RST controller tutorial

30
I.D.Landau :Digital Control/System Identification 1 Robust R-S-T Digital Control and Open Loop System Identification A Brief Review I.D. Landau Laboratoire d’Automatique de Grenoble(INPG/CNRS), France ([email protected]) ADAPTECH, 4 Rue du Tour de l’Eau, St. Martin d’Hères(38), France ([email protected]) IEEE Advanced Process Control Workshop, Vancouver, April 29-May 1, 2002

Transcript of RST controller tutorial

Page 1: RST controller tutorial

I.D.Landau :Digital Control/System Identification1

Robust R-S-T Digital Controland

Open Loop System IdentificationA Brief Review

I.D. LandauLaboratoire d’Automatique de Grenoble(INPG/CNRS), France

([email protected])ADAPTECH, 4 Rue du Tour de l’Eau, St. Martin d’Hères(38), France

([email protected])

IEEE Advanced Process Control

Workshop, Vancouver, April 29-May 1, 2002

Page 2: RST controller tutorial

I.D.Landau :Digital Control/System Identification2

Applications of R-S-T Controllers

Peugeot (PSA)

Sollac (Florange)Hot Dip Galvanizing

Double Twist Machine(Pourtier)

360° Flexible Arm (LAG)

Page 3: RST controller tutorial

I.D.Landau :Digital Control/System Identification3

Implementation of R-S-T Digital Controllers

PLC Leroy implementsR-S-T digital controllers andData acquisition modules

ALSPA 320ALSPA 320 implements R-S-T digital controllers andData acquisition modules

Page 4: RST controller tutorial

I.D.Landau :Digital Control/System Identification4

u yRef.

++

DESIGNMETHOD

MODEL(S)

Performancespecs.

PLANT

IDENTIFICATION

Robustnessspecs.

CONTROLLER

1) Identification of the dynamic model2) Performance and robustness specifications3) Compatible controller design method4) Controller implementation5) Real-time controller validation

(and on site re-tuning)6) Controller maintenance (same as 5)

Controller Design and Validation

Page 5: RST controller tutorial

I.D.Landau :Digital Control/System Identification5

Outline

Robust digital control-The R-S-T digital controller-Basic design-Robustness issues-An example

Open loop system identification-Data acquisition-Model complexity-Parameter estimation-Validation

Page 6: RST controller tutorial

I.D.Landau :Digital Control/System Identification6

Robust Digital Control

Page 7: RST controller tutorial

I.D.Landau :Digital Control/System Identification7

Computer(controller)

D/A+

ZOHPLANT A/D

CLOCK

Discretized Plant

r(t) u(t)y(t)

The R-S-T Digital Controller

r(t)

m

m

AB

TS1

ABq d−

R

u(t) y(t)

Controller

PlantModel

+

-

)1()(1 −=− tytyq

Page 8: RST controller tutorial

I.D.Landau :Digital Control/System Identification8

r(t)

m

m

AB

TS1

ABq d−

R

u(t) y(t)

Controller

PlantModel

+

-

The R-S-T Digital Controller

Plant Model:)(

)(*)(

)()(1

11

1

11

−−−

−−− ==

qAqBq

qAqBqqG

dd

A

A

nn qaqaqA −−− +++= ...1)( 1

11 )(*...)( 111

11 −−−−− =++= qBqqbqbqB B

B

nn

R-S-T Controller: )()()1(*)()()( 111 tyqRdtyqTtuqS −−− −++=

Characteristic polynomial (closed loop poles):

)()()()()( 11111 −−−−−− += qRqBqqSqAqP d

Page 9: RST controller tutorial

I.D.Landau :Digital Control/System Identification9

rABy mm )/(* =

+

-

R

1 q-d

B

AST

A

B m

m

r(t)

y (t+d+1)*u(t) y(t)

q

-(d+1)

P(q -1 )

q

-(d+1)

B*(q )-1

B*(q )

-1

B(1)

q

-(d+1) B m(q )

B*(q )

-1-1

A m(q ) B(1)-1

Pole Placement with R-S-T Controller

';' SHSRHR SR ==Controller : :, SR HH fixed parts

Regulation: R’ and S’ solutions of:

dominantpoles

auxiliarypolesTracking :

FDRd

S PPPRBHqSAH ==+ − ''

)1(/ BPT =

Reference trajectory: y*computer file

Page 10: RST controller tutorial

I.D.Landau :Digital Control/System Identification10

Connections with other Control Strategies

- Digital PID : 11;2 −−=== qHnn SSR

-Tracking and regulation with independent objectives(MRC):

FD PPBP *= (Hyp.: B* has stable damped zeros)

- Minimum variance tracking and regulation (MVC):

CBP *=noise model

(Hyp.: B* has stable damped zeros)

- Internal Model Control (IMC):

FAPP = (Hyp.: A has stable damped poles)

Page 11: RST controller tutorial

I.D.Landau :Digital Control/System Identification11

+

-

R

1 q-d

BAS

Tr(t) u(t) y(t)

PlantModel

p(t)

b(t)

+

+

+ +

(disturbance)

(measurement noise)

The Sensitivity Functions

Syp(q-1) = ASAS + q-dBR

= ASP

Output sensitivity function (p -> y)

Sup(q-1) = - ARAS + q-dBR

= - ARP

Input sensitivity function (p -> u)

Syb(q-1) = - q-dBRAS + q-dBR

= - q-dBRP

Noise sensitivity function (b -> y)

Syp - Syb = 1

Page 12: RST controller tutorial

I.D.Landau :Digital Control/System Identification12

-1

∆Φ1

∆1

∆Μ

1

crossoverfrequency

Re H

Im H

G

|HOL|=1ω CR

1

ω CR2

ω CR3

Robustness Margins

z = ejω

> 29°∆M 0.5 ∆G 2 ; ∆Φ≥ ≥⇒

∆M 0.5 (-6dB), ∆τ > Ts≥

∆M = 1+HOL(z-1) min = Syp(z-1) max-1 = Syp

-1( ) ∞( )

∆τ = mini ∆Φi

ωCRi

Modulus Margin:

Delay Margin:

Typical values:

The inverse is not necessarily true!

Page 13: RST controller tutorial

I.D.Landau :Digital Control/System Identification13

Im G

Re Gω = π

G (e )-j ω

uncertaintydisk

δ W

ω = 0

Robust Stability

Family of plant models:

),,(' xyWGFG δ∈

G – nominal model; 1)( 1 ≤∞

−zδ

)( 1−zWxy- size of uncertainty

Robust stability condition:a related sensitivity

functiona type of uncertainty

1<∞xyxyWS

⇓1−

< xyxy WSdefines the size of thetolerated uncertainty

defines an upper templatefor the modulus of the

sensitivity function

There also lower templates (because of the relationship between various sensitivity fct.)

Page 14: RST controller tutorial

I.D.Landau :Digital Control/System Identification14

Sypmax= - M∆Syp dB

0.5fs0

delay marginnominal

perform.

( G ’ = G + δWa )

Sup dB

actuator effort

size of the tolerated additive uncertainty Wa

00.5f s

Sup-1

Templates for the Sensitivity Functions

Output SensitivityFunction

Input SensitivityFunction

Page 15: RST controller tutorial

I.D.Landau :Digital Control/System Identification15

Robust Controller Design

Pole placement with sensitivity functions shaping

FD PPP =

RHRR '=

SHSS '=

Nominal performance: SRD HandHofpartandP

Allow to shape the sensitivity functions

-Iterative Choosing and using band stop filters FjSjFiRi PHPH /,/FP

Several approaches to design :

-Convex optimization(see Langer, Landau, Automatica, June99, Optreg (Adaptech) )

Page 16: RST controller tutorial

I.D.Landau :Digital Control/System Identification16

MIRROR

DETECTOR

RIGID FRAMES

LIGHTSOURCE

POT.

ENCODER

SERVO.

LOCALPOSITION

COMPUTERTACH.

ALUMINIUM

360° Flexible Arm

Page 17: RST controller tutorial

I.D.Landau :Digital Control/System Identification17

Frequency characteristics Poles-Zeros

360° Flexible Arm

(Identified Model)

Page 18: RST controller tutorial

I.D.Landau :Digital Control/System Identification18

1 2 3 4 5 6 7 8 9-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

Frequence [Hz]

Mod

ule

[dB

]

Syp - Sensibilité perturbation-sortie

A

B

D C

gabarit

1 2 3 4 5 6 7 8 9-30

-20

-10

0

10

20

30

40

50

60

Frequence [Hz]

Mod

ule

[dB

]

Sup - Sensibilité perturbation-entrée

A

D

B

C

gabarit

A- without auxiliary polesB- with auxiliary polesC- with stop band filterD- with stop band filter

11 / FS PH22 / FR PH

Shaping the Sensitivity Functions

Output Sensitivity Function - Syp Input Sensitivity Function - Sup

Page 19: RST controller tutorial

I.D.Landau :Digital Control/System Identification19

Open Loop System Identification

Page 20: RST controller tutorial

I.D.Landau :Digital Control/System Identification20

I/0 Data Acquisition under anExperimental Protocol

Model Complexity Estimation(or Selection)

Choice of the Noise Model

Parameter Estimation

Model Validation

YesNo ControlDesign

System Identification Methodology

Page 21: RST controller tutorial

I.D.Landau :Digital Control/System Identification21

I/O Data Acqusition

Signal : a P.R.B.S sequenceMagnitude : few % of the input operating pointClock frequency : Length :Largest pulse :

3,2,1;)/1( == pfpf sclock )( frequencysamplingf s =sss

N fTcellsofnumberNpT /1,;)12( 1 ==−−

sNpT

Length : < allowed duration of the experimentLargest pulse : (rise time)Rt≥

P.R.B.S.

NpTs

tr

Page 22: RST controller tutorial

I.D.Landau :Digital Control/System Identification22

poweramplifier

filter

u(t)

y(t)

inertia

d.c. motor .

tachogenerator

M

TG

An I/O File

Page 23: RST controller tutorial

I.D.Landau :Digital Control/System Identification23

Complexity Estimation from I/O Data

Objective :To get a good estimation of the model complexitydirectly from noisy data

),,( dnn BA

complexitypenalty term

error term(should be unbiased)

S(n,N)

0 n

CJ(n)

J (n )

minimum

nopt

[ ]),ˆ()ˆ(minminˆˆˆ

NnSnJCJnnnopt +==),max( dnnn BA +=

To get a good order estimation, J should tend to the value fornoisy free data when (use of instrumental variables) ∞→N

Page 24: RST controller tutorial

I.D.Landau :Digital Control/System Identification24

u(t) y(t)Plant ADC

Discretized plant

+

-

Parameteradaptationalgorithm

y(t)

ε (t)

Estimated modelparameters

)(ˆ tθ

Adjustablediscrete-time

model

DAC +ZOH

Parameter Estimation

Page 25: RST controller tutorial

I.D.Landau :Digital Control/System Identification25

+

+u(t) y(t)

1A

q-d B

A

e(t)

)()()()()(:1 11 tetuqBqtyqAS d += −−−

(Recursive) Least Squares

+

+u(t) y(t)q-d B

A

w(t)

)()()()()()(:2 111 twqAtuqBqtyqAS d −−−− +=

Ouput Error(O.E.)Instrumental Variable…

+

+u(t) y(t)

1

q-d B

A

e(t)

CA

[ ] )()(/1)()()()(:4 111 teqCtuqBqtyqAS d −−−− +=

Generalized Least Squares

+

+u(t) y(t)A

q-d B

A

e(t)

C

)()()()()()(:3 111 teqCtuqBqtyqAS d −−−− +=

Extended Least SquaresO.E. with Extended Prediction Model(Recursive) Maximum Likelihood

«Plant + Noise » Models

~ 33%

~ 64%

~ 1%

~ 2%

Page 26: RST controller tutorial

I.D.Landau :Digital Control/System Identification26

Parameter Estimation Methods

)()()(*)()(*)1( 11 tdtuqBtyqAty Tψθ=−+−=+ −−

vectortmeasuremenvectorparameter −− ψθ ;

Plant Model

)()(ˆ)1(ˆ ttty T φθ=+°Estimated model

vectornobservatiovectorparameterestimated −− φθ ;ˆ

)1(ˆ)1()()(ˆ)1()1( 00 +−+=Φ−+=+ tytytttyt TθεPrediction error

Parameter adaptation algorithm

2)(0;1)(0

)()()()()()1(

)1()()1()(ˆ)1(ˆ

21

21

11

0

<≤≤<ΦΦ+=+

+Φ++=+−−

tt

ttttFttF

tttFttT

λλλλ

εθθ

[ ])()( tft φ=Φ

Page 27: RST controller tutorial

I.D.Landau :Digital Control/System Identification27

Parameter Estimation Methods

I- Based on the asymptotic whitening of the prediction error(Recursive Least Squares, Extended Least Squares, RecursiveMax. Likelihood, O.E. with Extended Prediciton Model )

II- Based on the asymptotic decorrelation between the predictionerror and the observation vector(Output Error, Instrumental Variable)

Page 28: RST controller tutorial

I.D.Landau :Digital Control/System Identification28

1;17.2)( ≥≤ iN

iRN

normalizedcrosscorelation

number of data

1N2.17

N

97%

136.0)(256 ≤→= iRNN

15.0)( ≤iRNpratical value :

+

-

u

y

y

εPlant

Model

q-1

q-1

ARMAX (ARARX) predictor

WhitenessTest

+

-

u

y

y

ε

Plant

Model

q-1

Output Error Predictor

DecorrelationTest

Validation of Identified Models

Statistical Validation

Page 29: RST controller tutorial

I.D.Landau :Digital Control/System Identification29

Software Tools for Implementing the Methodology

System Identification-Winpim (Adaptech) identification in open loop and closed loop operation -CLID (Adaptech)identification in closed loop (Matlab Toolbox)

Controller Design-Winreg (Adaptech)design and optimisation of R-S-T digital controllers-Optreg (Adaptech)automated design of robust digital controllers (under Matlab)

Real-time implementation-Wintrac (Adaptech): cascade digital control

Page 30: RST controller tutorial

I.D.Landau :Digital Control/System Identification30

« Personal » References

Landau.I.D.,(1990) System Identification and Control Design, Prentice Hall, N.J.,USA

Landau I.D., (1995) : « Robust digital control of systems with time delay (the Smith predictor revisited) », Int. J. of Control, vol. 62, pp. 325-347.

Landau I.D., Lozano R., M’Saad M., (1997) : Adaptive Control, Springer, London,U.K.

Landau I.D., (1993) Identification et Commande des Systèmes, 2nd edition,Hermes, Paris (June)

Landau I.D., (2002) Commande des Systèmes – Conception, identificationet mise en œuvre, Hermes, Paris (June)