Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional...

27
Porquerolles 2009 Porquerolles Island Role of Tides in Planetary Systems Cyprien Morize • C. Morize 1 , • M. Le Bars 1 , • P. Le Gal 1 • A. Tilgner 2 . 1 IRPHE, Institut de Recherche sur les Phénomènes Hors Equilibre, Aix- Marseille University , France 2 Institut of Geophysics, University of Göttingen, Germany

Transcript of Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional...

Page 1: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Porquerolles 2009

Porquerolles Island

Role of Tides in Planetary Systems

Cyprien Morize

• C. Morize1,

• M. Le Bars1,

• P. Le Gal1

• A. Tilgner2.

1IRPHE, Institut de Recherche sur les Phénomènes Hors Equilibre, Aix- Marseille University , France

2Institut of Geophysics, University of Göttingen, Germany

Page 2: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Context

Cyprien Morize

• Tidal forces deform planets

• Tidal forces = colossal values

Intense volcanism on Io

• Tides influence orbital trajectories and spin velocities of planets

• Elliptic instability

• Zonal flows

Page 3: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Rotating flows

Cyprien Morize

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

Navier-Stokes equations in a rotating frame:

Page 4: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Cyprien Morize

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

Rotating flows

Navier-Stokes equations in a rotating frame:

Page 5: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

Consequences :∂/∂z = 0 (2D flows)

Geostrophic equilibrium :

Taylor-Proudmann and Inertial waves

Cyprien Morize

Page 6: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

θσ cos2||

2)( // Ω=Ω=kkk r

r

Dispersion relation: Energy spread along a cone of angle

θθ π −= 2s

For σ << 2Ω, Taylor columns

cos(σt)

θs

Cyprien Morize

Consequences :∂/∂z = 0 (2D flows)

Geostrophic equilibrium :

Taylor-Proudmann and Inertial waves

Page 7: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

θσ cos2||

2)( // Ω=Ω=kkk r

r θθ π −= 2s

cos(σt)

θs

Cyprien Morize

)(0

tmieuu ωθ −=Azimuthal periodicity m

Temporal periodicity ω

Dispersion relation: Energy spread along a cone of angle

For σ << 2Ω, Taylor columns

Consequences :∂/∂z = 0 (2D flows)

Geostrophic equilibrium :

Taylor-Proudmann and Inertial waves

Page 8: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

∂∂t

r u + (

r u ⋅

r ∇ )

r u = −

r ∇ p − 2

r Ω ×

r u + ν∇2r u

θσ cos2||

2)( // Ω=Ω=kkk r

r θθ π −= 2s

cos(σt)

θs

Cyprien Morize

ωm

ode

)(0

tmieuu ωθ −=Azimuthal periodicity m

Temporal periodicity ω

Dispersion relation: Energy spread along a cone of angle

For σ << 2Ω, Taylor columns

Consequences :∂/∂z = 0 (2D flows)

Geostrophic equilibrium :

Taylor-Proudmann and Inertial waves

Page 9: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Experimental Apparatus

Cyprien Morize

Non-dimensional numbers:

• Eccentricity (Earth: ε = 10-7 ; Io: ε = 0.005)

• Ekman number

(Earth: Ek = 10-14 ; Io: Ek = 10-13)

• The ratio sorb ΩΩ /

2/ REk sΩ=ν

• Deformable sphere in silicone (planet) Ωs

• Rollers press the rotating sphere (moon) Ωorb

Radius = 10 cmΩspin ~ 3 HzΩorb ~ 2 Hz

Eccentricity : 0.01 0.07 Ekman ~ 10-5

ε

Page 10: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Elliptical instability

Cyprien Morize

Present in planetary systems suggested by Kerswell (1998)

3D destabilization of 2D rotating flows whose streamlines are elliptically distorted

Parametric resonance of 3 waves :

• Tidal wave, of temporal period T ~ Ωorb-1 and azimuthal period m=2

• 2 inertial waves of the rotating fluid

where frequencies is 0321 =++ ωωω

+ =

Rotation Stretch Elliptic streamlines

Page 11: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Spin-Over mode: fixed deformation (Ωorb=0)

Cyprien Morize

rpms 47;03.0 =Ω=ε rpms 67;04.0 =Ω=ε rpms 140;05.0 =Ω=ε

Page 12: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Spin-Over mode

Cyprien Morize

rpms 47;03.0 =Ω=ε rpms 67;04.0 =Ω=ε rpms 140;05.0 =Ω=ε

Page 13: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Spin-Over mode

Cyprien Morize

rpms 47;03.0 =Ω=ε rpms 67;04.0 =Ω=ε rpms 140;05.0 =Ω=ε

Ek62.22 −= εσ

Page 14: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Spin-Over mode

Cyprien Morize

rpms 47;03.0 =Ω=ε rpms 67;04.0 =Ω=ε rpms 140;05.0 =Ω=ε

Ek62.22 −= εσ

Page 15: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Spin-Over mode

Cyprien Morize

rpms 47;03.0 =Ω=ε rpms 67;04.0 =Ω=ε rpms 140;05.0 =Ω=ε

EARTH (α~1)

IO (α~270)

Page 16: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Tidal forces may excite intense axisymmetric flows

Cyprien Morize

Generation of zonal winds by tides

Tides (azimuthal period m=2) can force an inertial mode of azimuthal period m=2 (provided that the considered mode is symmetrical about equator) and of frequency twice the tidal frequency.

Adjusting the orbital frequency on the frequency of an eigenmodes

2mode

orbω

The term of m=2 mode with its complex conjugate produce an intense axisymmetric flows m=0

vv rrr ).( ∇

Work motivated by the work of Andreas Tilgner

Page 17: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Cyprien Morize

δ ~ E 1/2

(ω 2 cos(θ))1/2

cos(θc) = ω/2

Divergence of δ at critical latitudes for

However, the non linear self-interaction of a non viscous mode does no produce a geostrophic mode (m=0) (Greenspan, 1969)

Precession: ω=1 θc=30°

Tides: ω=2 θc=90°(provided that Ωorb=0)

Generation of zonal winds by tides

Inertial waves are excited at critical latitudes

Page 18: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Cyprien Morize

Ωorb = 0.17 Ωorb = 0.38

Presence of a strong inner shear layer (Suess, 1971)

HOWEVER significant deviations to this theory: appearance of additional shear

layers at the axis of rotation

Ωorb = 0.54

Visualizations with kalliroscope flakes illuminating by a vertical laser sheet

Axisymmetric flows by excitation of modes A, B and C

Page 19: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Cyprien Morize

Ωorb = 0.17 Ωorb = 0.38 Ωorb = 0.54

Visualizations with kalliroscope flakes illuminating by a vertical laser sheet

Axisymmetric flows by excitation of modes A, B and C

Measure of the gradient of the luminosity intensity

Page 20: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Kinetic energy stored in the azimuthal mode m=2 by scanning Ωorbit.

Cyprien Morize

Kinetic energy stored in axisymmetric flows

(Tilgner, 2007)

Experimental observations (dotted lines) in good agreement with the peak of energy predicted numerically by Andreas Tilgner

Page 21: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Tilted forcing in comparison to rotation axis

Cyprien Morize

Perspective

Modes m=1 and m=2 are simultaneously present, leading to a multiplication of the number of inner shear layers.

Page 22: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:
Page 23: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

ω = 2 (1- Ωorbit) = 0.92 ω = 0.886

RNL 2009 Cyprien Morize

Contour iso-uϕ

Excitation du mode C

Ωorb = 0.54

(Tilgner, 2007)

Observations expérimentales en bon accord avec les résultats numériques d’A. Tilgner

Page 24: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

(Lacaze et al., 2004)

Modèle du Spin-Over

RNL 2009 Cyprien Morize

Equations d’Euler pour un solide ellipsoïde auquel on ajoute les effets visqueux fluides associés aux couches limites

Ek62.22 −= εσ

(Lacaze et al., 2004)

Le taux de croissance de l’instabilité est donné par :

Modèle avantageusement comparé aux expériences

Spin-Over = le fluide tourne autour d’un axe perpendiculaire à l’axe de rotation (comparable à l’instabilité de la rotation d’un ellipsoïde solide)

Déformation fixe dans le référentiel du labo.

Page 25: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Viscosity complicates the picture by creating Ekman layers in the vicinity of walls

The Poincaré Equation now reads:

where E stands for the Ekman numberz

ζθ

δ

Inside Ekman layer, dominant terms

ζ = z cos (θ) u = u0 e iωt e z/δ

i (ω 2 cos(θ)) u = E u

δ ~ E 1/2

(ω 2 cos(θ))1/2

Page 26: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

Divergence of δ at critical angle: cos(θc) = ω/2

Critical latitude in the Sphere

Formation of Internal shear layers

ω=1, radial velocity contour plotsphere Tilgner 2007

ω=1, radial velocity contour plotspherical shell Tilgner 2007

Suplementary inner shear layersin the spherical shell

Page 27: Role of Tides in Planetary Systems - IRPHE · 2012. 5. 3. · Cyprien Morize Non-dimensional numbers: • Eccentricity (Earth: ε = 10-7; Io: ε = 0.005) • Ekman number (Earth:

ω = 2 (1- Ωorbit) = 0.92 ω = 0.886

RNL 2009 Cyprien Morize

Contour iso-uϕ

Visualisation du mode C

Ωorb = 0.54

(Tilgner, 2007)

Observations expérimentales en parfait accord avec les résultats numériques d’A. Tilgner