Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and...

41
Introduction Properties Pros and Cons Examples References Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University April 25th, 2012

Transcript of Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and...

Page 1: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Runge Kutta Chebyshev Method forparabolic PDEs

Zheng ChenBrown UniversityApril 25th, 2012

Page 2: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Overview

1 Introduction

2 PropertiesConsistency conditionsStability PropertiesIntegration formula

3 Pros and Cons

4 Examples

5 References

Page 3: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

initial value problem for the ODE systems:

u̇(t) = F(t,u(t)), 0 < t 6 T , u(0) = u0 (1)

which originate from spatial discretization of parabolic PDEs.Restrictions:

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex plane

Jacobian matrix should not deviate too much from anormal matrix.

Example:

model heat equation

u̇(t) = ∆u (2)

reaction-diffusion problem

u̇(t) = ε∆u+ f(u, x, t), 0 < ε� 1 (3)

Page 4: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

initial value problem for the ODE systems:

u̇(t) = F(t,u(t)), 0 < t 6 T , u(0) = u0 (1)

which originate from spatial discretization of parabolic PDEs.Restrictions:

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Example:

model heat equation

u̇(t) = ∆u (2)

reaction-diffusion problem

u̇(t) = ε∆u+ f(u, x, t), 0 < ε� 1 (3)

Page 5: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

initial value problem for the ODE systems:

u̇(t) = F(t,u(t)), 0 < t 6 T , u(0) = u0 (1)

which originate from spatial discretization of parabolic PDEs.Restrictions:

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Example:model heat equation

u̇(t) = ∆u (2)

reaction-diffusion problem

u̇(t) = ε∆u+ f(u, x, t), 0 < ε� 1 (3)

Page 6: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

initial value problem for the ODE systems:

u̇(t) = F(t,u(t)), 0 < t 6 T , u(0) = u0 (1)

which originate from spatial discretization of parabolic PDEs.Restrictions:

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Example:model heat equation

u̇(t) = ∆u (2)

reaction-diffusion problem

u̇(t) = ε∆u+ f(u, x, t), 0 < ε� 1 (3)

Page 7: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

Stiff problems:standard explicit RK methods:easy application, restrictive time-step for stability

implicit RK methods:expensive to implement, unconditionally stableRKC methods:explicit, considerable time-step restrictionextended real stability interval with a length β ∝ s2

Page 8: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

Stiff problems:standard explicit RK methods:easy application, restrictive time-step for stabilityimplicit RK methods:expensive to implement, unconditionally stable

RKC methods:explicit, considerable time-step restrictionextended real stability interval with a length β ∝ s2

Page 9: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Introduction

Stiff problems:standard explicit RK methods:easy application, restrictive time-step for stabilityimplicit RK methods:expensive to implement, unconditionally stableRKC methods:explicit, considerable time-step restrictionextended real stability interval with a length β ∝ s2

Page 10: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

RKC formula

Y0 = Un, (4)Y1 = Y0 + µ̃1τF0, (5)Yj = µjYj−1 + νjYj−2 + (1 − µj − νj)Y0 (6)

+ µ̃jτFj−1 + γ̃jτF0 (2 6 j 6 s), (7)Un+1 = Ys, n = 0, 1, . . . , (8)

This can be rewritten in the standard RK form:

Yj = Un + τ

j−1∑l=0

ajlF(tn + clτ, Yl), (0 6 j 6 s) (9)

where Fj = F(tn + cjτ, Yj), cj are defined by:

c0 = 0, (10)c1 = µ̃1, (11)cj = µjcj−1 + νjcj−2 + µ̃j + γ̃j, (2 6 j 6 s) (12)

Page 11: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Outline

1 Introduction

2 PropertiesConsistency conditionsStability PropertiesIntegration formula

3 Pros and Cons

4 Examples

5 References

Page 12: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Consistency conditions

Suppose Un = U(tn), where U(t), t > tn is a sufficientlysmooth solution. All Yj satisfy an expansion

Yj = U(tn) + cjτU̇(tn) + Xjτ2U(2)(tn) +O(τ

3) (13)

Substitute this into the RKC formula, we have

X0 = X1 = 0, (14)Xj = µjXj−1 + νjXj−2 + µ̃jcj−1 (2 6 j 6 s) (15)

Page 13: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Consistency conditions

consistent of order 1: if

cs = 1. (16)

consistent of order 2: if

c22 = 2µ̃2c1, (17)

c23 = µ3c

22 + 2µ̃2c2, (18)

c2j = µjc

2j−1 + νjc

2j−2 + 2µ̃jcj−1 (4 6 j 6 s) (19)

Page 14: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Consistency conditions

consistent of order 1: if

cs = 1. (16)

consistent of order 2: if

c22 = 2µ̃2c1, (17)

c23 = µ3c

22 + 2µ̃2c2, (18)

c2j = µjc

2j−1 + νjc

2j−2 + 2µ̃jcj−1 (4 6 j 6 s) (19)

Page 15: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Outline

1 Introduction

2 PropertiesConsistency conditionsStability PropertiesIntegration formula

3 Pros and Cons

4 Examples

5 References

Page 16: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability function

Scalar test equation:U̇(t) = λU(t) (20)

Un+1 = Ps(z)Un, z = τλ (21)

Ps is defined recursively:

P0(z) = 1, (22)P1(z) = 1 + µ̃1z, (23)Pj(z) = (1 − µj − νj) + γ̃jz+ (µj + µ̃jz)Pj−1(z) + νjPj−2(z) (2 6 j 6 s)

(24)

for each stage, we have

Uj = Pj(z)Un, (0 6 j 6 s) (25)

Page 17: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability function

Scalar test equation:U̇(t) = λU(t) (20)

Un+1 = Ps(z)Un, z = τλ (21)

Ps is defined recursively:

P0(z) = 1, (22)P1(z) = 1 + µ̃1z, (23)Pj(z) = (1 − µj − νj) + γ̃jz+ (µj + µ̃jz)Pj−1(z) + νjPj−2(z) (2 6 j 6 s)

(24)

for each stage, we have

Uj = Pj(z)Un, (0 6 j 6 s) (25)

Page 18: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability function

Scalar test equation:U̇(t) = λU(t) (20)

Un+1 = Ps(z)Un, z = τλ (21)

Ps is defined recursively:

P0(z) = 1, (22)P1(z) = 1 + µ̃1z, (23)Pj(z) = (1 − µj − νj) + γ̃jz+ (µj + µ̃jz)Pj−1(z) + νjPj−2(z) (2 6 j 6 s)

(24)

for each stage, we have

Uj = Pj(z)Un, (0 6 j 6 s) (25)

Page 19: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability boundary

According to the consistency condition, Pj(z) approximates ecjz

for z→ 0 asPj = 1 + cjz+ Xjz

2 +O(z3). (26)

The choice of the stability function Pj(z) is the cental issue indeveloping the RKC methods.

Stability Region S = {z ∈ C : |Ps| 6 1}

Stability Boundary β(s) = max{−z : z 6 0, |Ps| 6 1}

Design rules:

β(s) is as large as possibleall coefficients must be known in analytic form

Page 20: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability boundary

According to the consistency condition, Pj(z) approximates ecjz

for z→ 0 asPj = 1 + cjz+ Xjz

2 +O(z3). (26)

The choice of the stability function Pj(z) is the cental issue indeveloping the RKC methods.

Stability Region S = {z ∈ C : |Ps| 6 1}Stability Boundary β(s) = max{−z : z 6 0, |Ps| 6 1}

Design rules:

β(s) is as large as possibleall coefficients must be known in analytic form

Page 21: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability boundary

According to the consistency condition, Pj(z) approximates ecjz

for z→ 0 asPj = 1 + cjz+ Xjz

2 +O(z3). (26)

The choice of the stability function Pj(z) is the cental issue indeveloping the RKC methods.

Stability Region S = {z ∈ C : |Ps| 6 1}Stability Boundary β(s) = max{−z : z 6 0, |Ps| 6 1}

Design rules:β(s) is as large as possible

all coefficients must be known in analytic form

Page 22: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Stability boundary

According to the consistency condition, Pj(z) approximates ecjz

for z→ 0 asPj = 1 + cjz+ Xjz

2 +O(z3). (26)

The choice of the stability function Pj(z) is the cental issue indeveloping the RKC methods.

Stability Region S = {z ∈ C : |Ps| 6 1}Stability Boundary β(s) = max{−z : z 6 0, |Ps| 6 1}

Design rules:β(s) is as large as possibleall coefficients must be known in analytic form

Page 23: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Outline

1 Introduction

2 PropertiesConsistency conditionsStability PropertiesIntegration formula

3 Pros and Cons

4 Examples

5 References

Page 24: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

shifted Chebyshev polynomials

Chebyshev polynomial of the first kind

Ts(x) = cos(sarccosx),−1 6 x 6 1 (27)

Eg: for the 1st order consistent polys, the shifted Chebyshevpoly

Ps(z) = Ts(1 +z

s2 ),−β(s) 6 z 6 0 (28)

yields the largest value: β(s) = 2s2. From the three-termsrecursion formula for Chebyshev polynomials, we get:

P0(z) = 1,P1(z) = 1+z

s2 ,Pj(z) = 2(1+z

s2 )Pj−1(z)−Pj−2(z), j > 2,(29)

which gives the analytical form of the integration coeffs

µ̃1 = 1/s2,µj = 2, µ̃j = 2/s2,νj = −1, γ̃j = 0, 0 6 j 6 s (30)

Page 25: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

1st order case: RKC1

For 1st and 2nd order RKC, we have this general form

Pj(z) = aj + bjTj(w0 +w1z), 0 6 j 6 s (31)

RKC1:

aj = 0,bj = T−1j (w0),w0 = 1 +

ε

s2 ,w1 =Ts(w0)

T ′s(w0)

, (0 6 j 6 s)

(32)Therefore,

β(s) ' (w0 + 1)T ′s(w0)

Ts(w0)' (2 −

4ε3)s2, ε→ 0 (33)

choose ε = 0.05, then β(s) = 1.90s2.

Page 26: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

1st order case: RKC1

Then compare these with the recursive definition of Pj, we get,

µ̃1 =w1

w0, (34)

µj = 2w0bj

bj−1, νj = −

bj

bj−2, (35)

µ̃j = 2w1bj

bj−1, γ̃j = 0, (2 6 j 6 s) (36)

cj =Ts(w0)T

′j (w0)

T ′s(w0)Tj(w0)

' j2/s2 (37)

Page 27: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

2nd order case: RKC2

aj = 1 − bjTj(w0), bj =T ′′j (w0)

(T ′j (w0))2 , (2 6 j 6 s) (38)

w0 = 1 +ε

s2 , w1 =T ′s(w0)

T ′′s (w0)

, (39)

a0 = 1 − b0, a1 = 1 − b1w0, b0 = b1 = b2 (40)

β(s) ' (w0 + 1)T ′′s (w0)

T ′s(w0)

' 23(s2 − 1)(1 −

215ε), ε→ 0 (41)

From the pictures,we can tell ε = 213 is a suitable choice.

Page 28: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

2nd order case: RKC2

Then compare these with the recursive definition of Pj, we get,

µ̃1 = b1w1, (42)

µj = 2w0bj

bj−1, νj = −

bj

bj−2, (43)

µ̃j = 2w1bj

bj−1, γ̃j = −(1 − bj−1Tj−1(w0))µ̃j, (2 6 j 6 s)

(44)

c1 =c2

T ′2(w0)

' c2

4, cj =

T ′s(w0)T

′′j (w0)

T ′′s (w0)T

′j (w0)

' j2 − 1s2 − 1

(2 6 j 6 s)

(45)

Page 29: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problems

Quadratic increase of β(s) with the number of stagesRequires at most seven vectors of storageno particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problem

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Page 30: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problemsQuadratic increase of β(s) with the number of stages

Requires at most seven vectors of storageno particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problem

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Page 31: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problemsQuadratic increase of β(s) with the number of stagesRequires at most seven vectors of storage

no particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problem

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Page 32: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problemsQuadratic increase of β(s) with the number of stagesRequires at most seven vectors of storageno particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problem

The eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Page 33: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problemsQuadratic increase of β(s) with the number of stagesRequires at most seven vectors of storageno particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problemThe eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex plane

Jacobian matrix should not deviate too much from anormal matrix.

Page 34: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Pros and Cons

Pros:Explicit and designed for modestly stiff problemsQuadratic increase of β(s) with the number of stagesRequires at most seven vectors of storageno particular difficulties for vectorization and/orparallelization

Cons: Restrictions on the problemThe eigenvalues of the Jacobian matrix should lie in anarrow strip along the negative axis of the complex planeJacobian matrix should not deviate too much from anormal matrix.

Page 35: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Eg 1: linear heat conduction problem

ut = ∆u+ f(x,y, z, t), 0 < x,y, z < 1, 0 6 t 6 0.7 (46)u(x,y, z, t) = tanh(5(x+ 2y+ 1.5z− 0.5 − t)) (47)

Take uniform grid with h = 0.025, then 393 = 59319 equations:

Table: Results for RKC and BDF

Tol maxError #steps #F-evals CPU(s)RKC BDF RKC BDF RKC BDF RKC BDF

1.E-1 8.9E-3 9.9E-1 6 7 402 46 186 351.E-2 1.7E-3 8.3E-2 15 16 729 160 338 1221.E-3 3.7E-4 1.0E-2 27 34 786 237 366 1851.E-4 3.9E-5 1.2E-3 57 70 1087 474 507 3711.E-5 4.3E-6 1.3E-5 129 112 1682 984 787 7701.E-6 6.5E-7 1.9E-5 262 168 2445 1151 1149 913

Page 36: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Eg 2: combustion problem

ct = ∆c−Dce−δ/T ,LTt = ∆T+αDce−δ/T , 0 < x,y, z < 1, 0 6 t 6 0.3

(48)L = 0.9,α = 1, δ = 20,D = Reδ/αδ, with R = 5The grid spacing is h = 1/(N+ 0.5), with N = 40,2× 403 = 128000 equations

Tol maxError #steps #F-evals CPU(s)RKC BDF RKC BDF RKC BDF RKC BDF

1.E-4 5.4E-1 8.7E-1 51 33 525 285 420 4121.E-5 1.8E-1 7.6E-1 124 91 781 659 630 9571.E-6 3.9E-2 1.2E-1 270 201 1270 1141 1030 17021.E-7 8.7E-3 1.2E-3 581 286 2147 1548 1758 2376

The low accuracy is expected from the local instability of theproblem.

Page 37: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

References

J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer,Convergence properties of the Runge-Kutta-Chebyshevmethod, Numer. Math. 57, 157-178, 1990.

B.P. Sommeijer, L.F. Shampine and J.G. Verwer, RKC: Anexplicit solver for parabolic PDEs, J. Comp. Appl. Math.88, 315-326, 1997.J.G. Verwer, B.P. Sommeijer and W. Hundsdorfer, RKCtime-stepping for Advection-Diffusion-Reaction Problems,J. Comput. Phys. 201, 61-79, 2004.J.G. Verwer and B.P. Sommeijer, An Implicit-ExplicitRunge-Kutta-Chebyshev Scheme for Diffusion-ReactionEquations, SIAM J. Scientific Computing 25, 1824-1835,2004.

Page 38: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

References

J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer,Convergence properties of the Runge-Kutta-Chebyshevmethod, Numer. Math. 57, 157-178, 1990.B.P. Sommeijer, L.F. Shampine and J.G. Verwer, RKC: Anexplicit solver for parabolic PDEs, J. Comp. Appl. Math.88, 315-326, 1997.

J.G. Verwer, B.P. Sommeijer and W. Hundsdorfer, RKCtime-stepping for Advection-Diffusion-Reaction Problems,J. Comput. Phys. 201, 61-79, 2004.J.G. Verwer and B.P. Sommeijer, An Implicit-ExplicitRunge-Kutta-Chebyshev Scheme for Diffusion-ReactionEquations, SIAM J. Scientific Computing 25, 1824-1835,2004.

Page 39: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

References

J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer,Convergence properties of the Runge-Kutta-Chebyshevmethod, Numer. Math. 57, 157-178, 1990.B.P. Sommeijer, L.F. Shampine and J.G. Verwer, RKC: Anexplicit solver for parabolic PDEs, J. Comp. Appl. Math.88, 315-326, 1997.J.G. Verwer, B.P. Sommeijer and W. Hundsdorfer, RKCtime-stepping for Advection-Diffusion-Reaction Problems,J. Comput. Phys. 201, 61-79, 2004.

J.G. Verwer and B.P. Sommeijer, An Implicit-ExplicitRunge-Kutta-Chebyshev Scheme for Diffusion-ReactionEquations, SIAM J. Scientific Computing 25, 1824-1835,2004.

Page 40: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

References

J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer,Convergence properties of the Runge-Kutta-Chebyshevmethod, Numer. Math. 57, 157-178, 1990.B.P. Sommeijer, L.F. Shampine and J.G. Verwer, RKC: Anexplicit solver for parabolic PDEs, J. Comp. Appl. Math.88, 315-326, 1997.J.G. Verwer, B.P. Sommeijer and W. Hundsdorfer, RKCtime-stepping for Advection-Diffusion-Reaction Problems,J. Comput. Phys. 201, 61-79, 2004.J.G. Verwer and B.P. Sommeijer, An Implicit-ExplicitRunge-Kutta-Chebyshev Scheme for Diffusion-ReactionEquations, SIAM J. Scientific Computing 25, 1824-1835,2004.

Page 41: Runge Kutta Chebyshev Method for parabolic PDEs · Introduction PropertiesPros and ConsExamplesReferences Runge Kutta Chebyshev Method for parabolic PDEs Zheng Chen Brown University

Introduction Properties Pros and Cons Examples References

Thank you!