Roca1

download Roca1

of 50

Transcript of Roca1

  • 7/29/2019 Roca1

    1/50

    DNA TOPOLOGY

    DNA supercoiling

    DNA topoisomerases

    Topo II DNA preferences

    DNA knots

    Topo II mechanics

    DNA relaxation in vivo

    INTRODUCTION TO

    KEY EXPERIMENTS ON

    Lecture 1

    Lecture 2

    Lecture 3

  • 7/29/2019 Roca1

    2/50

    The Problem of Unwinding the Long Double Helix( 1953 ... )

  • 7/29/2019 Roca1

    3/50

    Polyoma viral DNA sediments into 2 forms:

    Electron Microscopy: Both forms are circular !

    Circular ( no free ends )

    Discovery of Circular DNA and Supercoiled DNA Molecules

    ( Vinograd, 1960s )

    Linear ( free ends )

    form Icompact & hard to denature

    form IIless compact & denaturable

  • 7/29/2019 Roca1

    4/50

    form I form II

    nick

  • 7/29/2019 Roca1

    5/50

    Measure of DNA supercoiling : Linking Number (Lk)

    Lk = + 4

    N = number of base pairs

    h = helical repeat : average bp / turn (h ~ 10.5 at 0.2M NaCl, pH 7, 37C )

    Lko = Lk of relaxed DNA ( minimal torsional energy) = N / h

    DextroLk = links between 2 closed curves in space:

    When DNA is supercoiled ( has torsional energy) : Lk = Lk - Lk0

    Specific Linking Difference or Supercoiling Density : = Lk/ Lk0

  • 7/29/2019 Roca1

    6/50

    Lk0 = Lower energy Lk in a given conditions

    Since N / h may not be an Integer

    Then,Lkm = Close Integer to LKo

    3 5

    5 3

    Lk0 = 4

    Lkm = 4

    3 3

    5 5Lk0 = 3.5Lkm= 3 o 4

    G K (Lk) 2Calculate the Free Energy of DNA Supercoiling

    Calculate the Helical repeat of DNA in solution

    h 10.5

    Thermal fluctuation of DNA creates a normal distribution of Lk values

    Agarose gel electrophoresis

  • 7/29/2019 Roca1

    7/50

    Torsional energy (Lk) generates topoisomers of different shape

  • 7/29/2019 Roca1

    8/50

    DNA deformations driven by torsional energy (Lk)

    Wr

    Tw

    Wr ( Writhe ) Deviations from planarity of the DNA axis

    Tw ( Twist ) Strand turnnig around the DNA axis

    Lk = Tw + Wr

    James White (1969)

    Topology Geometry

  • 7/29/2019 Roca1

    9/50

    Interconversion between Tw and Wr

    Being Lk constant :

    Tw = - Wr

    Tw > Wr

    GLOBAL Tw and Wr = Local Tw and Wr

  • 7/29/2019 Roca1

    10/50

    Lk = Tw + WrTOPOLOGY TOPOGRAPHY

    Strand Break

    &

    Passage

    TOPOISOMERASES

    DNA INTERACTIONS

    - Intercalators

    - Grove binders

    - Benders

    - Unwinders

    - Trackers

    - .....

    B-DNA TRANSITIONS

    - Cruciforms, Z-DNA, H-DNA

    DNA PHYSICS

    - Bending rigidity

    - Torsional rigidity

    - Efective diameter

  • 7/29/2019 Roca1

    11/50

    DNA behaves like a stiff rod :

    --> tendency to maximize base stacking

    --> mutual interphosphate repulsion

    Sequence

    x

    Thermal motion

    -- Bend & twist rigidity

    -- Intrinsic bend / twist

    -- Induced bend / twist

  • 7/29/2019 Roca1

    12/50

  • 7/29/2019 Roca1

    13/50

    Lk = Tw + Wr

    Natural partition

    by torsional energy

    ~ 30% Tw

    ~ 70% Wr

    PHYSICAL DNA

    Solenoid vs Plectoneme folding

  • 7/29/2019 Roca1

    14/50

    Lk = Tw + WrTOPOLOGY GEOMETRY

    Strand Break

    &

    Passage

    TOPOISOMERASES

    DNA INTERACTIONS

    - Intercalators

    - Grove binders

    - Benders

    - Unwinding

    - Tracking

    - .....

    B-DNA TRANSITIONS

    - Cruciforms, Z-DNA, H-DNA

    DNA PHYSICS

    - Bending rigidity

    - Torsional rigidity

    - Efective diameter

  • 7/29/2019 Roca1

    15/50

    B-DNA TRANSITIONS generated by torsional energy ( < 0 )

    Z-DNA

    Cruciform H-DNA

    Tw

    Tw

    Wr

  • 7/29/2019 Roca1

    16/50

    Lk = Tw + WrTOPOLOGY GEOMETRY

    Strand Break

    &

    Passage

    TOPOISOMERASES

    DNA INTERACTIONS

    - Intercalators

    - Grove binders

    - Benders

    - Unwinders

    - Trackers

    - .....

    B-DNA TRANSITIONS

    - Cruciforms, Z-DNA, H-DNA

    DNA PHYSICS

    - Bending rigidity

    - Torsional rigidity

    - Efective diameter

  • 7/29/2019 Roca1

    17/50

    Effect of DNA intercalators

    Intercalators reduce Tw, therefore increase Wr in closed-circular molecules

  • 7/29/2019 Roca1

    18/50

    - +

    Wr < 0 Wr > 0Wr ~ 0

  • 7/29/2019 Roca1

    19/50

    Intercalators

    Tw Wr

    Grove binder

    Tw Wr

  • 7/29/2019 Roca1

    20/50

    JRB

    ( - )

    + intercalator

    R

    ( + )

    R

  • 7/29/2019 Roca1

    21/50

    -16

    -17

    B-DNA transitions revealed by 2D electrophoresis

    Altered migration in the FIRST dimension :

    Torsional energy drives a B-DNA transition

    Normal migration in the SECOND dimension :

    Intercalator stabilizes torsional energy

    &

    the transition reverts

    Z-DNA H-DNA Cruciform

  • 7/29/2019 Roca1

    22/50

    Lk = Tw + WrTOPOLOGY GEOMETRY

    Strand Break

    &

    Passage

    TOPOISOMERASES

    DNA INTERACTIONS

    - Intercalators

    - Grove binders

    - Benders

    - Unwinders

    - Trackers

    - .....

    B-DNA TRANSITIONS

    - Cruciforms, Z-DNA, H-DNA

    DNA PHYSICS

    - Bending rigidity

    - Torsional rigidity

    - Efective diameter

  • 7/29/2019 Roca1

    23/50

    Each nucleosome estabilises Lk ~ 1.0

    Nucleosome ~ 1.8 levo DNA turns ( Wr ~ -1.8 )

    Then, DNA must be overtwisted ( Tw ~ + 0 8 ) such that average h ~ 10.0

    NUCLEOSOMAL DNA TOPOLOGY and the Linking Number Paradox

    DNAse I, Hydroxy radical

    AA/TT periodics

    X-tall structuresh ~ 10.2

    However,

  • 7/29/2019 Roca1

    24/50

    Solutions :

    Geometry of linker regions

    h is not uniform and fluctuates

    Average Wr ~ -1.5

    NUCLEOSOMAL DNA TOPOLOGY and the Linking Number Paradox

    (-) (+)open

  • 7/29/2019 Roca1

    25/50

    Dynamics of site juxtaposition in supercoiled DNA

    Huang, Schlick, and Vologodskii (2005)

    Supercoiling does not correspondingly increase the rate of juxtaposition between any sites

  • 7/29/2019 Roca1

    26/50

    Random walks

    Strong interactions

    Bio - tunning

    Weak & Transient Interactions

    Directed walks

  • 7/29/2019 Roca1

    27/50

    Lk = Tw + WrTOPOLOGY GEOMETRY

    Strand Break

    &

    Passage

    TOPOISOMERASES

    DNA INTERACTIONS

    - Intercalators

    - Grove binders

    - Benders

    - Unwinders

    - Trackers

    - .....

    B-DNA TRANSITIONS

    - Cruciforms, Z-DNA, H-DNA

    DNA PHYSICS

    - Bending rigidity

    - Torsional rigidity

    - Efective diameter

  • 7/29/2019 Roca1

    28/50

  • 7/29/2019 Roca1

    29/50

    Allow the passage of anotherstrand, or strands, of DNA acrossthe transient break.

    DNA TOPOISOMERASES

    1.

    2.

    Break and rejoin DNA strands by

    means of a trans-estherificationreaction, during which a covalentphospho-tyrosyl intermediate isform.

  • 7/29/2019 Roca1

    30/50

    DNA TOPOISOMERASE FAMILIES

    Type-1A

    Type-1B

    Type-2

  • 7/29/2019 Roca1

    31/50

    Type 1A Type 1B Type 2A Type 2B

    Gene (Protein) Gene (Protein) (Protein)Gene Gene (Protein)

    TopRG (Gyrase Reverse)

    H. sapiens

    D. melanogaster

    C. elegans

    S.pombe

    S. cerevisiae

    A. thaliana

    EUKARYA

    TOP3a

    TOP3b

    TOP3a

    TOP3b

    TOP3a

    TOP3b

    TOP3

    TOP3

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    (Topoisomerase III)

    TOP1

    TOP1

    TOP1

    TOP1

    TOP1

    TOP1

    TOP2a

    TOP2b

    TOP2

    TOP2

    TOP2

    TOP2

    TOP2

    (Topoisomerase I)

    (Topoisomerase I)

    (Topoisomerase I)

    (Topoisomerase I)

    (Topoisomerase I)

    (Topoisomerase I)

    (Topoisomerase II)

    (Topoisomerase II)

    (Topoisomerase II)

    (Topoisomerase II)

    (Topoisomerase II)

    (Topoisomerase II)

    (Topoisomerase II)

    VIRUS

    BACTERIA

    ARCHEA

    Phage T4

    Poxvirus

    E. coli

    H.pylori

    TopA

    TopB

    (Topoisomerase I)

    (Topoisomerase III)

    TopA (Topoisomerase I)

    TopA

    TopB

    (Topoisomerase I)

    (Topoisomerase III)

    TopA (Topoisomerase I)

    (Topoisomerase IV)

    (Topoisomerase IV)

    (Gyrase)

    (Gyrase)

    (Gyrase)

    (Gyrase like)((Topoisomerase V))

    GyrA + GyrB

    GyrA + GyrB

    GyrA + GyrB

    GyrA + GyrB

    ParC + ParE

    ParC +ParE

    TOP1 (Topoisomerase I)

    (Topoisomerase II)

    TopVIA + TopVIB(Topoisomerase VI)

    Genes (39+52+60)

    TOPOISOMERASES

    D. radiodurans TopIB (Topoisomerase I)

    TOP3 (Topoisomerase III)

  • 7/29/2019 Roca1

    32/50

    Type-1B Topoisomerases

    Y

    Topoisomerase I(H. sapiens )(S. cerevisiae)

    Topoisomerase I

    (vacciniavirus)

    N C

    Y

    80-110 kDa

    N C 36 kDa

    Tyrosin

    Recombinases

  • 7/29/2019 Roca1

    33/50

    Type-1B Mechanism

    Reactions

    No ATP required

    T 2 T i

  • 7/29/2019 Roca1

    34/50

    ATP

    Y

    Type - 2 Topoisomerases

    (GyrB) (GyrA)

    N

    ATP

    N

    N

    Topoisomerase II(S. cerevisiae ,..,..,..)

    Topoisomerase IV(E. coli ,..,..,.. )

    Gyrase(E. coli ,..,..)

    (Top2)

    (ParE)

    C

    C

    C

    Y

    (ParC)

    dim 170 kDa x 2

  • 7/29/2019 Roca1

    35/50

    Type-2 MechanismReactions

  • 7/29/2019 Roca1

    36/50

    GYRASE : A type - 2 topoisomerase that reduces Lk

    (+)(+)(-)(-)

    Reactions

  • 7/29/2019 Roca1

    37/50

    Type-1A Topoisomerases

    Topoisomerase I (E. coli)

    Topoisomerase III (E. coli)

    Topoisomerase III (S. cerevisiae)

    Reverse Gyrase (M. janaschii)

    Y

    H e l i c a s e

    N C

    97 kDa

    Y

  • 7/29/2019 Roca1

    38/50

    ReactionsMechanism Type 1A

    No ATP required

    ssDNA

  • 7/29/2019 Roca1

    39/50

    Reverse GYRASE : A type-1A topoisomerase that increases Lk

    Topoisomerase

    +

    Helicase (ATP)

  • 7/29/2019 Roca1

    40/50

  • 7/29/2019 Roca1

    41/50

    in vivo

    ROLES OF TOPOISOMERASES

  • 7/29/2019 Roca1

    42/50

    ( + )( - )

    DNA transcription

    Topo I

    Topo IV Gyrase

    E. Coli

    ~ - 0.06( chromatin ? )

  • 7/29/2019 Roca1

    43/50

    ( + )( - )

    DNA transcription

    Topo I

    Topo II

    S. cerevisiae

    ~ - 0.05( chromatin )

  • 7/29/2019 Roca1

    44/50

  • 7/29/2019 Roca1

    45/50

    Catenates of sister duplexes

    Fork Collision

  • 7/29/2019 Roca1

    46/50

    Topo IV Gyrase

    Topo I

  • 7/29/2019 Roca1

    47/50

    Topo II

    Topo I

  • 7/29/2019 Roca1

    48/50

    Relaxation of Supercoiled DNA in the Chromatin Context

  • 7/29/2019 Roca1

    49/50

    Figure adapted from Bancaud et al (2006)

    Relaxation of Supercoiled DNA in the Chromatin Context

  • 7/29/2019 Roca1

    50/50