S2T01 Bergin Star and Planet Formation

25
Future Challenges Related to Star and Planet Formation Edwin Bergin University of Michigan

Transcript of S2T01 Bergin Star and Planet Formation

Future Challenges Related to Star and Planet Formation

Edwin Bergin University of Michigan

Molecules and Star/Planet Formation

• We - as a field - need to connect to exoplanets as the largest growth area in astrophysics.

• Two ways to accomplish this

➡Composition of giant planet atmospheres

➡Bulk/surface composition of terrestrial planets

• All relate to formation…..

• New capabilities: Space based submm/far-IR, expand VLA, enhance ALMA

!"#$%&'$()*+%#",-*).

Caveat: assuming some O in silicates but does not include organics (C-rich + O) and additional unidentified oxygen component

water snow line

CO2 snow line

CO snow line

Oberg, Murray-Clay, & Bergin 2011

Beyond our solar system: C/O Ratio

!"#$%&'$()*+%#",-*).

Inside water snow-line: volatiles in gas. C/O = (C/O)⊙ ~ 0.5

CO, CO2 in gas, water in ice Gas: C/O ~ 2/3

Ice: C/O << (C/O)⊙

C/O Ratio CO in gas, water, CO2 in ice Gas: C/O ~ 1

Ice: C/O < (C/O)⊙

water, CO, CO2 in ice Ice: C/O = (C/O)⊙

Oberg, Murray-Clay, & Bergin 2011

Need to isolate snow-lines of major condensibles:

water, ammonia, carbon monoxide, carbon dioxide, molecular nitrogen

Carbon

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISMd

ust

gas

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

Ber

gin

et a

l. 20

15

Carbon

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISMd

ust

gas

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4

Venu

s (B

S)

(Low

er L

imit)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

something happensto interstellar

carbonaceous grains

something happensduring planet formation

Ber

gin

et a

l. 20

15

Nitrogen

10-4

10-3

10-2

10-1

100

101

(N/S

i) A

tom

ic R

atio

810-5

2

4Ve

nus

(BS

)(L

ower

Lim

it)

ISM

Gas

Ear

th S

urfa

ce R

eser

voir

ISM

Dus

t(lo

wer

lim

it)

Terrestrial Planet/Asteroid Forming Zone

Comet Forming Zone ISM

10-5

10-4

10-3

10-2

10-1

100

101

(C/S

i) A

tom

ic R

atio

ISM

Gas

ISM

Dus

t(lo

wer

lim

it)

Ear

th

(BSE

)

Sun

enst

atit

e ch

ond

rite

s

ordinary chondrites

carb

ona

ceo

us

cho

ndri

tes

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

carb

ona

ceo

us

cho

ndri

tes

ord

inar

y ch

ond

rite

s

enst

atit

e ch

ond

rite

s

Ear

th

(BSE

)

Sun

comets

sun-grazing

Halley

dus

t

dus

t+g

as ISM

dus

t

gas

On the way to making the Earth there is a tale of successive depletion

of major elements - need to track origins and abundances of major carriers

Ber

gin

et a

l. 20

15

Locating Snow-Lines• Methods:

➡ Infer temperature profile and assume ice/vapor transition at sublimation temperature

HL Tau

➡ Indirect inference from unresolved data spanning a range of molecular excitation states

Spitzer (hot water) + Herschel (cold water)

➡Direct imaging

SMA, NOEMA, ALMA

Water and CO Snow-line

• H2O snow-line (Tdust ~150 - 200 K)

➡ close to the star (~1-3 AU)

➡ strongest transitions need space-based observation (e.g. Spitzer/Herschel)

➡ see Zhang+ 2013; Du+ 2015; Blevins+ 2015, in. prep.)

Oxygen in TW HyaDebes et al. 2013

Zhang et al. 2013

hot water

warm water

Zhang et al. 2013Hogerheijde et al. 2011

cold water

Water and CO Snow-line• H2O snow-line (Tdust ~150 - 200 K)

➡ close to the star (~1-3 AU)

➡ JWST cannot do this alone!! need access to cold transitions from space

➡OR!!!! could add dishes to ALMA to increase sensitivity —- ALMA 2.0 — resolve the most important chemical transition!

Water and CO Snow-line

• CO snow-line (Tdust ~ 20 - 40 K)

➡greater distances from star (tens of AU)

➡ can be resolved with ground-based telescopes

➡ numerous stable C and O isotopes to reduce optical depth (12C16O, 13C16O, 12C18O, 12C17O, 13C18O, 13C17O)

TW Hya CO Snow-line

-2-1012

-2

-1

0

1

2

Δα (″)

Δδ

(″)

N2H+ J = 4-3

-2-1012-2

-1

0

1

2

Δα (″)

Δδ

(″)

C18O J =3-2

N2H+ + CO ⇒ N2 + HCO+

50 AU

Qi+ 2013Schwarz+ 2015, in prep.

TW Hya CO Snow-line

-2-1012-2

-1

0

1

2

Δα (″)

Δδ

(″)

C18O J =3-2

13CO 6-5, 3-2, C18O 6-5, 3-2 & abundance analysis CO surface snow-line = 25 - 30 AU; midplane ~20 -25 AU

Schwarz+ 2015, in prep.

Protoplanetary Disk Gas Mass

• Linchpin for determination of chemical abundances

• Cannot trace H2 directly - need to use proxies

➡ thermal emission from dust grains at mm/sub-mm

➡ thermo-chemical modeling of CO gas emission

important question: If we measure abundance in emissive layers (excluding freeze out zone) - is it low gas mass or low abundance?

• Low CO/dust & CI/dust

(Chapillon+ 2008; Dutrey+ 2003; Tsukagoshi+2015; Kama+ 2015)

• Cold water emission survey - no detections beyond TW Hya and HD100546 (Hogerheijde+ 2011; Du et al., in prep.)

• C+ detected in 27% of 47 T Tauri stars (Dent et al. 2013)

• O I less emissive compared to continuum in 21 disks (Keane et al. 2014)

Missing C,O or H2?

Herschel Detection of HD towards TW Hya

➡HD is a million times more emissive than H2 at T ~ 20 K.

➡Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10-5)

➡More direct measurement of disk gas mass (~0.05 M⨀)

➡Caveat: strong T dependency

3.8

3.7

3.6

3.5

Flux

(Jy)

114113112Wavelength (µm)

HD J = 1-0

CO J = 23-22

4.2

4.0

3.8

3.6

3.4

Flux

(Jy)

57.056.556.0Wavelength (µm)

HD J = 2-1

OH 2Π1/2 9/2-7/2

Bergin et al. 2013

Surface CO Snow-line

freeze-out

snowline

warm mol. layer

TW Hya

13CO 6-5

13CO 3-2average

Schwarz et al. 2015, in prep.

Mass DistributionMenu small grainsMenu large grainsCleevesAndrews pCAndrews sC13CO 6-5 profile

0 10 20 30 40 50 60R (AU)

0

5

10

15

20

Σ w

arm

gas

(g c

m-2

)

Schwarz et al. 2015, in prep.

HD and C18O in TW Hya• Favre et al. 2013

➡Emission ratio FJ=2-1(C18O)/FJ=1-0(HD) is proportional to the CO abundance

➡ Excitation

-HD will not emit if Tgas < 20 K

-CO freezes onto grains if Tgr < 20 K

➡ CO Abundance < 10-5 (+ confirmed by ALMA observations - Schwarz et al. 2015, in prep.)

➡ Same result for water (Du et al. 2015).

Where is the O and C

0 100 200 300

50

100

150

Z(A

U)

a)

−24.0

−21.0

−18.0

−15.0

−12.0

ρ gas[g

cm−3]

0 100 200 300

50

100

150

b)

−24.0

−21.5

−19.0

−16.5

−14.0

ρ dust[g

cm−3]

0 100 200 300

50

100

150

c)

0.8

1.1

1.4

1.7

2.0

Tdust[K

]

0 100 200 300

R(AU)

50

100

150

Z(A

U)

d)

0.8

1.1

1.4

1.7

2.0

Tga

s[K

]

0 100 200 300

R(AU)

50

100

150

e)

101.0

102.5

104.0

105.5

107.0

FXR[phot/s/cm

2]

0 100 200 300

R(AU)

50

100

150

f)

103.0

105.0

107.0

109.0

1011.0

FUV(con

t)[phot/s/cm

2]

evaporation

(thermal/photo)

0 100 200 300

50

100

150

Z(A

U)

a)

−24.0

−21.0

−18.0

−15.0

−12.0

ρ gas[g

cm−3]

0 100 200 300

50

100

150

b)

−24.0

−21.5

−19.0

−16.5

−14.0ρ d

ust[g

cm−3]

0 100 200 300

50

100

150

c)

0.8

1.1

1.4

1.7

2.0

Tdust[K

]

0 100 200 300

R(AU)

50

100

150

Z(A

U)

d)

0.8

1.1

1.4

1.7

2.0

Tga

s[K

]

0 100 200 300

R(AU)

50

100

150

e)

101.0

102.5

104.0

105.5

107.0

FXR[phot/s/cm

2]

0 100 200 300

R(AU)

50

100

150

f)

103.0

105.0

107.0

109.0

1011.0

FUV(con

t)[phot/s/cm

2]

Possible Mechanism• radial + vertical

pressure gradients

• dust settling + growth + radial drift

• sequesters volatiles in midplane (more water than CO)

• particles must be large enough to frustrate feedback Du+ 2015; but see Chapillon+ 2008

Evidence for Radial DriftCO 3-2

Andrews 2015Consequences:

1.Dust mass and surface density concentrated vertically and radially

2. Ices must follow 3. What about larger grains - expanded VLA!

We are tracking the implantation of ices that seed terrestrial worlds!

What about Nitrogen?

• Trace N2 via N2H+ - cannot measure inside CO snow-line!

•Cannot get NH3 - we will NOT know what is going on with N

• emission is very weak — need expanded VLA

Salinas et al. 2015, in prep.

Summary• Far-IR/Space:

➡ Survey of HD emission in disks using a sensitive Far-IR telescope is central to science case for a future instrument

➡ Could survey hundreds of systems and obtain real statistics.

• Expanded VLA:

➡ ONLY way to set any constraints on nitrogen - the 5th most abundant element, a key biogenic element, major constituent of our atmosphere

➡ needed to probe dust evolution

• ALMA 2.0

➡ Could resolve water snowline - most important chemical/physical transition in the disk