S udden Stratospheric Warming Effects

18
S S udden udden Stratospheric Warming Stratospheric Warming Effects Effects M M . . V V . . Klimenko Klimenko , , V V . . V V . . Klimenko Klimenko , , F F . . S S . . Bessarab Bessarab , , Yu Yu . . N N . . Koren’kov Koren’kov WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, [email protected]

description

S udden Stratospheric Warming Effects. M . V . Klimenko , V . V . Klimenko , F . S . Bessarab , Yu . N . Koren’kov. WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, maksim . klimenko @ mail . ru. - PowerPoint PPT Presentation

Transcript of S udden Stratospheric Warming Effects

Page 1: S udden  Stratospheric Warming  Effects

SSudden udden Stratospheric Warming Stratospheric Warming

EffectsEffects MM..VV. . KlimenkoKlimenko, , VV..VV. . KlimenkoKlimenko, , FF..SS. . BessarabBessarab, ,

YuYu..NN. . Koren’kovKoren’kov

WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, WD Pushkov IZMIRAN, RAS, Kaliningrad, Russia, [email protected]

Page 2: S udden  Stratospheric Warming  Effects

• SSW is a dramatic, large scale meteorological process in the winter middle atmosphere which involves profound changes of temperature and circulation. SSW can last for several days or weeks.

• A stratospheric warming is identified as major if at height of 30 km (10 mbar) or below, the zonal mean temperature increases poleward from ~60o latitude and an associated circulation reversal (breakdown of the polar vortex) are observed.

• Minor warmings may reach comparable intensities (i.e., high temperatures), but do not lead to a breakdown of the circulation as is defined above.

Sudden Stratospheric Warming is the example Sudden Stratospheric Warming is the example of the links between low- and middle-of the links between low- and middle-

atmosphere and ionosphereatmosphere and ionosphere

Page 3: S udden  Stratospheric Warming  Effects

Goncharenko et al, GRL 2010

Chau et al, JGR 2010

Recent Model resultsRecent Model resultsWhole Atmospheric Model (WAM) (0 – 600 км )Fuller-Rowell et al., 2011, 2010.

Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model(TIMEGCM) (30 – 600 км)Liu et al., 2002, 2005, 2010; Yamashita et al., 2010

Observed data

Model simulations

Page 4: S udden  Stratospheric Warming  Effects

Pancheva and Mukhtarov., 2011

Day Number (start 1 October 2007) Day Number (start 1 October 2008)

Page 5: S udden  Stratospheric Warming  Effects

Model GSM TIP Brief Description

Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was developed in West Department of IZMIRAN. The model GSM TIP was described in details in Namgaladze et al., 1988.

Thermospheric parameters:Tn, O2, N2, O, NO, N(4S),N(2D) densities; vector of velocities;

(from 80 km to 500 km)

Ionospheric parameters:O+, H+, Mol+ densities;

Ti and Te; Vectors of ion velocities

(from 80 km to 15 Earth radii)

Electric field:The model is added by the new block of electric field calculation Klimenko

et al., 2006, 2007.

Page 6: S udden  Stratospheric Warming  Effects

SSW-2009• Westward winds slowed

down and reversed direction. Major SSW event.

• Large and long lasting temperature increase.

• Low solar activity and quiet geomagnetic conditions.

• 11 days coverage with ISR measurements of the drifts and densities, and mesospheric dynamics.

January, 23 max Tn effect

January, 27 max dynamical

effect

Page 7: S udden  Stratospheric Warming  Effects

The neutral temperature disturbances The neutral temperature disturbances at lower boundary of GSM TIP model at lower boundary of GSM TIP model (80 (80 км км ).).

First SSW scenario for 2009First SSW scenario for 2009

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K h = 8 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

175

180

185

190

195

200

205

210

215

220

225

230

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K h = 8 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itude

(de

g)

-20

-10

0

10

20

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K h = 8 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

175

180

185

190

195

200

205

210

215

220

225

230

COMMA-LIM model (Fröhlich et al., 2003).

Quasi-stationary PW with zonal wave number s = 1.

Observation data• Incoherent scatter radar (ISR) electron density

and temperature measurements from the Irkutsk,

• as well as ionosonde data of

– Yakutsk (62.2° N, 162.6° E)

– Irkutsk (52.2° N, 104.0° E),

– Kaliningrad (54.7° N, 20.6° E),

– Jicamarca (12.0° S, 76.9° W) ,

– and St. Johns (STJ) (23.2° S, 45.9° W)

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4

D a y s o f 2 0 0 9 th Y e a r

-1 5

-1 0

-5

0

5

1 0

Tn,

%

h = 9 6 k mh = 7 6 k m

h = 3 1 k m

Page 8: S udden  Stratospheric Warming  Effects

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

fo F 2 , M H z 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

1

2

3

4

5

6

7

8

9

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

fo F 2 , M H z 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

foF2 before SSW-event foF2 (Jan 27 – Jan 15)

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K L a t = 6 0 2 4 :0 0 U T

1 0 0

2 0 0

3 0 0

Alti

tude

(km

)

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K L a t = 6 0 2 4 :0 0 U T

1 0 0

2 0 0

3 0 0

Alti

tude

(km

)

-25

-20

-15

-10

-5

0

5

10

15

20

25

Heating due to wave energy dissipation

Ti disturbances over Millstone Hill(Goncharenko and Zhang, 2008)

Page 9: S udden  Stratospheric Warming  Effects

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

T n , K h = 3 0 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

n (O )/n (N 2 ), % h = 3 0 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

E zo n , m V /m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

L o n g itu d e (d eg )

n (N 2 ), 1 .e7 cm -3 h = 3 0 0 k m 2 4 :0 0 U T

-9 0

-6 0

-3 0

0

3 0

6 0

9 0

Lat

itud

e (d

eg)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Page 10: S udden  Stratospheric Warming  Effects

2

3

4

5

6

foF

2, M

Hz

1 7 .0 1 1 8 .0 1 1 9 .0 1 2 0 .0 1 2 1 .0 1 2 2 .0 1 2 3 .0 1 2 4 .0 1 2 5 .0 1 2 6 .0 1 2 7 .0 1 2 8 .0 1 2 9 .0 1 3 0 .0 1

Y ak u tsk (= 6 2 .0 °N , = 1 2 9 .6 °E ; = , =

2

3

4

5

6

foF

2, M

Hz

1 7 .0 1 1 8 .0 1 1 9 .0 1 2 0 .0 1 2 1 .0 1 2 2 .0 1 2 3 .0 1 2 4 .0 1 2 5 .0 1 2 6 .0 1 2 7 .0 1 2 8 .0 1 2 9 .0 1 3 0 .0 1

Irk u tsk (= 5 2 .2 N , = 1 0 4 .1 E ; = 4 0 .9 , = 1 7 5 .1 0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T , h

1

2

3

4

5

foF

2, M

Hz

Y a k u tsk

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T , h

2

3

4

5

6

foF

2, M

Hz

Irk u tsk

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T , h

1

2

3

4

5

6

foF

2, M

Hz

K alin in g ra d

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T , h

2

3

4

5

6

7

8

9

1 0

foF

2, M

Hz

S JC

2

4

6

8

10

12

foF

2, M

Hz

1 7 .0 1 1 8 .0 1 1 9 .0 1 2 0 .0 1 2 1 .0 1 2 2 .0 1 2 3 .0 1 2 4 .0 1 2 5 .0 1 2 6 .0 1 2 7 .0 1 2 8 .0 1 2 9 .0 1 3 0 .0 1

S JC A (= 2 3 .2 S , = 4 5 .9 W ; = -1 2 .7 , = 2 2 .4

2

3

4

5

6

foF

2, M

Hz

1 7 .0 1 1 8 .0 1 1 9 .0 1 2 0 .0 1 2 1 .0 1 2 2 .0 1 2 3 .0 1 2 4 .0 1 2 5 .0 1 2 6 .0 1 2 7 .0 1 2 8 .0 1 2 9 .0 1 3 0 .0 1

K a lin in g rad (= 5 4 .6 N , = 2 0 .2 E ; = 5 3 .0 , = 1 0 5 .5 Io n o so n d e

Tn in stratosphere 60-90N

SSW peak SSW min

Page 11: S udden  Stratospheric Warming  Effects

Summary (1)• Using the presented approach allows to reproduce the

observed perturbations of the neutral temperature in MLT region above Irkutsk and global negative ionospheric disturbances during 2008 and 2009 SSW events

• Model calculations allowed to explain the observed global negative ionospheric disturbances during SSW events

• Morning SSW positive effects in the electron density at low latitudes which have recently been discussed by Goncharenko et al. (2010), Chau et al. (2011), Fejer et al. (2011) are absent in our simulation results.

• A more realistic description of neutral atmosphere parameters at altitudes of the mesopause region (lower boundary of the GSM TIP model) has to be used in order to reproduce the observed positive ionospheric disturbances at low latitudes during stratospheric warming events.

Page 12: S udden  Stratospheric Warming  Effects

Another Scenario For 2009 SSW

SOCOL SOCOL SOSOlarlar--CClimatelimate--OOzone zone LLinks modelinks model

horizontal resolution: 3.75°vertical resolution: 39 levels to 0.01 hPa

Winds and temperature, 41 chemical species

GSM TIPGSM TIPGlobal Self-consistent Model of the

Thermosphere, Ionosphere and ProtonosphereTn, O2, N2, O, NO, N(4S),N(2D) densities; vectors of velocities

(from 80 km to 500 km)O+, H+, Mol+ densities; Ti and Te; ion velocities

(from 80 km to 15 Earth radii)Electric field

GSM TIPGSM TIPGlobal Self-consistent Model of the

Thermosphere, Ionosphere and ProtonosphereTn, O2, N2, O, NO, N(4S),N(2D) densities; vectors of velocities

(from 80 km to 500 km)O+, H+, Mol+ densities; Ti and Te; ion velocities

(from 80 km to 15 Earth radii)Electric field

ThermospheicThermospheicoutput at 80 kmoutput at 80 km

ECMWFECMWF data for data for SSW 2009 event SSW 2009 event

TIME-GCM modelTIME-GCM model

Output at 30 kmOutput at 30 km

ThermospheicThermospheicoutput at 80 kmoutput at 80 km

Page 13: S udden  Stratospheric Warming  Effects

0 30 60 90 120 150 180 210 240 270 300 330 360

Longitude (deg)

Tn (K ) h = 80 km 24:00 UT 15.01.2009

-90-75-60-45-30-15

0153045607590

Latit

ude

(deg

)

150

155

160

165

170

175

180

185

190

195

200

205

210

Tn (Jan,21 – Jan, 15) on 60N foF2 (Jan,21 – Jan, 15) on 60N

0 30 60 90 120 150 180 210 240 270 300 330 360

Longitude (deg)

Tn (K ) h = 80 km 24:00 UT 21.01.2009

-90-75-60-45-30-15

0153045607590

Latit

ude

(deg

)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

cooling of the north polar cap

Page 14: S udden  Stratospheric Warming  Effects

ECMWF + TIME-GCM +ECMWF + TIME-GCM + GSM TIPGSM TIP

-180 -120 -60 0 60 120 180

Longitude, deg

delta TEC Jan 25 vs Jan 15 24:00 U T

-50

-40

-30

-20

-10

0

10

20

30

40

50

Latit

ude,

deg

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

-180 -120 -60 0 60 120 180

Longitude, deg

delta TEC Jan 25 vs Jan 15 24:00 UT

-50

-40

-30

-20

-10

0

10

20

30

40

50

Latit

ude,

deg

-1-0.8-0.6-0.4-0.200.20.40.60.811.21.41.61.8

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T , h

T E C , T E C U Jan 2 5 v s Jan 1 5 ( = 7 5 W )

-4 0

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

Lat

itude

, deg

-1 .2

-1 .0

-0 .8

-0 .6

-0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2L T (h ) 1 9 2 2 0 1 0 4 0 7 1 0 1 3 1 6 1 9

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T , h

T E C , T E C U Jan 2 5 v s Jan 1 5 ( = 7 5 W )

-4 0

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

Lat

itud

e, d

eg

-1 2

-1 0

-8

-6

-4

-2

0

2

4

6

8

1 0

1 2L T (h ) 1 9 2 2 0 1 0 4 0 7 1 0 1 3 1 6 1 9

IGS GPS TECIGS GPS TECGPS TECGPS TEC

Page 15: S udden  Stratospheric Warming  Effects

Summary (2)

• Mesospheric effects of SSW, as well as thermospheric and ionospheric effects simulated with GSM TIP, obtained in the second scenario are smaller than that in the first scenario.

• The choice of a method for calculating the mean (background) values is important for interpreting the observed data.

• Although a new scenario of SSW-2009 event qualitatively reproduces an increase in foF2 in a near-equatorial area, but observed magnitudes are much higher.

• Is it possible to reproduce so big ionospheric disturbances at low latitudes using GSM TIP model?

Page 16: S udden  Stratospheric Warming  Effects

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

E zo n (m V /m ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

-2-1 .8-1 .6-1 .4-1 .2-1-0 .8-0 .6-0 .4-0 .200 .20 .40 .60 .811 .21 .41 .61 .82

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

E zo n (m V /m ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

-2-1 .8-1 .6-1 .4-1 .2-1-0 .8-0 .6-0 .4-0 .200 .20 .40 .60 .811 .21 .41 .61 .82

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

d e lta E zo n (m V /m ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

-1 .4

-1 .2

-1 .0

-0 .8

-0 .6

-0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

-1

0

1

Ezo

n (m

V/m

)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

TEC

(T

EC

U)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

-1

0

1

Ezo

n (m

V/m

)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

3

4

5

6

foF

(M

Hz)

Jicamarca, Peru Jicamarca, Peru 11.9°S, 76.0°W; -0.6°, 353.9°11.9°S, 76.0°W; -0.6°, 353.9°

Porto Alegre, Brazil Porto Alegre, Brazil 30.1°S, 51.1°W30.1°S, 51.1°W; ; -19.2°-19.2°,, 17.1° 17.1°

Qaanaaq, GreenlandQaanaaq, Greenland 77.5°N, 69.1°W: 77.5°N, 69.1°W: 88.9°88.9°,, 6.7° 6.7°

Millstone Hill, MA, USA Millstone Hill, MA, USA 42.642.6°°N, 71.5N, 71.5°°W; W; 54.1°54.1°,, 357.0° 357.0°

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

-2

-1

0

1

2

Ezo

n (m

V/m

)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

1

2

3

4

foF

(M

Hz)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

-4 0

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

Ezo

n (m

V/m

)

0 3 6 9 1 2 1 5 1 8 2 1 2 4U T (h )

1 .6

1 .8

2

2 .2

2 .4

2 .6

2 .8

foF

(M

Hz)

Newest simulation obtained using Newest simulation obtained using GSM TIP model with taken into GSM TIP model with taken into account observed account observed EE × × BB vertical vertical plasma drift (zonal electric field) plasma drift (zonal electric field)

over the Jicamarca, Peru over the Jicamarca, Peru during SSW 2009 eventduring SSW 2009 event

delta delta EEvonal on 25 January 2009vonal on 25 January 2009

EEvonal on 15 January 2009 vonal on 15 January 2009 E Ezonal on 25 January 2009zonal on 25 January 2009

Page 17: S udden  Stratospheric Warming  Effects

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

T E C (T E C U ) 1 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

T E C (T E C U ) 1 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

T E C (T E C U ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

d e lta T E C (T E C U ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itude

(de

g)

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

T E C (T E C U ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itude

(de

g)

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

0 3 6 9 1 2 1 5 1 8 2 1 2 4

U T (h )

d e lta T E C (T E C U ) 2 5 .0 9 .2 0 0 9 7 5 W

-3 0

-1 5

0

1 5

3 0

Lat

itud

e (d

eg)

-1 2-11-1 0-9-8-7-6-5-4-3-2-1012345

TECTEC and it disturbances obtained using GSM TIP model and it disturbances obtained using GSM TIP model with observed with observed EE × × BB vertical drift and GPS vertical drift and GPS TECTEC data data

GSM TIP on 15 January 2009 GSM TIP on 25 January 2009 delta GSM TIP on 25 January 2009GSM TIP on 15 January 2009 GSM TIP on 25 January 2009 delta GSM TIP on 25 January 2009

GPS GPS TECTEC on 15 January 2009 GPS on 15 January 2009 GPS TECTEC on 25 January 2009 delta GPS on 25 January 2009 delta GPS TECTEC on 25 January 2009 on 25 January 2009

Page 18: S udden  Stratospheric Warming  Effects

Modulation of GW by PW Hoffmann, Jacobi (2010)

MetO temperature data (red line), SABER (green lines) and the modulation of GW potential energy (blue lines).

dTEC (thick black line) indicate the possible ionospheric response to the waves coming from below

Acknowledgments.Acknowledgments. The authors express their sincere thanks to Hanli Liu, Eugen Rozanov, Larisa The authors express their sincere thanks to Hanli Liu, Eugen Rozanov, Larisa Goncharenko, Marina Chernigovskaya, for the fruitful cooperation, providing the data and Goncharenko, Marina Chernigovskaya, for the fruitful cooperation, providing the data and making the experimental data available. making the experimental data available.

These investigations were supported These investigations were supported by RFBR Grant No. 12-05-31217 and RAS Program 22.by RFBR Grant No. 12-05-31217 and RAS Program 22.