Rosa Ramirez ( Université d’Evry ) Shuangliang Zhao ( ENS Paris) Classical Density Functional...

42
• Rosa Ramirez (Université d’Evry) • Shuangliang Zhao (ENS Paris) sical Density Functional Theory of Solvation in Molecular Sol Daniel Borgis Département de Chimie Ecole Normale Supérieure de Paris [email protected]

Transcript of Rosa Ramirez ( Université d’Evry ) Shuangliang Zhao ( ENS Paris) Classical Density Functional...

• Rosa Ramirez (Université d’Evry)• Shuangliang Zhao (ENS Paris)

Classical Density Functional Theory of Solvation in Molecular Solvents

Daniel Borgis Département de Chimie

Ecole Normale Supérieure de [email protected]

Solvation: Some issues

For a given molecule in a given solvent, can we predict efficiently and with « chemical accuracy:

• The solvation free energy

• The microscopic solvation profile

A few applications:• Differential solvation (liquid-liquid extraction)• Solubility prediction• Reactivity• Biomolecular solvation, ….

Explicit solvent/FEP

Solvation: Implicit solvent methods

Dielectric continuum approximation (Poisson-Boltzmann)

rrr 04 r

i

80

Biomolecular modelling: PB-SA method

AdF rrr 02

1

Solvent Accessible Surface Area (SASA)

electrostatics + non-polar

Quantum chemistry: PCM method

Improved implicit solvent models

• Integral equations

• Interaction site picture (RISM) (D. Chandler, P. Rossky, M. Pettit, F. Hirata, A. Kovalenko)

• Molecular picture (G. Patey, P. Fries, …)

• Classical Density Functional Theory

This work: Can we use classical DFT to define an improved and well-founded implicit solvation approach?

(based on « modern » liquid state theory)

)(, rcrh ijijSite-site OZ + closure

Molecular OZ + closure 21122112 ,,,,, ΩΩrΩΩr ch

)'()'()('2

1)()(

1)(

4

2

1)( 0

2 rPrrTrPrrrErPrPr

rrP

dddrdF

Fpol

entropy

Fexc

Solvent-solvent

Fext

P(r)

ir

]);([)(0 iielec FVU rrPr

DFT formulation of electrostatics

Dielectric Continuum Molecular Dynamics

M. Marchi, DB, et al., J. Chem Phys. (2001), Comp. Phys. Comm. (2003)

Use analogy with electronic DFT calculations and CPMD method

k

rkkPrP )exp()()( i

ii

ii

P

VF

dt

dm

F

dt

dM

rr

r

kP

kP

02

2

2

2

)(

)(

On-the-fly minimization with extended Lagrangian

Plane wave expansion

Soft « pseudo-potentials »

)(1111

rr

Hsis

Dielectric Continuum Molecular Dynamics

-helix horse-shoe

Dielectric Continuum Molecular Dynamics

Energy conservation Adiabaticity

Beyond continuum electrostatics: Classical DFT of solvation

densitysolventnorientatioposition/, Ωr

In the grand canonical ensemble, the grandpotential can be written as a functional of (r

NVddFST cextexc ΩrΩrΩr ,,

0

Ωr,0

Ωr,0Functional minimization:

Thermodynamic equilibriumD. Mermin (« Thermal properties of the inhomogeneous electron gas », Phys. Rev., 137 (1965))

Intrinsic to a given solvent

In analogy to electronic DFT, how to use classical DFT as a « theoretical chemist »tool to compute the solvation properties of molecules, in particular their solvationfree-energy ?

0 Ωr,

0 F

energy freeSolvation min F

0, c ),(, Ωrextc V

But what is the functional ??

The exact functional

extexcid FFFF x

01

0

111 ln

xxxx

dTkF Bid

111 xxx extext VdF

,, 121121 xxxxxx CddTkF Bexc 0 xx

;,1, 21)2(1

021 xxxx cdC xx 0

),( Ωrx

),( Ωr

The homogeneous reference fluid approximation

Neglect the dependence of c(2)(x1,x2,[]) on the parameter , i.e use

direct correlation function of the homogeneous system

21021)2(

21)2( ,;,;, xxxxxx ccc

c(x1,x2) connected to the pair correlation function h(x1,x2) through the Ornstein-Zernike relation

2331302121 ,,,, xxxxxxxxx hcdch

1,, 2121 xxxx ghg(r)

h(r)

The homogeneous reference fluid approximation

Neglect the dependence of c(2)(x1,x2,[]) on the parameter , i.e use

direct correlation function of the homogeneous system

21021)2(

21)2( ,;,;, xxxxxx ccc

c(x1,x2) connected to the pair correlation function h(x1,x2) through the Ornstein-Zernike relation

2332311333021122112 ,,),,(,,,, ΩΩrΩΩrΩrΩΩrΩΩr hcddch

1,, 2121 xxxx ghg(r)

h(r)

),,(h 2112 ΩΩr

),,(c 2112 ΩΩr

The picture

Functional minimization

Rotational invariants expansion

),,ˆ(),,( 2112122112 ΩΩrΩΩr lmnlmn rhh

),,ˆ(),,( 2112122112 ΩΩrΩΩr lmnlmn rcc

12r

21121121112

21110000 ))((3,,1 ΩΩrΩrΩΩΩ

The case of dipolar solvents

The Stockmayer solvent

12r

11212

11211012

11000012

0002112 )()()(),,( rcrcrcc ΩΩr

Particle density Polarization density

ΩrΩr , dn ΩrΩΩrP ,0 d

Ωr,F rPr ,nF

densitysolventnorientatioposition/, Ωr

R. Ramirez et al, Phys. Rev E, 66, 2002 J. Phys. Chem. B 114, 2005

A generic functional for dipolar solvents

A generic functional for dipolar solvents

PPPP ,,,, nFnFnFnF excextid

010

111 )(

)(ln)(, nn

n

nndTknF Bid

r

rrrP

)(/)(L)(

)(/)(Lsinh

)(/)(Lln 0

1

01

01

rrrrr

rrr nPP

nP

nPdTkB

)()( rPr P

L(x)LangevindefonctionladeInverse)(L 1 x

A generic functional for dipolar solvents

PPPP ,,,, nFnFnFnF excextid

010

111 )(

)(ln)(, nn

n

nndTknF Bid

r

rrrP

)(2

)( 2

r

rPr

ndTk

dB

litypolarizabinalorientatiolocal3

2

TkB

d

A generic functional for dipolar solvents

PPPP ,,,, nFnFnFnF excextid

)()()()(, rPrrrrrP qLJext EdnVdnF

A generic functional for dipolar solvents

PPPP ,,,, nFnFnFnF excextid

)()()(2

, 212000

121 rrrrP nrcnddTk

nF Bexc

)()()()(3)(2 2112212112

11221

rPrPrrPrrPrr rcddTkB

)()()(2 2112

11021 rPrPrr rcdd

TkB

Connection to electrostatics: R. Ramirez et al, JPC B 114, 2005

)(

)(

)(

12112

12110

12000

rh

rh

rh

The picture

Functional minimization

)(

)(

)(

12112

12110

12000

rc

rc

rc

O-Z

h-functions c-functions

Step 1: Extracting the c-functions from MD simulations

Pure Stockmayer solvent, 3000 particles, few ns

= 3 A, n0 = 0.03 atoms/A3 0 = 1.85 D, = 80

Step 2: Functional minimisation around a solvated molecule

• Minimization with respect to • Discretization on a cubic grid (typically 643)• Conjugate gradients technique• Non-local interactions evaluated in Fourier space (8 FFts per minimization step)

)(and)( rPrn

Minimisation step

N-methylacetamide: Particle and polarization densities

trans cis

N-methylacetamide: Radial distribution functions

H

CH3

O

N

C

N-methylacetamide: Isomerization free-energy

cis trans

Umbrella sampling

DFT

DFT: General formulation

One needs higher spherical invariants expansions or angular grids

2112 ,,cand, ΩΩrΩrTo represent:

4N 8N

32 NNN

Begin with a linear model ofAcetonitrile (Edwards et al)

(with Shuangliang Zhao)

Step 1: Inversion of Ornstein-Zernike equation

2331302121 ,,,,,,,, ΩΩkΩΩkΩΩΩkΩΩk hcdch

10 ))()(()( kHWIkHkC

Step 2: Minimization of the discretized functional

extexcid FFFF x

0

0

ln

Ωr,Ωr,

Ωr,ΩrddTkF Bid

Ωr,Ωr,Ωr extext VddF

222121221111 ),,(2

1Ω,rΩΩrrΩrΩ,rΩr cddddFexc

Vexc(r1,1)

Step 2: Minimization of the discretized functional

• Discretization of on a cubic grid for positions and Gauss-Legendre grid for orientations (typically 643 x 32)

2,, ΩrΩr

• Minimization in direct space by quasi-Newton (BFGS-L) (8x106 variables !!)

• 2 x N = 64 FFTs per minimization step

~20 s per minimization step on a single processor

MD

DFT

Solvent structure

Na+Na

Solvation in acetonitrile: Results

MD

DFT

Solvation in acetonitrile: Results

MD (~20 hours)

DFT (10 mn)

Solvation in acetonitrile: Results

Halides solvation free energy

Parameters for ion/TIP3P interactions

Solvation in SPC/E water

Solute-Oxygen radial distribution functions

MD

DFT

Z

X

Y

Three angles: ,,

CH3

C

N

Solvation in SPC/E water

Cl-q

Solvation in SPC/E water

Solvation in SPC/E water

Water in water

HNC PL-HNC HNC+B

g OO(r

)

Conclusion DFT

• One can compute solvation free energies and microscopic solvation profiles using « classical » DFT

• Solute dynamics can be described using CPMD-like techniques

• For dipolar solvents, we presented a generic functional of or

• Direct correlation functions can be computed from MD simulations • For general solvents, one can use angular grids instead of rotational invariants expansion

rP

• BEYOND: -- Ionic solutions -- Solvent mixtures -- Biomolecule solvation

rPr ,n

R. Ramirez et al, Phys. Rev E, 66, 2002 J. Phys. Chem. B 114, 2005 Chem. Phys. 2005L. Gendre at al, Chem. Phys. Lett.S. Zhao et al, In prep.

DCMD: « Soft pseudo-potentials »

V(r)

r

V(r) = (r)-1= 4/((r)-1)

V(r)

r

)(1111

rr

Hsis

=0

Dielectric Continuum Molecular Dynamics

Hexadecapeptide P2

La3+ Ca2+

DCMD: Computation times

System Nb of atoms

CPU total

CPU forces

CPU TIP3P

Dipep-tide

22 3.2 0.1 2.45

Octa 83 3.3 0.3 2.45

BPTI 892 5.7 2.7 2.72

Each time step correspond to a solvent free energy, thus an average over many solvent microscopic configurations

linear in N !