Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple...

45
Implementation of Round Colliding Beams Concept at VEPP-2000 Dmitry Shwartz BINP, Novosibirsk Oct 28, 2016 JAI, Oxford

Transcript of Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple...

Page 1: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Implementation of Round Colliding

Beams Concept at VEPP-2000

Dmitry Shwartz

BINP, Novosibirsk

Oct 28, 2016

JAI, Oxford

Page 2: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Introduction

2

Beam-Beam

Effects

Page 3: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Circular colliders

3

Interaction Points (IP)

e e

Low-beta insertion

(Interaction Region − IR)

Different schemes:

Single ring / two rings

Multibunch beams

Number of IPs

Head-on / crossing angle

Page 4: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Colliders

4

LHC pp, PbPb 7 TeV, 2.8 TeV/n 1×1034 cm-2s-1, 1×1027 cm-2s-1

RHIC pp, AuAu 250 GeV,100 GeV/n 1×1032 cm-2s-1, 1.5×1027 cm-2s-1

DAFNE e+,e 0.5 GeV 4×1032 cm-2s-1

BEPC-II e+,e 1.89 GeV 7×1032 cm-2s-1

VEPP-4M e+,e 5.5 GeV 2×1031 cm-2s-1

VEPP-2000 e+,e 1 GeV 1×1032 cm-2s-1

SuperKEKB e+,e 4×7 TeV 8×1035 cm-2s-1

NICA AuAu 4.5 GeV/n 1×1027 cm-2s-1

AdA (1961) – first collider (e+,e)

ISR (1971) – first hadron collider (pp)

SLC (1988) – first (and only) linear collider

LEP (1988) – highest energy e+,e collider (104.6 GeV)

HERA (1992) – first (and only) electron-ion collider

KEKB (1999) – highest luminosity collider (2.1×1034 cm-2s-1)

+ 19 others

in operation:

under construction:

stopped:

Page 5: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Luminosity

5

processN L Number of events per second:

1 2 0

2 2 2 2

1 2 1 22

b

x x z z

N N n fL

0 1 2

, , ,

2 ( , , ) ( , , )b

x z s t

L n f c x z s ct x z s ct dxdzdsdt

For Gaussian distributions,

non-equal beam profiles:

2

221( )

2

y

y

y

y e

, ,y x z s

How many interacts?

32 2 1 24 2

6

0

10 10~ ~ 10

12 10

processL cm s cm

f Hz

Compare to 11~ 10bunchN

Other particles do not interact with each other but with opposite bunch field

Page 6: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Linear beam-beam effects

6

Linear focusing

Beam-beam force for Gaussian

bunches

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

cos sin sin 1 0

sin cos sin 1

cos sin sin sin

sin cos sin cos sin

Mp

p

p p

Perturbation: thin

axisymmetric linear

lens.

The sign depends

on particles type.

Focusing for

particle-antiparticle

beams.

Page 7: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Linear beam-beam effects (2)

7

0 0

1 1Tr( ) cos cos sin

2 2M p 0 1

0 0cos cos sin

0 / 2p

*

4

p

Beam-beam parameter

0 0cos cos 2 sin 0 0 0

1arccos(cos 2 sin )

2

=0.025

=0.075 =0.15 =0.25

= 0.3

= 0.2 = 0.1 = 0.05

,

*

2

,

,2 ( )

x ze

x z

x z x z

N r

Page 8: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Dynamic beta

8

0 0cos cos 2 sin 0 0sin sin

0 0 0 0

2 2 2 2

0 0 0 0 0 0

0

2

0

sin sin

1 (cos 2 sin ) sin 4 cos sin (2 ) sin

1 4 cot (2 )

= 0.3

= 0.2 = 0.1 = 0.05

(1960s)

One of the reasons to choose

working point close to half-

integer resonance: additional

(dynamic) bonus final

focusing

Page 9: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Dynamic emittance

9

0 10 20 30 40 501

2

3

4

5 BetaX

BetaY WS

BetaX

BetaY RING

Beta

- function,

cm

Current, mA

0 10 20 30 40 500,0

2,0x10-6

4,0x10-6

6,0x10-6

8,0x10-6

1,0x10-5

1,2x10-5

Em

itta

nce

e1

e2 WS

e1

e2 RING

Current, mA

0 10 20 30 40 500,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09 as

bs WS

a

b RING

Siz

e, m

m

Current, mA

3

0 2

2

0

/55

1/32 3

e

x

X

H r

J r

In electron synchrotron radiative

beam emittance:

2 2( ) ( ) ( ) 2 ( ) ( ) '( ) ( ) '( )x x xH s s D s s D s D s s D s

Perturbed -function (dynamic beta)

propagates to arcs and modifies H(s).

(1990s)

VEPP-2000

examples

Page 10: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Dynamic beta & emittance

10

Beam profile monitors

at VEPP-2000 2 2 mA2

44 44 mA2

Page 11: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Flip-flop (simple linear example)

11

= 0.1

1 0 2 0

1 1 0 0

cos cos 2 sin

sin sin

2 2* *

0 0 0 0

2 02 2

2 22 04 4

e eNr Nr

Assume round beams, unperturbed emittance

2 2

20 0 0

0 0 0

1 2 2

1 4 cot 2

21

12

22 2

0 0 2 0

22 2

0 0 1 0

1 4 cot 2

1 4 cot 2

b b b

b b b

0

1,2

1,2

b

Self-consistent solutions:

equal sizes below threshold ,

non-equal above th.

Page 12: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Coherent beam-beam

12

-mode, unperturbed tune, = 0

-mode, shifted tune,

= 0 + 0 = 0 +

Without going into details, ~1 K.Hirata, 1988

IP

IP

Two beams modes coupling via beam-beam interaction: new eigenmodes.

-modes -modes VEPP-2000

example

Page 13: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Coherent beam-beam

13

-modes -modes

Example: coherent beam-beam modes monitoring at VEPP-2000.

Shifted tune drift with beam current decay.

Page 14: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Beam-beam tune spread

14

Linear beam-beam:

tune shift

Nonlinear beam-beam:

tune spread (footprint)

LHC example:

pp − defocusing

Page 15: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Beam-beam limit

15 J.Seeman (1983)

Beam-beam parameter saturation ,

emittance (and beam size) growth

,

*

2

,

,2 ( )

x ze

x z

x z x z

r N

Final limit:

1) emittance blowup,

2) lifetime reduction,

3) flip-flop effect

Page 16: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Nonlinear beam-beam limit

16

Typical dependence of specific

luminosity on beam current

* *

2 2

2 ( ) 2

z ze e

z

z x z x z

N r r N

1 0 2

4

b

x z

N n f NL

0 2

1 2 1

1

4

b

spec

x z

n f NLL

N N N

(VEPP-2M example)

Page 17: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Distribution deformation

17

LIFETRAC simulations example

DAFNE example: beam profile

measurements.

Vertical profile significantly differs

from Gaussian distribution.

“Long” tails – lifetime reduction

(+ hard background in detectors).

z = 398 m

Page 18: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Nonlinear beam-beam

18 VEPP-4 simulations example (flat e+,e beams)

6th order betatron resonances &

synchro-betatron satellites

Resonances in

normalized

amplitudes plain

FMA: footprint

BB-interaction produces:

1) High-order resonance grid

2) Footprint, overlapping resonances

Page 19: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Integrable beam-beam?

19

What can be done to increase significantly beam-beam parameter threshold?

Integrability should be implemented!

Half-integrability:

1) Round beams (+1 integral of motion >> 1D nonlinearity remains)

2) Crab-waist approach for large Piwinsky angle

3) Vicinity to half-integer resonance.

Even closer to full-integrable beam-beam?

1) Round beams + special longitudinal profile?

2) …?

Reduction of nonlinear motion dimensions number is

very important: diffusion along stochastic layer

through additional dimension is suppressed

Page 20: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Round beams at e+e- collider

Luminosity increase scenario:

Number of bunches (i.e. collision frequency)

Bunch-by-bunch luminosity

2

*2

2

1

x

y

ye

xyx

r

fL

Round Beams:

Geometric factor:

Beam-beam limit enhancement:

IBS for low energy? Better life time!

2

1 / 4y x

0.1

2 2

2

4

e

fL

r

02/19

Page 21: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

The concept of Round Colliding Beams

• Head-on collisions!

• Small and equal β-functions at IP:

• Equal beam emittances:

• Equal fractional parts of betatron tunes:

x y

x y

x y

Axial symmetry of counter beam force together with x-y symmetry

of transfer matrix should provide additional integral of motion

(angular momentum Mz = xy - xy). Particle dynamics remains

nonlinear, but becomes 1D.

V.V.Danilov et al., EPAC’96, Barcelona, p.1149, (1996)

Round beam

Mx = My

Lattice requirements:

03/19

Page 22: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Historic beam-beam simulations

I.Nesterenko, D.Shatilov, E.Simonov, in

Proc. of Mini-Workshop on “Round

beams and related concepts in beam

dynamics”, Fermilab, December 5-6,

1996.

Beam size and luminosity vs. the

nominal beam-beam parameter

(A. Valishev, E. Perevedentsev,

K. Ohmi, PAC’2003 )

“Weak-Strong” “Strong-Strong”

04/19

Page 23: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

VEPP-2000 main design parameters @ 1 GeV

Circumference 24.388 m Energy range 150 1000 MeV

Number of bunches 1 Number of particles 11011

Betatron tunes 4.1/2.1 Beta-functions @ IP 8.5 cm

Beam-beam parameter 0.1 Luminosity 11032 cm-2s-1

13 T final focusing

solenoids

VEPP-2000 layout (2010-2013)

max. production rate:

2×107 e+/s

Page 24: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

VEPP-2000

06/19

Page 25: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Beam size measurement by CCD cameras

07/19

Page 26: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Flat to Round or Mobius change

needs polarity switch in solenoids

and new orbit correction.

Round beam due to coupling resonance?

The simplest practical solution!

Round Beams Options for VEPP-2000

Both simulations and experimental tests

showed insufficient dynamic aperture for

regular work in circular modes options.

08/19

Page 27: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Machine tuning

1) Orbit correction & minimization of steerers currents using ORM techniques

(x,y < 0.5mm)

2) Lattice correction with help of ORM analysis ( < 5%)

3) Betatron coupling in arcs (min ~ 0.001)

4) Working point small shift below diagonal

Lifetrac by D.Shatilov, 2008

After correction

Before correction

Specific luminosity & linear lattice correction

09/19

Page 28: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Simulations for E = 500 MeV.

50 mA corresponds to ~ 0.1.

Invariance of beam sizes @ IP is

the essential VEPP-2000 lattice

feature.

Dynamic beta, emittance and size

10/19

Page 29: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

nom ~ 0.12

Dynamic sizes at the beam-size monitors

11/19

Page 30: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Obtained by CMD-3 detector

luminosity, averaged over

10% of best runs

Luminosity vs. beam energy 2010-2013

Fixed lattice energy

scaling law: L 4

Peak luminosity overestimate

for “optimal” lattice variation

* , L 2

e+ deficit Beam-beam effects

DA, IBS lifetime

Energy ramping

12/19

Page 31: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

E = 240 MeV,

Ibeam ~ 55 mA

0.17 0.2 0.25

0.17 0.2

0.17 0.2

Pickup spectrum of the coherent oscillations

Coherent beam-beam -mode

interaction with machine

nonlinear resonances?

“Flip-flop” effect

13/19

TV

e+

e

regula

r blo

wn-u

p e

blo

wn-u

p e

+

Page 32: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Е = 392.5 MeV

Urf = 35 kV (purple)

Urf = 17 kV (blue)

0

0 0

arccos(cos( )

2 sin( )) /

= 0.175 = 0.125/IP

Beam-beam parameter

Coherent oscillations spectrum

14/19

BB-threshold improvement

with beam lengthening:

Beam-beam parameter extracted

from luminosity monitor data

*

*24

e nomnom

nom

N r

*

*24

e nomlumi

lumi

N r

Page 33: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

33

Bunch lengthening: microwave inst.

Bunch length measurement with phi-

dissector as a function of single beam

current for different RF voltage @ 478 MeV.

Energy spread dependence, restored from

beam transverse profile measurements.

15/19

Page 34: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Proper profile of longitudinal distribution together

with = n betatron phase advance between IPs

makes the Hamiltonian time-independent, i.e.

integral of motion.

1( )

( )s

s

2*

*( )

ss

(Danilov, Perevedentsev, 1997)

Integrable round beam?

16/19

* = 5cm

s = 5cm

= 0.15

as = 0.0 as = 1.0

D.Shatilov, A.Valishev, NaPAC’13

Synchrotron motion should

prevent full integrability(?)

Beam-beam resonances suppression

due to hour-glass effect(?) S. Krishnagopal, R. Seeman., Phys.Rev.D, 1990

Page 35: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Beam sizes data analysis @ 392.5 MeV

URF= 35 kV

URF= 17 kV Note: bunch lengthening is

current-dependent…

17/19

I = 15 mA corresponds to ~ 0.1

Page 36: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

VEPP-2000 upgrade: 2013 >> 2016

BINP Injection complex

VEPP-2000

complex

1. e+, e beams from new BINP Injection Complex (IC):

high intensity

higher energy (400 MeV);

high quality (!);

2. Booster BEP upgrade to 1 GeV.

3. Transfer channels BEP VEPP to 1 GeV.

4. VEPP-2000 ring modifications.

18/19

Page 37: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Summary

Round beams give a serious luminosity enhancement.

The achieved beam-beam parameter value at middle energies amounts to

~ 0.1–0.12 during regular operation.

“Long” bunch (l ~ *) mitigates the beam-beam interaction restrictions,

probably affecting on flip-flop effect.

VEPP-2000 is taking data with two detectors across the wide energy range

of 160–1000 MeV with a luminosity value two to five times higher than that

achieved by its predecessor, VEPP-2M. Total luminosity integral collected

by both detectors is about 110 pb-1.

Injection chain of VEPP-2000 complex was upgraded and commissioned.

Achieved e+ stacking rate is 10 times higher than formerly.

During upcoming new run we intend to achieve the target luminosity and

start it’s delivery to detectors with an ultimate goal to deliver at least 1 fb1

19/19

Page 38: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Backup slides

Page 39: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Beam-beam parameter evolution

392.5 MeV,

June-2013

537.5 MeV,

June-2011

511.5 MeV,

May-2013

0.07

0.08

0.09 (purple points)

13/19

*

*24

e nomnom

nom

N r

*

*24

e nomlumi

lumi

N r

Page 40: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

LIFETRAC predictions

1. Very high threshold values for ideal linear machine lattice, th ~ 0.25.

2. Chromatic sextupoles affect significantly on bb-effects decreasing threshold down

to th ~ 0.15. (Break of the angular momentum conservation by nonlinear fields

asymmetric to x-y motion)

3. Working point shift from coupling resonance under diagonal (x > z) preferable

than vise versa. (Emittances parity breaking.)

4. Uncompensated solenoids acceptable in wide range (x,z ~ 0.02) while coupling

in arcs provided by skew-quadrupole fields should be avoided. (Angular

momentum conservation break by skew-quads, breaking x-y symmetry of

transport matrix.)

5. Inequality of x-y beta-functions in IP within 10 % tolerance does not affect on bb-

effects.

6. Bb-effects do not cause emittance blow-up but reduce beam lifetime via non-

Gaussian “tails” growth in transverse particles distribution.

7. Beam lifetime improves with working point approach to the integer resonance.

Qualitative agreement of all predictions with experimental experience.

Page 41: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

2 2 2 2

0 NN

4 x x z z

fL

*

02

NN

4

fL

SND and CMD-3 luminosity monitors:

1) Slow (1 measurement ~ 1/2 minute)

2) Large statistical jitter at low beams intensities

Needed:

1) Beams current measurement e+, e (ФЭУ)

2) 4 beam sizes * (with current dependent dynamic * and emittance)

reconstruction from 16 beam profile monitors.

Assumptions:

1) Lattice model well known (transport matrices)

2) Focusing distortion concentrated within IP vicinity.

3) Beam profile preserve Gaussian distribution.

2 4 = 8 parameters /

8 2 2 = 32 measured values. * * * *, , , , , , ,x z x z x z x z

Luminosity measurement via beam sizes @

CCD cameras

Page 42: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

800 MeV

180 MeV

Luminosity monitor

Page 43: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

537.5 MeV

Extracted from luminosity

beam size @ IP

Page 44: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Weak-strong tune

scan of threshold

counter beam current

value.

Ib, mA

{}

Single positron beam lifetime

as a function of betatron tune.

20mA @ 500MeV

High order resonances

Page 45: Round Colliding Beams at VEPP-2000jaiweb/slides/2016_Shwartz.pdf · 44 244 mA. Flip-flop (simple linear example) 11 = 0.1 1 0 2 0 1 1 0 0 cos cos 2 sin sin sin ** 22 0 0 0 0 2022

Intrabeam scattering and DA

Single beam emittance

growth with beam current,

E=220 MeV

Calculated in simple model

DA dependence with *

variation. {}=0.128, E=1 GeV