

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    3/37

    The flow in any network, however complicated, must satisfythe basic relations of continuity and energy as follows:

    (a) The algebraic sum of flow rates in the pipes meeting at a

    junction is zero

    outin QQ

    Introduction

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    4/37

    (b) The flow in each pipe must satisfy the pipe-friction laws (Darcy-Weisbach, Hazen-William, etc) for flow in a single pipe.

    (c) The algebraic sum of the head losses in the pipe, around any closed loopformed by pipes, is zero

    0f

    h

    n

    fkQh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    5/37

    Hardy Cross Method

    2 solutions:(1) Balancing Head ----- Assume Q

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    6/37

    (2) Balancing Flow ----- Assume hf

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    7/37

    (i) At a junction:

    (ii) Equation for head loss due to friction, hf:

    (k and n values depend on the eqn used (Darcy-

    Weisbach, Hazen-William, etc)

    outin QQ

    n

    f kQh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    8/37

    (a) Darcy-Weisbach Eqn.

    (b) Blasius Eqn.

    g

    v

    d

    fLhf

    2

    42

    ,3

    2

    5Q

    d

    fL 2n

    ,1253

    75.1

    75.4Q

    dLhf ,

    125375.4

    dLk 75.1n

    53d

    fLk

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    9/37

    (c) Hazen-William Eqn.

    Where;

    CHW = Hazen-William roughness coef.

    (refer Table)

    85.1

    87.4

    67.10Q

    dC

    fLh

    HW

    f

    85.1n

    87.4

    67.10

    dC

    fLk

    HW

    Pipe Material CHWPlastic, PYC 150

    Asbestos Cement 140

    Welded Steel 120

    Riveted Steel 110Concrete 130

    Asphalted Iron -

    Galvanised Iron -

    Cast Iron (New) 130

    Cast Iron (Old) 100Corrugated Metal -

    Table: Hazen-Williams Coefficient,

    CHW for different types of pipe

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    10/37

    1. Balancing Head Method

    Applicable if the followings are known:

    (i) Pipe characteristics such as diameter (d), Length (L)

    and friction factor (f)

    (ii) Qin, Qout in the system

    Where discharges and pressure head are to be

    determined????

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    11/37

    Balancing Head Method

    Procedures:(i) Label the pipe network into close loops

    (ii) Assumed values of Q in each pipe, but make sure:

    at any junction: , where

    (iii) Depending on the head losses eqn. used, calculate

    hf for each pipe, i.e

    (Note: sign for hf follows the sign for Q)

    0Q outin QQ

    n

    f kQh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    12/37

    Balancing Head Method

    (iv) For any loop: 0f

    h

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    13/37

    Balancing Head Method

    Example:

    0 fh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    14/37

    Balancing Head Method

    (v) Calculate hf for each pipe in each loop (circuit)

    (vi) For each loop/circuit, calculate the value of

    (vii) Compute the error, Q:

    (Note: n = 2 for Darcy-Weisbach eqn. &

    n = 1.85 for Hazen-Williams eqn.)

    Q

    nhf

    Q

    nh

    hQ

    f

    f

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    15/37

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    16/37

    16

    Figure below shows layout of pipe network for a

    water supply system. Determine the flow rate in

    each pipe in the network by using Darcy-

    Weisbach approximations.

    (Note: assume that friction factor, f = 0.0025 for

    all pipes)

    Example

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    17/37

    17

    Pipe Network

    Pipe data

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    18/37

    Solution

    18

    - Initial assumption for values and directions of Q

    in each pipes- (Note: At a junction, Qin = Qout)

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    19/37

    Solution

    19

    Equations to be used:

    (i) Darcy-Weisbach eqn.

    (ii)

    (iii)

    Construct the Table!!!

    2

    53

    f

    fLh Q

    d

    Q

    hhQ

    f

    f

    2

    QQQ

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    20/37

    Solution

    20

    Loop Trial 1

    1

    pipe d(m) L(m) k=fL/3d5 Q1 hf=kQ12 2hf/Q1 Q1 Q= Q1+Q1

    AB 0.5 1000 26.666 0.2 1.0667 10.667 -0.0783 0.1217

    AC 0.75 1200 4.2140 -0.3 -0.3793 2.5284 -0.0783 -0.3783

    BC 0.5 1500 40.00 0.2 1.600 16.000 0.0581 0.2581

    Total, 2.2874 29.1951

    0783.01951.292874.2

    2

    1

    1

    Q

    hhQ

    f

    f

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    21/37

    Solution

    21

    Loop Trial 2

    2

    pipe d(m) L(m) k=fL/3d5 Q1 hf=kQ12 2hf/Q1 Q1 Q= Q1+Q1

    BC 0.5 1500 40.000 -0.2 -1.6000 16.000 -0.0581 -0.2581

    BD 0.25 1000 853.33 0.3 76.800 512.000 -0.1364 0.1636

    CD 0.5 700 18.667 -0.3 -1.6800 11.200 -0.1364 -0.4364

    Total, 73.52 539.2

    1364.02.539

    52.732

    1

    1

    Q

    hhQ

    f

    f

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    22/37

    Solution

    22

    Loop Trial 2

    1

    pipe d(m) L(m) k=fL/3d5 Q2 hf=kQ22 2hf/Q2 Q2 Q= Q2+Q2

    AB 0.5 1000 26.666 0.1217 0.3946 6.4880 -0.0810 0.0407

    AC 0.75 1200 4.2140 -0.3783 -0.6031 3.1883 -0.0810 -0.4593

    BC 0.5 1500 40.00 0.2581 2.6440 20.6440 -0.0283 0.2297

    Total, 2.4542 30.3164

    0810.03164.304542.2

    2

    2

    2

    Q

    hhQ

    f

    f

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    23/37

    Solution

    23

    Loop Trial 2

    2

    pipe d(m) L(m) k=fL/3d5 Q2 hf=kQ22 2hf/Q2 Q2 Q= Q2+Q2

    BC 0.5 1500 40.000 -0.2581 -2.6636 20.6440 0.0284 -0.2297

    BD 0.25 1000 853.33 0.1636 22.8534 279.2957 -0.0526 0.1110

    CD 0.5 700 18.667 -0.4364 -3.5550 16.2923 -0.0526 -0.4890

    Total, 16.6348 316.2320

    0526.02320.3166348.16

    2

    2

    2

    Q

    hhQ

    f

    f

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    24/37

    24

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    25/37

    Solution

    25

    - Result: (Check the continuity at every junction),

    Qin = Qout)

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    26/37

    2. Balancing Flow Method

    When pressure head at a point in pipe network is known.

    But the flow rates/discharges and pressure head at other

    points in the network are to be determined

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    27/37

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    28/37

    Balancing Head Method

    (iv) Calculate value for each pipe then determine

    the value of

    (v) For correction purposes, calculate:

    (vi) Recalculate the value of new head at J:

    (vii) Repeat the procedures until

    f

    f

    nh

    Q

    Q

    h

    fjj hHH

    fnh

    Q

    fnh

    Q

    0 fh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    29/37

    29

    Using Darcy-Weisbach approximations, computeand sketch the flow distribution in the pipe network

    below:

    Example 3

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    30/37

    Solution

    30

    Equations to be used:

    (i) hf= difference of level between reservoir and junction J

    (ii) Darcy-Weisbach eqn: where

    (iii)

    nf

    k

    hQ

    1

    2,

    35

    nd

    fLk

    f

    f

    nh

    Q

    Qh

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    31/37

    Solution

    31

    (iv)

    - Based on Principle of Flow

    10 m < Hj < 50 m

    - Assumption: Flow from A to B, C and D30 m < Hj < 50 m

    Assume Hj = 35 m

    Construct the Table!!!

    fjj hHH

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    32/37

    Solution

    32

    Trial 1

    Hj = 35 m

    pipe d(m) L(m) k=fL/3d5 hf1 Q1=(hf/k)1/2 Q1/(2hf1)

    AJ 0.6 500 10.7167 15 1.1813 0.0394

    BJ 0.3 1000 685.871 -5 -0.0584 0.0085

    CJ 0.3 1500 1028.806 -25 -0.1559 0.0031

    DJ 0.45 3000 270.9614 -15 -0.2353 0.0078

    Total, 0.7065 0.0589

    9884.110589.0

    7065.0

    1

    f

    h

    9884.46)9884.11(35 J

    H

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    33/37

    Solution

    33

    Trial 2

    Hj = 46.9884 m

    pipe d(m) L(m) k=fL/3d5 hf2 Q2=(hf2/k)1/2 Q2/(2hf2)

    AJ 0.6 500 10.7167 3.0116 0.5301 0.0880

    BJ 0.3 1000 685.871 -16.9884 -0.1574 0.0046

    CJ 0.3 1500 1028.806 -36.9984 -0.1898 0.0026

    DJ 0.45 3000 270.9614 -26.9884 -0.3156 0.0058

    Total, -0.1325 0.1011

    3110.11011.0

    )1325.0(

    2

    f

    h

    6774.453110.19884.46 JH

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    34/37

    Solution

    34

    - Results (from table): after 4 trials

    Check: At junction J:

    (OK) Hj = 45.56 m

    smQAJ /6436.03

    ,0Q

    3070.01856.01506.06436.0 Q

    smQBJ /1506.03

    smQCJ /1856.03

    smQDJ /3070.0

    3

    ,0Q

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    35/37

    Solution

    35

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    36/37

    36

  • 7/31/2019 SAB2513 Hydraulic Chapter 7

    37/37

    37

    The End