S uper WIMP Dark matter

13
SuperWIMP Dark matter Shufang Su • U. of Shufang Su • U. of Arizona Arizona J. Feng, F. Takayama, S. Su Hep-ph/0404198 Gravitino from Slepton and Sneutrino Decays

description

S uper WIMP Dark matter. Gravitino from Slepton and Sneutrino Decays. Shufang Su • U. of Arizona. J. Feng, F. Takayama, S. Su Hep-ph/0404198. Outline. -. SWIMP dark matter and gravitino LSP Late time energy injection and BBN Slepton and sneutrino NLSP - PowerPoint PPT Presentation

Transcript of S uper WIMP Dark matter

Page 1: S uper WIMP  Dark matter

SuperWIMP Dark matterSuperWIMP Dark matter

Shufang Su • U. of ArizonaShufang Su • U. of ArizonaShufang Su • U. of ArizonaShufang Su • U. of Arizona

J. Feng, F. Takayama, S. SuHep-ph/0404198

Gravitino from Slepton and Sneutrino Decays

Gravitino from Slepton and Sneutrino Decays

Page 2: S uper WIMP  Dark matter

S. Su SWIMP 2

Outline Outline

SWIMP dark matter and SWIMP dark matter and gravitino LSPgravitino LSP

Late time energy injection and BBN Late time energy injection and BBN

Slepton Slepton and sneutrino and sneutrino NLSPNLSP– Dominant two body EM decay Dominant two body EM decay l l !! l+G l+G– Subdominant 3-body hadronic decaySubdominant 3-body hadronic decay– Viable parameter spaceViable parameter space

ConclusionConclusion

~~

Page 3: S uper WIMP  Dark matter

S. Su SWIMP 3

Why gravitino not considered as CDM usually?

Why gravitino not considered as CDM usually?

ththGG vv-1-1 ( (gravitional gravitional coupling)coupling)-2 -2

(comparig to WIMP of (comparig to WIMP of weakweak coupling strength) coupling strength)

● vv too smalltoo small

● ththGG too big, overclose the Universe too big, overclose the Universe

~~

~~

However, gravitino can get relic density by other However, gravitino can get relic density by other meansmeans

SuperWIMPSuperWIMP

Page 4: S uper WIMP  Dark matter

S. Su SWIMP 4

WIMPWIMP

SWIMPSWIMPSMSM

101066

WIMP SWIMP + SM particle WIMP SWIMP + SM particle

FRT hep-ph/0302215, 0306024

101044 s s t t 10 1088 s s

Gravitino LSPGravitino LSP

LKK gravitonLKK graviton

Page 5: S uper WIMP  Dark matter

S. Su SWIMP 5

SWIMP and SUSY WIMP SWIMP and SUSY WIMP

SUSY caseSUSY case

NLSP NLSP G + SM particles G + SM particles~~

SWIMP: G (LSP) WIMP: NLSP SWIMP: G (LSP) WIMP: NLSP mmGG»» m mNLSPNLSP~~

Neutralino/Chargino Neutralino/Chargino NLSPNLSP

Slepton NLSP Slepton NLSP

BBNBBNEMEM

hadhad

BrBrhadhad O(0.01) O(0.01) BrBrhadhad O(10 O(10-3-3))

101044 s s t t 10 1088 s s

Ellis et. al., hep-ph/0312262

~~

Page 6: S uper WIMP  Dark matter

S. Su SWIMP 6

Different approach to gravitino superWIMP Different approach to gravitino superWIMP

NLSP NLSP G + SM particles G + SM particles~~

my talkmy talk Takayama’s talkTakayama’s talk

SWIMPSWIMP close universe close universe SWIMPSWIMP maybe maybe insiginificantinsiginificant

nnNLSPNLSP NLSPNLSP/m/mNLSPNLSP

1/m1/mSUSYSUSY

ththNLSPNLSP vv-1-1 m m22

SUSYSUSY

nnNLSPNLSP m mSUSYSUSY

NLSP: slepton,sneutrinoNLSP: slepton,sneutrino NLSP: slepton, NLSP: slepton, sneutrino, sneutrino,

neutralinoneutralino

fix fix SWIMP SWIMP = 0.23= 0.23 SWIMP SWIMP = m= mGG/m/mNLSP NLSP thth

NLSPNLSP~~

Page 7: S uper WIMP  Dark matter

S. Su SWIMP 7

Late time energy injection and BBN Late time energy injection and BBN

Fields, Sarkar, PDG (2002)

10-10 = 6.1 0.4

?? EM,hadEM,had==EM,hadEM,had B BEM,hadEM,had Y YNLSPNLSPEM, had energy injection:EM, had energy injection:

» » mmNLSPNLSP-m-mGG

Page 8: S uper WIMP  Dark matter

S. Su SWIMP 8

EM and Had BBN constraints EM and Had BBN constraints

Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003)

Kawasaki, Kohri and Moroi,astro-ph/0402490

EM BBN constraintsEM BBN constraints had BBN constraintshad BBN constraints EM BBNEM BBN

Page 9: S uper WIMP  Dark matter

S. Su SWIMP 9

Slepton NLSP lifetime and EM injection

Slepton NLSP lifetime and EM injection

Decay lifetime Decay lifetime (sec)(sec)

l l G + l G + l, , !! G + G + ~~ ~~~~~~

EM energy injection EM energy injection EM EM (GeV)(GeV)

Page 10: S uper WIMP  Dark matter

S. Su SWIMP 10

Hadronic decay branching ratio Hadronic decay branching ratio

l l lZlZGG,,WGWG , , !! ZG, lWGZG, lWG~~ ~~~~~~ ~~ ~~

meson contribution

mNLSP

Page 11: S uper WIMP  Dark matter

S. Su SWIMP 12

Viable Parameter space Viable Parameter space

negligible EM BBN constraintsnegligible EM BBN constraints

200 GeV 200 GeV ·· m m ·· 400 400 »» 1500 GeV 1500 GeVmmGG ¸̧ 200 GeV 200 GeV

m m ·· 80 80 »» 300 GeV 300 GeV~~

Page 12: S uper WIMP  Dark matter

S. Su SWIMP 13

ConclusionsConclusions

SSuperuperWIMP is possible candidate for dark matterWIMP is possible candidate for dark matter

SUSY models: gravitino LSP (SWIMP) slepton NLSP (WIMP)SUSY models: gravitino LSP (SWIMP) slepton NLSP (WIMP)

Constraints from BBN: EM injection and hadronic injectionConstraints from BBN: EM injection and hadronic injection

need updated studies of BBN constraints on hadronic/EM injectionneed updated studies of BBN constraints on hadronic/EM injection

Favored mass region: (enlarged if Favored mass region: (enlarged if SWIMPSWIMP<0.23)<0.23)

Sneutrino:Sneutrino: m m 880-0-3300 GeV00 GeV m m 100 GeV 100 GeV

Charged Charged RR:: 200 GeV 200 GeV ·· m m ·· 1500 GeV, m 1500 GeV, mGG ¸̧ 200 GeV 200 GeV

500 GeV 500 GeV m mRR

• Rich collider phenomenologyRich collider phenomenology (no direct/indirect DM signal)(no direct/indirect DM signal) Charged slepton:Charged slepton: highly ionizing trackhighly ionizing track Sneutrino:Sneutrino: missing energymissing energy

~~

~~

~~

~~

~~

Page 13: S uper WIMP  Dark matter

S. Su SWIMP 14

NLSPNLSP

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

SMSM

● Decay life time Decay life time m mplpl

● SM energy distributionSM energy distribution

mmGG

SUSY breaking scaleSUSY breaking scale

~~