Robotics: Mechanics & Control Chapter 5: Dynamic Analysis

71
Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering, Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021 Chapter 5: Dynamic Analysis In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure. Robotics: Mechanics & Control

Transcript of Robotics: Mechanics & Control Chapter 5: Dynamic Analysis

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Chapter 5: Dynamic AnalysisIn this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

Robotics: Mechanics & Control

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

WelcomeTo Your Prospect Skills

On Robotics :

Mechanics and Control

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

About ARAS

ARAS Research group originated in 1997 and is proud of its 22+ years of brilliant background, and its contributions to

the advancement of academic education and research in the field of Dynamical System Analysis and Control in the

robotics application.ARAS are well represented by the industrial engineers, researchers, and scientific figures graduated

from this group, and numerous industrial and R&D projects being conducted in this group. The main asset of our

research group is its human resources devoted all their time and effort to the advancement of science and technology.

One of our main objectives is to use these potentials to extend our educational and industrial collaborations at both

national and international levels. In order to accomplish that, our mission is to enhance the breadth and enrich the

quality of our education and research in a dynamic environment.

01

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Contents

In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

4

Actuator DynamicsElectrical actuators, permanent magnet DC motors, servo amplifiers, gearbox, motor-gearbox-load dynamics, motor-gearbox-multiple joint robot,

4

Dynamics CalibrationLinear Regression, linear model with constant gravity, house holder reflection, varying gravity term, filtered velocity, model verification, consistency measure.

5

PreliminariesAngular acceleration, linear acceleration of a point, mass properties, center of mass, moments of inertia, inertia matrix transformations, linear and angular momentum, kinetic energy.

1

Lagrange FormulationMotivating example, generalized coordinates and forces, kinetic energy, mass matrix, potential energy, gravity vector, Coriolis and centrifugal vector, case studies.

2

Dynamic Formulation PropertiesMass matrix properties, linearity in parameters, Christoffel Matrix, skew-symmetric property, general dynamic formulation, passivity,

3

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Introduction

โ€ข Preliminaries

Angular Acceleration of a Rigid Body

Attribute of the whole rigid body

Importance of screw representation

๐›€ ร— เทœ๐’” = ๐ŸŽ.

Angular acceleration is also along เทœ๐’”.

5

(๐›€ ร— เทœ๐’”)

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

Linear Acceleration of a Point

Start with the velocity vector of point ๐‘ท

Differentiate with respect to time and manipulate

Where the last two terms are centrifugal and

Coriolis acceleration terms.

If ๐‘ท is embedded in the rigid body, the relative

velocity and acceleration are equal to zero. Then

6

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Mass Properties:

Consider body consists of differential material

bodies with density ๐œŒ and volume ๐‘‘๐‘‰ then ๐‘‘๐‘š

= ๐œŒ๐‘‘๐‘‰ is the differential mass while the mass of the

body is defined by

The center of mass ๐’‘๐’„ is then defined by

In which, ๐’‘ denote the position of ๐‘‘๐‘š

The body frame attached to the center of mass is

denoted by {๐ถ}.

7

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Mass Properties:

Moments of Inertia

As opposed to the mass, moment of inertia introduces inertia

to angular acceleration.

Moment of inertia is a tensor (matrix) defined by the second

moment of mass w.r.t a frame of reference

8

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Mass Properties:

Moments of Inertia

Principal Axes:

A specific direction in space where the matrix is diagonal

Principal Axes are the eigenvectors of the inertia matrix

Physically, they are the axes of symmetry of the rigid body.

We never calculate the Moment of inertia by hand

Use tables:

Appendix D: J. L. Meriam et. Al. : Dynamics book (see next slide )

Or Cad Softwares to calculate them.

Autocad, Solidworks, etc

9

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Mass Properties:

Moments of Inertia Table:

10

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Mass Properties:

Inertia Matrix Transformation

Parallel Axis Theorem

Where ๐‘๐‘ denotes the position vector of ๐ถ w.r.t {๐ด}.

Pure Rotation:

11

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Preliminaries

โ€ข Momentum and Energy

Linear Momentum

Angular Momentum

Kinetic Energy

12

โ†’

โ†’

โ†’

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Contents

In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

13

Actuator DynamicsElectrical actuators, permanent magnet DC motors, servo amplifiers, gearbox, motor-gearbox-load dynamics, motor-gearbox-multiple joint robot,

4

Dynamics CalibrationLinear Regression, linear model with constant gravity, house holder reflection, varying gravity term, filtered velocity, model verification, consistency measure.

5

PreliminariesAngular acceleration, linear acceleration of a point, mass properties, center of mass, moments of inertia, inertia matrix transformations, linear and angular momentum, kinetic energy.

1

Lagrange FormulationMotivating example, generalized coordinates and forces, kinetic energy, mass matrix, potential energy, gravity vector, Coriolis and centrifugal vector, case studies.

2

Dynamic Formulation PropertiesMass matrix properties, linearity in parameters, Christoffel Matrix, skew-symmetric property, general dynamic formulation, passivity,

3

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Motivating Example

Consider a sprung mass pendulum as in figure

A pendulum with mass ๐‘€, Length ๐ฟ, and moment of Inertia ๐ถ๐ผ๐‘ง๐‘ง = ๐ผ.

A sprung mass with mass ๐‘š, and spring stiffness ๐พ

A motor torque ๐œ to control the motion with no friction

Generalized Coordinate

The system consists of two masses ๐‘€ and ๐‘š โ†’ two generalized coordinate:

๐’’ =๐œ™๐‘Ÿ

RotationTranslation

Generalized Forces

Corresponding to each generalized coordinate, consider the external

force/torques:

๐‘ธ =๐œ0

TorqueForce

Lagrangian โ„’ = ๐พ โˆ’ ๐‘ƒ

In which ๐พ is the total kinetic energy of all rigid bodies, ๐พ =1

2๐‘š๐’—๐’„

๐Ÿ +1

2๐ถ๐ผ๐Ž๐Ÿ

while, ๐‘ƒ is the total potential energy w.r.t a reference level. ๐‘ƒ = ๐‘š๐‘”โ„Ž +1

2๐‘˜๐‘ฅ2

14

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Motivating Example

Governing Dynamic Equations:

Where, ๐‘ž๐‘– denotes the generalized coordinate, ๐‘„๐‘– denotes the generalized force,

and m denotes the number of independent generalized coordinate

The key point is

To derive the angular and center of mass velocities correctly.

๐‘ฃ๐‘12 = โ„Ž แˆถ๐œ™

2๐œ”1 = แˆถ๐œ™ and ๐‘ฃ๐‘2

2 = แˆถ๐‘Ÿ2 + ๐‘Ÿ แˆถ๐œ™2๐œ”2 = แˆถ๐œ™

Hence the total kinetic energy is

๐พ =1

2๐‘€ โ„Ž แˆถ๐œ™

2+

1

2๐ผ แˆถ๐œ™2 +

1

2๐‘š แˆถ๐‘Ÿ2 + ๐‘Ÿ แˆถ๐œ™

2

Notice that the mass m is considered as a point mass with no moment of inertia.

The total potential energy is (๐‘Ÿ๐‘œ denotes the position where the spring is at equilibrium):

๐‘ƒ = โˆ’๐‘€๐‘”โ„Ž cos๐œ™ โˆ’ ๐‘š๐‘”๐‘Ÿ cos ๐œ™ +1

2๐‘˜ ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘œ

๐‘Ÿ

Hence:

โ„’ =1

2๐‘€โ„Ž2 +๐‘š๐‘Ÿ2 + ๐ผ แˆถ๐œ™2 +

1

2๐‘š แˆถ๐‘Ÿ2 + ๐‘€โ„Ž +๐‘š๐‘Ÿ ๐‘” cos ๐œ™ +

1

2๐‘˜ ๐‘Ÿ โˆ’ ๐‘Ÿ0

2

๐‘š

๐‘ฆ

๐‘ฅ

(๐‘1)

(๐‘2)

15

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Motivating Example

Governing Dynamic Equations:

For ๐‘ž1 = ๐œ™

๐‘‘

๐‘‘๐‘ก

๐œ•โ„’

๐œ• แˆถ๐œ™โˆ’

๐œ•โ„’

๐œ•๐œ™= ๐‘„1

This yields to:

๐‘‘

๐‘‘๐‘ก๐‘€โ„Ž2 +๐‘š๐‘Ÿ2 + ๐ผ แˆถ๐œ™ + ๐‘€โ„Ž +๐‘š๐‘Ÿ ๐‘” sin๐œ™ = ๐œ

๐‘€โ„Ž2 +๐‘š๐‘Ÿ2 + ๐ผ แˆท๐œ™ + 2๐‘š๐‘Ÿ แˆถ๐‘Ÿ แˆถ๐œ™ + ๐‘€โ„Ž +๐‘š๐‘Ÿ ๐‘” sin๐œ™ = ๐œ

For ๐‘ž2 = ๐‘Ÿ

๐‘‘

๐‘‘๐‘ก

๐œ•โ„’

๐œ• แˆถ๐‘Ÿโˆ’

๐œ•โ„’

๐œ•๐‘Ÿ= ๐‘„2

This yields to:

๐‘š แˆท๐‘Ÿ โˆ’ ๐‘š๐‘Ÿ แˆถ๐œ™ โˆ’ ๐‘š๐‘Ÿ๐‘”๐‘๐‘œ๐‘  ๐œ™๐‘˜ ๐‘Ÿ โˆ’ ๐‘Ÿ0 = 0

16

โ„’

=1

2๐‘€โ„Ž2 +๐‘š๐‘Ÿ2 + ๐ผ แˆถ๐œ™2 +

1

2๐‘š แˆถ๐‘Ÿ2

+ ๐‘€โ„Ž +๐‘š๐‘Ÿ ๐‘” cos ๐œ™ +1

2๐‘˜ ๐‘Ÿ โˆ’ ๐‘Ÿ0

2

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Generalized Coordinates and Forces

Serial robot with primary joints

Each joint introduces a generalized coordinate:

๐’’ = ๐‘ž1, ๐‘ž2, โ€ฆ , ๐‘ž๐‘›๐‘‡ in which ๐‘ž๐‘– = แ‰Š

๐œƒ๐‘– for a revolute joint๐‘‘๐‘– for a prismatic joint

Each joint actuator introduces a generalized force:

๐‘ธ = ๐‘„1, ๐‘„2, โ€ฆ , ๐‘„๐‘›๐‘‡ in which ๐‘„๐‘– = แ‰Š

๐œ๐‘– for a revolute joint๐‘“๐‘– for a prismatic joint

If the robot is applying a wrench ๐“•๐’† to the environment, Then

๐‘ธ = ๐‰ + ๐‘ฑ๐‘ป๐“•๐’†

If the joints have friction:

๐‘„๐‘– = เต๐œ๐‘– โˆ’ ๐œ๐‘“ for a revolute joint

๐‘“๐‘– โˆ’ ๐‘“๐‘“ for a prismatic joint

In which, ๐œ๐‘“/๐‘“๐‘“ denotes the joint friction torque/force.

They are called generalized: To include both rotational/translational motion and torque/force actuation.

17

๐‘ญ๐ธ

๐’๐ธ

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Kinetic Energy

Serial robot with primary joints

For joint ๐‘–: ๐พ๐‘– =1

2๐‘š๐‘–๐’—๐‘๐‘–

๐‘‡ ๐’—๐‘๐‘– +1

2๐Ž๐‘–๐‘‡ ๐ถ๐ผ๐‘–๐Ž๐‘–

Total Kinetic Energy: ๐พ = ฯƒ๐‘–=1๐‘› ๐พ๐‘–

The velocity vectors and the moment of inertia could be expressed in any frame.

Inertia about center of mass is simply found in the moving frame ๐‘–๐ผ๐‘– (and it is constant)

To express it in the base frame: ๐‘ช๐‘ฐ๐’Š =๐ŸŽ๐‘น๐’Š

๐’Š๐‘ฐ๐’Š๐ŸŽ๐‘น๐’Š

๐‘ป.

The velocity ๐’—๐‘๐‘– can be found by conventional or screw-based Jacobian mapping

For conventional Jacobian: แˆถ๐Œ๐‘๐‘– = ๐‘ฑ๐’Š แˆถ๐’’

Where แˆถ๐Œ๐‘๐‘– =๐’—๐‘๐‘–๐œ”๐‘–

and ๐‘ฑ๐’Š =๐‘ฑ๐’—๐’Š๐‘ฑ๐Ž๐’Š

.

In which ๐ฝ๐‘– denotes the link Jacobian

and ๐ฝ๐‘ฃ๐‘– and ๐ฝ๐œ”๐‘– denote the translational/rotational Jacobian submatrices

18

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Kinetic Energy

To derive the link Jacobians ๐‘ฑ๐’Š =๐‘ฑ๐’—๐’Š๐‘ฑ๐Ž๐’Š

Use the general derivation method for Jacobian column vectors ๐ฝ๐‘ฃ๐‘–j

and ๐ฝ๐œ”๐‘–

jfor ๐’‹ โ‰ค ๐’Š.

๐ฝ๐‘ฃ๐‘–j= เต

๐’›๐‘—โˆ’1 ร—๐‘—โˆ’1๐’‘๐‘๐‘–

โˆ— revolute

๐’›๐‘—โˆ’1 prismaticand ๐ฝ๐œ”๐‘–

j= แ‰Š

๐’›๐‘—โˆ’1 revolute

๐ŸŽ prismatic

Where ๐‘—โˆ’1๐’‘๐‘๐‘–โˆ— is the position vector from the

origin of ๐‘— โˆ’ 1 link frame to the center of mass

of link ๐‘– and expressed in the base frame.

19

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

โ€ข Kinetic Energy

The procedure is like what on regular Jacobians, but the 0๐’‘๐‘›โˆ— is replaced with the position vector

of the center of mass 0๐’‘๐‘๐‘–โˆ— . (Chapter 04 โ€“ Slide 21)

Note that the velocity ๐‘ฃ๐‘๐‘– depends only to the joint velocities 1 to ๐‘–, and therefore, ๐ฝ๐‘ฃ๐‘–j= ๐ฝ๐œ”๐‘–

j

= 0 for ๐’‹ > ๐’Š.

๐‘ฑ๐’—๐’Š = ๐‘ฑ๐’—๐’Š๐Ÿ , ๐‘ฑ๐’—๐’Š

๐Ÿ , โ€ฆ , ๐‘ฑ๐’—๐’Š๐’‹, ๐ŸŽ, ๐ŸŽ, โ€ฆ , ๐ŸŽ , ๐‘ฑ๐Ž๐’Š = ๐‘ฑ๐Ž๐’Š

๐Ÿ , ๐‘ฑ๐Ž๐’Š๐Ÿ , โ€ฆ , ๐‘ฑ๐Ž๐’Š

๐’Š , ๐ŸŽ, ๐ŸŽ, โ€ฆ , ๐ŸŽ

Lagrange Formulation20

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข Kinetic Energy Therefore, ๐พ =

1

2ฯƒ๐‘–=1๐‘› (๐‘š๐‘–๐’—๐‘๐‘–

๐‘‡ ๐’—๐‘๐‘– +๐Ž๐‘–๐‘‡ ๐ถ๐ผ๐‘–๐Ž๐‘–)

Use Jacobians: =1

2แˆถ๐’’๐‘‡ ฯƒ๐‘–=1

๐‘› (๐‘š๐‘– ๐‘ฑ๐’—๐’Š๐‘ป ๐‘ฑ๐’—๐’Š+ ๐‘ฑ๐Ž

๐‘ป๐’Š

๐ถ๐ผ๐‘– ๐‘ฑ๐Ž๐’Š) แˆถ๐’’

Define Mass Matrix:

By this means: ๐พ =1

2แˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’

The Mass Matrix is a symmetric, and positive definite matrix.

The kinetic energy is also always positive unless the system is at rest.

โ€ข Potential Energy

The work required to displace link ๐‘– to position ๐’‘๐‘๐‘– is given by โˆ’๐‘š๐‘–๐’ˆ๐‘‡๐’‘๐‘๐‘–, in which ๐’ˆ is the vector of gravity

acceleration, Therefore,

๐‘ƒ = โˆ’ฯƒ๐‘–=1๐‘› ๐‘š๐‘–๐’ˆ

๐‘‡ ๐ŸŽ๐’‘๐‘๐‘–

If there is any spring (flexibility) in joints, then

In which ๐‘˜๐‘– denote the spring stiffness while ฮ”๐‘ฅ denote its deflection

21

๐‘ด(๐’’) =

๐‘–=1

๐‘›

(๐‘š๐‘– ๐‘ฑ๐’—๐’Š๐‘ป ๐‘ฑ๐’—๐’Š+ ๐‘ฑ๐Ž

๐‘ป๐’Š

๐ถ๐ผ๐‘– ๐‘ฑ๐Ž๐’Š)

๐‘ƒ = โˆ’

๐‘–=1

๐‘›

๐‘š๐‘–๐’ˆ๐‘‡ ๐ŸŽ๐’‘๐‘๐‘– +

1

2

๐‘–=1

๐‘›

๐‘˜๐‘– ฮ”๐‘ฅ2

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข General Formulation

Consider ๐‘›DoF serial manipulator with primary joints

Denote ๐’’ = ๐‘ž1, ๐‘ž2, โ€ฆ , ๐‘ž๐‘›๐‘ป as the generalized coordinates and

Denote ๐‘ธ = ๐‘„1, ๐‘„2, โ€ฆ , ๐‘„๐‘›๐‘ป as the generalized Forces.

Form Lagrangian by โ„’ = ๐พ โˆ’ ๐‘ƒ

Derive the governing equation of motion in vector form by:

๐‘‘

๐‘‘๐‘ก

๐œ•โ„’

๐œ• แˆถ๐’’โˆ’๐œ•โ„’

๐œ•๐’’= ๐‘ธ

in which, โ„’ = ๐พ(๐’’, แˆถ๐’’) โˆ’ ๐‘ƒ(๐’’)

hence, ๐‘‘

๐‘‘๐‘ก

๐œ•โ„’

๐œ• แˆถ๐’’=

๐‘‘

๐‘‘๐‘ก

๐œ•๐พ

๐œ• แˆถ๐’’=

๐‘‘

๐‘‘๐‘ก๐‘€ ๐‘ž แˆถ๐’’ = ๐‘ด ๐’’ แˆท๐’’ + แˆถ๐‘ด ๐’’ แˆถ๐’’

Furthermore, define the gravity vector as g ๐’’ =๐œ•๐‘ƒ

๐œ•๐’’= โˆ’ฯƒ๐‘–=1

๐‘› ๐œ•๐‘ƒ

๐œ•๐’’๐‘š๐‘–๐’ˆ

๐‘‡ ๐ŸŽ๐’‘๐‘๐‘– = โˆ’ฯƒ๐‘–=1๐‘› ๐‘š๐‘–๐‘ฑ๐’—๐’Š

๐‘ป ๐’ˆ.

In which, ๐‘ฑ๐’—๐’Š๐‘ป denotes the linear velocity Jacobian of each center of motion. Hence the dynamics is written as:

๐‘ด ๐’’ แˆท๐’’ + แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’๐œ•๐พ

๐œ•๐’’+ g ๐’’ = ๐‘ธ

22

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

โ€ข General Formulation

This can be written in general form of

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ = ๐‘ธ

In which v(๐’’, แˆถ๐’’) is called the Coriolis and centrifugal vector

v ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’๐œ•๐พ

๐œ•๐’’= แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’

1

2

๐œ•

๐œ•๐‘žแˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’

This vector may be written in a Christoffel matrix form v ๐’’, แˆถ๐’’ = ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’

๐‘ด ๐’’ แˆท๐’’ + ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + g ๐’’ = ๐‘ธ

The derivation and properties of dynamic matrices are elaborated next.

23

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

Lagrange Formulation

โ€ข Examples:

Example 1: Planar Elbow Manipulator

Consider

slender bar links with mass ๐‘š๐‘– @ their half length,

viscous friction ๐œ๐‘“๐‘– = ๐‘๐‘– แˆถ๐‘ž๐‘– at the joints

No joint flexibility, and no applied wrench.

Denote ๐’’ = ๐œƒ1, ๐œƒ2๐‘‡ and ๐‘ธ = ๐œ1 โˆ’ ๐‘1 แˆถ๐‘ž1, ๐œ2 โˆ’ ๐‘2 แˆถ๐‘ž2

๐‘‡

The inertia in ๐‘ง direction is found by

๐‘–๐ผ๐‘ง๐‘ง๐‘– =1

12๐‘š๐‘–๐‘Ž๐‘–

2 which is the same in base frame: ๐ถ๐ผ๐‘ง๐‘ง๐‘– =1

12๐‘š๐‘–๐‘Ž๐‘–

2

The position vector of the center of mass in base frame:

0๐’‘๐‘1โˆ— =

1

2๐‘Ž1

๐‘1๐‘ 10

, 1๐’‘๐‘2โˆ— =

1

2๐‘Ž2

๐‘12๐‘ 120

โ†’ 0๐’‘๐‘2โˆ— =

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

๐‘Ž1๐‘ 1 +1

2๐‘Ž2๐‘ 12

0

24

0๐’‘๐‘1โˆ—

0๐’‘๐‘2โˆ— 1๐’‘๐‘2

โˆ—

Matlab Code: Lagrange_2R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 1: Planar Elbow Manipulator

The link Jacobians are derived easily as:

๐‘ฑ๐’—๐Ÿ =1

2๐‘Ž1

โˆ’๐‘ 1๐‘10

000

, ๐‘ฑ๐Ž๐Ÿ=

001

000

๐‘ฑ๐’—๐Ÿ =

โˆ’๐‘Ž1๐‘ 1 โˆ’1

2๐‘Ž2๐‘ 12

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

0

โˆ’1

2๐‘Ž2๐‘ 12

1

2๐‘Ž2๐‘12

0

, ๐‘ฑ๐Ž๐Ÿ=

001

001

The robot Mass Matrix is derived as:

๐‘ด ๐’’ =

๐‘–=1

2

๐‘š๐‘– ๐‘ฑ๐’—๐’Š๐‘ป ๐‘ฑ๐’—๐’Š+ ๐‘ฑ๐Ž

๐‘ป๐’Š

๐ถ๐ผ๐‘– ๐‘ฑ๐Ž๐’Š =

1

3๐‘š1๐‘Ž1

2 +๐‘š2 ๐‘Ž12 + ๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 ๐‘š2

1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22

๐‘š2

1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22

1

3๐‘š2๐‘Ž2

2

25

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

Matlab Code: Lagrange_2R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 1: Planar Elbow Manipulator

The Gravity vector is derived as:

g ๐’’ = โˆ’

๐‘–=1

2

๐‘š๐‘–๐‘ฑ๐’—๐’Š๐‘ป ๐’ˆ =

1

2๐‘š1 +๐‘š2 ๐‘”๐‘Ž1๐‘1 +

1

2๐‘š2๐‘”๐‘Ž2๐‘12

1

2๐‘š2๐‘”๐‘Ž2๐‘12

The Coriolis and centrifugal vector is derived as:

v ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’๐œ•๐พ

๐œ•๐’’=

โˆ’๐‘š2๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1 แˆถ๐œƒ2 +1

2แˆถ๐œƒ22

1

2๐‘š2๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1

2

The Lagrange equations is formulates by:

๐ =๐œ1 โˆ’ ๐‘1 แˆถ๐‘ž2๐œ2 โˆ’ ๐‘2 แˆถ๐‘ž2

= ๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ .

26

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

Matlab Code: Lagrange_2R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 2: Planar RRR Manipulator

Like example 1 consider:

slender bar links with mass ๐‘š๐‘– @ their half length with no friction,

no joint flexibility, and no applied wrench.

The position vector of the center of mass in base frame:

0๐’‘๐‘1โˆ— =

1

2๐‘Ž1

๐‘1๐‘ 10

, 1๐’‘๐‘2โˆ— =

1

2๐‘Ž2

๐‘12๐‘ 120

โ†’ 0๐’‘๐‘2โˆ— =

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

๐‘Ž1๐‘ 1 +1

2๐‘Ž2๐‘ 12

0

2๐’‘๐‘3โˆ— =

1

2๐‘Ž3

๐‘123๐‘ 1230

โ†’ 1๐’‘๐‘3โˆ— =

๐‘Ž2๐‘12 +1

2๐‘Ž3๐‘123

๐‘Ž2๐‘ 12 +1

2๐‘Ž3๐‘ 123

0

and 0๐’‘๐‘3โˆ— =

๐‘Ž1๐‘1 + ๐‘Ž2๐‘12 +1

2๐‘Ž3๐‘123

๐‘Ž1๐‘ 1 + ๐‘Ž2๐‘ 12 +1

2๐‘Ž3๐‘ 123

0

27

Matlab Code: Lagrange_3R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 2: Planar RRR Manipulator

The link Jacobians are derived easily as:

๐‘ฑ๐’—๐Ÿ =1

2๐‘Ž1

โˆ’๐‘ 1๐‘10

000

000

, ๐‘ฑ๐Ž๐Ÿ=

001

000

000

๐‘ฑ๐’—๐Ÿ =

โˆ’๐‘Ž1๐‘ 1 โˆ’1

2๐‘Ž2๐‘ 12 โˆ’

1

2๐‘Ž2๐‘ 12 0

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

1

2๐‘Ž2๐‘12 0

0 0 0

, ๐‘ฑ๐Ž๐Ÿ=

001

001

000

๐‘ฑ๐’—๐Ÿ‘ =

โˆ’๐‘Ž1๐‘ 1 โˆ’ ๐‘Ž2๐‘ 12 โˆ’1

2๐‘Ž3๐‘ 123

๐‘Ž1๐‘1 + ๐‘Ž2๐‘12 +1

2๐‘Ž3๐‘๐‘ 123

0

โˆ’๐‘Ž2๐‘ 12 โˆ’1

2๐‘Ž3๐‘ 123

๐‘Ž2๐‘12 +1

2๐‘Ž3๐‘123

0

โˆ’1

2๐‘Ž3๐‘ 123

1

2๐‘Ž3๐‘123

0

, ๐‘ฑ๐Ž๐Ÿ‘=

001

001

001

28

Matlab Code: Lagrange_3R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 2: Planar RRR Manipulator

The robot Mass Matrix is derived as:

๐‘ด๐Ÿ‘ร—๐Ÿ‘ ๐’’ =

๐‘–=1

2

๐‘š๐‘– ๐‘ฑ๐’—๐’Š๐‘ป ๐‘ฑ๐’—๐’Š+ ๐‘ฑ๐Ž

๐‘ป๐’Š

๐ถ๐ผ๐‘– ๐‘ฑ๐Ž๐’Š

In which,

๐‘€11 =1

3๐‘š1 +๐‘š2 +๐‘š3 ๐‘Ž1

2 +1

3๐‘š2 +๐‘š3 ๐‘Ž2

2 +1

3๐‘š3๐‘Ž3

2 + ๐‘š2 + 2๐‘š3 ๐‘Ž1๐‘Ž2๐‘2 + ๐‘Ž3๐‘š3(๐‘Ž1๐‘23 + ๐‘Ž2๐‘3)

๐‘€22 =1

3๐‘š2 +๐‘š3 ๐‘Ž2

2 +1

3๐‘š3๐‘Ž3

2 +๐‘š3๐‘Ž2๐‘Ž3๐‘3, ๐‘€33 =1

3๐‘š3๐‘Ž3

2

๐‘€12 = ๐‘€21 =1

3๐‘š2 +๐‘š3 ๐‘Ž2

2 +๐‘š3๐‘Ž31

3๐‘Ž3 +

1

2๐‘Ž1๐‘23 +

1

2๐‘š2๐‘Ž1๐‘Ž2๐‘2 +๐‘š3๐‘Ž2(๐‘Ž1๐‘2 + ๐‘Ž3๐‘3)

๐‘€23 = ๐‘€32 = ๐‘š3๐‘Ž31

3๐‘Ž3 +

1

2๐‘Ž2๐‘3 , ๐‘€13 = ๐‘€31 = ๐‘š3๐‘Ž3

1

3๐‘Ž3 +

1

2๐‘Ž1๐‘23 +

1

2๐‘Ž2๐‘3

The Gravity vector is derived as:

g ๐’’ =

1

2๐‘š1๐‘Ž1๐‘” ๐‘1 +

1

2๐‘š2๐‘” ๐‘Ž1๐‘1 + ๐‘Ž2๐‘12 +๐‘š3๐‘” ๐‘Ž2๐‘12 +

1

2๐‘Ž3๐‘123

1

2๐‘š2๐‘Ž2๐‘” ๐‘12 +๐‘š3๐‘” ๐‘Ž2๐‘12 +

1

2๐‘Ž3๐‘123

1

2๐‘š3๐‘Ž3๐‘” ๐‘123

29

Matlab Code: Lagrange_3R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 2: Planar RRR Manipulator

The Coriolis and centrifugal vector is derived as:

๐‘ฝ ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’1

2

๐œ•

๐œ•๐‘žแˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’ =

๐‘‰1๐‘‰2๐‘‰3

In which,

๐‘‰1 = โˆ’ แˆถ๐œƒ1 แˆถ๐œƒ2 ๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 + ๐‘Ž1๐‘Ž2๐‘š2๐‘ 2 + 2๐‘Ž1๐‘Ž2๐‘š3๐‘ 2 + แˆถ๐œƒ3 ๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 + ๐‘Ž2๐‘Ž3๐‘š3๐‘ 3

โˆ’ แˆถ๐œƒ2 แˆถ๐œƒ21

2๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 +

1

2๐‘Ž1๐‘Ž2๐‘š2๐‘ 2 + ๐‘Ž1๐‘Ž2๐‘š3๐‘ 2 + แˆถ๐œƒ3

1

2๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 + ๐‘Ž2๐‘Ž3๐‘š3๐‘ 3

โˆ’ แˆถ๐œƒ3 ๐‘Ž3๐‘š3แˆถ๐œƒ3

1

2๐‘Ž1๐‘ 23 +

1

2๐‘Ž2๐‘ 3 +

1

2๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 แˆถ๐œƒ2

๐‘‰2 =1

2๐‘Ž1๐‘Ž3๐‘š3๐‘ 23 + ๐‘Ž1๐‘Ž2๐‘š2๐‘ 2 + ๐‘Ž1๐‘Ž2๐‘š3๐‘ 2 แˆถ๐œƒ1

2 โˆ’1

2๐‘Ž2๐‘Ž3๐‘š3๐‘ 3 แˆถ๐œƒ3

2 โˆ’ ๐‘Ž2๐‘Ž3๐‘š3๐‘ 3 แˆถ๐œƒ1 แˆถ๐œƒ3 + แˆถ๐œƒ2 แˆถ๐œƒ3

๐‘‰3 =1

2๐‘š3๐‘Ž3((๐‘Ž1๐‘ 23 + ๐‘Ž2๐‘ 3) แˆถ๐œƒ1

2 + ๐‘Ž2๐‘ 3 แˆถ๐œƒ22 + 2๐‘Ž2๐‘ 3 แˆถ๐œƒ1 แˆถ๐œƒ2

The Lagrange equations is formulates by:

๐ =

๐œ1๐œ2๐œ3

= ๐‘ด ๐’’ แˆท๐’’ + ๐‘ฝ ๐’’, แˆถ๐’’ + ๐‘ฎ ๐’’ .

30

Matlab Code: Lagrange_3R.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 3: SCARA Arm

Like example 1 consider:

slender bar links with mass ๐‘š๐‘– @ their half length with no friction,

no joint flexibility, and no applied wrench.

The inertia matrix is found by

1๐ผ๐‘ฆ๐‘ฆ1 =1 ๐ผ๐‘ง๐‘ง1 =

1

12๐‘š1๐‘Ž1

2 ; 2๐ผ๐‘ฆ๐‘ฆ2 =2 ๐ผ๐‘ง๐‘ง2 =

1

12๐‘š2๐‘Ž2

2 ,

3๐ผ๐‘ฅ๐‘ฅ3 =3 ๐ผ๐‘ฆ๐‘ฆ3 =

1

12๐‘š3โ„“

2 .

The position vector of the center of mass in base frame:

0๐’‘๐‘1โˆ— =

1

2๐‘Ž1๐‘1

1

2๐‘Ž1๐‘ 1

๐‘‘1

, 1๐’‘๐‘2โˆ— =

1

2๐‘Ž2๐‘12

1

2๐‘Ž2๐‘ 12

0

โ†’ 0๐’‘๐‘2โˆ— =

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

๐‘Ž1๐‘ 1 +1

2๐‘Ž2๐‘ 12

๐‘‘1

2๐’‘๐‘3โˆ— =

00

๐‘‘3 โˆ’1

2โ„“

โ†’ 1๐’‘๐‘3โˆ— =

๐‘Ž2๐‘12๐‘Ž2๐‘ 12

โˆ’๐‘‘3 +1

2โ„“

โ†’ 0๐’‘๐‘3โˆ— =

๐‘Ž1๐‘1 + ๐‘Ž2๐‘12๐‘Ž1๐‘ 1 + ๐‘Ž2๐‘ 12

๐‘‘1 โˆ’ ๐‘‘3 +1

2โ„“

31

Matlab Code: Lagrange_SCARA.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 3: SCARA Arm

The link Jacobians are derived easily as:

๐‘ฑ๐’—๐Ÿ =1

2๐‘Ž1

โˆ’๐‘ 1๐‘10

000

000

, ๐‘ฑ๐Ž๐Ÿ=

0 0 00 0 01 0 0

๐‘ฑ๐’—๐Ÿ =

โˆ’๐‘Ž1๐‘ 1 โˆ’1

2๐‘Ž2๐‘ 12 โˆ’

1

2๐‘Ž2๐‘ 12 0

๐‘Ž1๐‘1 +1

2๐‘Ž2๐‘12

1

2๐‘Ž2๐‘12 0

0 0 0

, ๐‘ฑ๐Ž๐Ÿ=

0 0 00 0 01 1 0

๐‘ฑ๐’—๐Ÿ‘ =โˆ’๐‘Ž1๐‘ 1 โˆ’ ๐‘Ž2๐‘ 12 โˆ’๐‘Ž2๐‘ 12 0๐‘Ž1๐‘1 + ๐‘Ž2๐‘12 ๐‘Ž2๐‘12 0

0 0 1, ๐‘ฑ๐Ž๐Ÿ‘

=001

001

000

32

Matlab Code: Lagrange_SCARA.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 3: SCARA Arm

The robot Mass Matrix is derived as:

๐‘ด ๐’’ =

๐‘–=1

2

๐‘š๐‘– ๐‘ฑ๐’—๐’Š๐‘ป ๐‘ฑ๐’—๐’Š+ ๐‘ฑ๐Ž

๐‘ป๐’Š

๐ถ๐ผ๐‘– ๐‘ฑ๐Ž๐’Š

= ๐‘š1

1

3๐‘Ž12 0 0

0 0 00 0 0

+ ๐‘š2

๐‘Ž12 + ๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 0

1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 1

3๐‘Ž22 0

0 0 0

+

๐‘š3

๐‘Ž12 + 2๐‘Ž1๐‘Ž2๐‘2 + ๐‘Ž2

2 ๐‘Ž1๐‘Ž2๐‘2 + ๐‘Ž22 0

๐‘Ž1๐‘Ž2๐‘2 + ๐‘Ž22 ๐‘Ž2

2 00 0 1

33

๐‘€

=

1

3๐‘š1๐‘Ž1

2 +๐‘š2 ๐‘Ž12 +

1

3๐‘Ž22 + ๐‘Ž1๐‘Ž2๐‘2 +๐‘š3 ๐‘Ž1

2 + ๐‘Ž22 +

1

12๐‘Ž32 + 2๐‘Ž1๐‘Ž2๐‘2 โˆ’๐‘š2๐‘Ž2

1

3๐‘Ž2 +

1

2๐‘Ž1๐‘2 โˆ’๐‘š3 ๐‘Ž2

2 +1

12๐‘Ž32 + ๐‘Ž1๐‘Ž2๐‘2 0

โˆ’๐‘š2๐‘Ž21

3๐‘Ž2 +

1

2๐‘Ž1๐‘2 โˆ’๐‘š3 ๐‘Ž2

2 +1

12๐‘Ž32 + ๐‘Ž1๐‘Ž2๐‘2

1

3๐‘š2๐‘Ž2

2 +๐‘š3 ๐‘Ž22 +

1

12๐‘Ž32 0

0 0 ๐‘š3

Matlab Code: Lagrange_SCARA.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 3: SCARA Arm

The Gravity vector is derived as:

g ๐’’ =00

โˆ’๐‘š3๐‘”

The Coriolis and centrifugal vector is derived as:

v ๐’’, แˆถ๐’’ =

โˆ’(๐‘š2+2๐‘š3)๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1 แˆถ๐œƒ2 +1

2แˆถ๐œƒ22

1

2๐‘š2 +๐‘š3 ๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1

2

0

The Lagrange equations is formulated by:

๐ =

๐œ1๐œ2๐‘“3

= ๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ .

34

Matlab Code: Lagrange_SCARA.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Lagrange Formulation

Example 3: SCARA Arm

The Lagrange equations is formulated by:

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ = ๐‘ธ

35

๐‘“3Matlab Code: Lagrange_SCARA.m

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Scientist Bio36

Joseph-Louis Lagrange(25 January 1736 โ€“ 10 April 1813)

Was an Italian mathematician and astronomer, later naturalized French. He made significant contributions to the

fields of analysis, number theory, and both classical and celestial mechanics.

In 1766, on the recommendation of Swiss Leonhard Euler and French d'Alembert, Lagrange succeeded Euler as

the director of mathematics at the Prussian Academy of Sciences in Berlin, Prussia, where he stayed for over

twenty years, producing volumes of work and winning several prizes of the French Academy of Sciences.

Lagrange's treatise on analytical mechanics written in Berlin and first published in 1788, offered the most

comprehensive treatment of classical mechanics since Newton and formed a basis for the development of

mathematical physics in the nineteenth century. In 1787, at age 51, he moved from Berlin to Paris and became a

member of the French Academy of Sciences. He remained in France until the end of his life. He was instrumental

in the decimalisation in Revolutionary France, became the first professor of analysis at the ร‰cole

Polytechnique upon its opening in 1794, was a founding member of the Bureau des Longitudes, and

became Senator in 1799.

Lagrange was one of the creators of the calculus of variations, deriving the Eulerโ€“Lagrange equations for

extrema of functionals. He extended the method to include possible constraints, arriving at the method

of Lagrange multipliers. Lagrange invented the method of solving differential equations known as variation of

parameters, applied differential calculus to the theory of probabilities and worked on solutions for algebraic

equations. He proved that every natural number is a sum of four squares. His treatise Theorie des fonctions analytiques laid some of the foundations of group theory, anticipating Galois. In calculus, Lagrange developed a

novel approach to interpolation and Taylor series. He studied the three-body problem for the Earth, Sun and

Moon (1764) and the movement of Jupiter's satellites (1766), and in 1772 found the special-case solutions to this

problem that yield what are now known as Lagrangian points. Lagrange is best known for

transforming Newtonian mechanics into a branch of analysis, Lagrangian mechanics, and presented the

mechanical "principles" as simple results of the variational calculus.

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Contents

In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

37

Actuator DynamicsElectrical actuators, permanent magnet DC motors, servo amplifiers, gearbox, motor-gearbox-load dynamics, motor-gearbox-multiple joint robot,

4

Dynamics CalibrationLinear Regression, linear model with constant gravity, house holder reflection, varying gravity term, filtered velocity, model verification, consistency measure.

5

PreliminariesAngular acceleration, linear acceleration of a point, mass properties, center of mass, moments of inertia, inertia matrix transformations, linear and angular momentum, kinetic energy.

1

Lagrange FormulationMotivating example, generalized coordinates and forces, kinetic energy, mass matrix, potential energy, gravity vector, Coriolis and centrifugal vector, case studies.

2

Dynamic Formulation PropertiesMass matrix properties, linearity in parameters, Christoffel Matrix, skew-symmetric property, general dynamic formulation, passivity,

3

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Dynamics Formulation Representation

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ = ๐‘ธ

Mass Matrix Properties

Since the mass matrix is defined from kinetic energy: ๐พ =1

2แˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’

It is always symmetric and positive definite (โˆ€ Configurations ๐’’)

It is always invertible

It has upper and lower bound

๐œ† ๐‘ฐ๐‘›ร—๐‘› โ‰ค ๐‘ด ๐’’ โ‰ค าง๐œ† ๐‘ฐ๐‘›ร—๐‘›

Furthermore,

1

เดฅ๐œ†๐‘ฐ๐‘›ร—๐‘› โ‰ค ๐‘ดโˆ’๐Ÿ ๐’’ โ‰ค

1

๐œ†๐‘ฐ๐‘›ร—๐‘›

The bounds may be represented by matrix norm

๐‘€ โ‰ค ๐‘ด ๐’’ โ‰ค เดฅ๐‘€

In which ๐‘€ and เดฅ๐‘€ are positive constants.

38

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Linearity in Parameters

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ = ๐‘ธ

This formulation is nonlinear and multivariable w.r.t ๐’’

But It could be written in linear regression form w.r.t kinematic and dynamic

parameters

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + ๐’ˆ ๐’’ = ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ ๐šฝ

In which, ๐“จ denote the linear regressor form

While ๐šฝ denote the kinematic and dynamic parameter vector

This regression form is not unique

But could be found for any serial robot

The minimum number of parameters may found by inspection

Or calibration process and singular values decomposition

39

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Linearity in Parameters

Example: Planar Elbow Manipulator

Dynamic formulation:

๐œ1

=1

3๐‘š1๐‘Ž1

2 +๐‘š2 ๐‘Ž12 + ๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 แˆท๐œƒ1 + ๐‘š2

1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 แˆท๐œƒ2

โˆ’๐‘š2๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1 แˆถ๐œƒ2 +1

2แˆถ๐œƒ22 +

1

2๐‘š1 +๐‘š2 ๐‘”๐‘Ž1๐‘1 +

1

2๐‘š2๐‘”๐‘Ž2๐‘12 + ๐‘1 แˆถ๐œƒ1

๐œ2 = ๐‘š2

1

2๐‘Ž1๐‘Ž2๐‘2 +

1

3๐‘Ž22 แˆท๐œƒ1 +

1

3๐‘š2๐‘Ž2

2 แˆท๐œƒ2 +1

2๐‘š2๐‘Ž1๐‘Ž2๐‘ 2 แˆถ๐œƒ1

2 +1

2๐‘š2๐‘”๐‘Ž2๐‘12 + ๐‘2 แˆถ๐œƒ2

Choose the parameters as:

๐œ™1 =1

3๐‘š1๐‘Ž1

2 +๐‘š2 ๐‘Ž12 +

1

3๐‘Ž22 ๐‘€11 = ๐œ™1 + ๐œ™2๐‘2, ๐‘€22 = ๐œ™3

๐œ™2 = ๐‘š2๐‘Ž1๐‘Ž2, ๐œ™3 =1

3๐‘š2๐‘Ž2

2 ๐‘€12 = ๐‘€21 =1

2๐œ™2๐‘2 + ๐œ™3

๐œ™4 =1

2๐‘š1 +๐‘š2 , ๐œ™5 =

1

2๐‘š2๐‘Ž2 ๐‘”1 = ๐œ™4๐‘”๐‘1 + ๐œ™5๐‘”๐‘12, ๐‘”2 = ๐œ™5๐‘”๐‘12

๐œ™6 = ๐‘1, ๐œ™7 = ๐‘2 ๐‘ฃ1 = โˆ’๐œ™2๐‘ 2 แˆถ๐œƒ1 แˆถ๐œƒ2 +1

2แˆถ๐œƒ22 , ๐‘ฃ2 =

1

2๐œ™2๐‘ 2 แˆถ๐œƒ1

2

40

โ‡’

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Linearity in Parameters

Example: Planar Elbow Manipulator

Then

๐‘ด ๐’’ แˆท๐’’ + v ๐’’, แˆถ๐’’ + g ๐’’ = ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ ๐šฝ

In which

๐“จ =แˆท๐œƒ10

๐‘2 แˆท๐œƒ1 +1

2แˆท๐œƒ2 โˆ’ ๐‘ 2 แˆถ๐œƒ1 แˆถ๐œƒ2 +

1

2แˆถ๐œƒ22

1

2๐‘2 แˆท๐œƒ1 + ๐‘ 2 แˆถ๐œƒ1

2

แˆท๐œƒ2แˆท๐œƒ1 + แˆท๐œƒ2

๐‘”๐‘10

๐‘”๐‘12๐‘”๐‘12

แˆถ๐œƒ10

0แˆถ๐œƒ2

,

and ๐šฝ =

๐œ™1๐œ™2๐œ™3๐œ™4๐œ™5๐œ™6๐œ™7

=

1

3๐‘š1๐‘Ž1

2 +๐‘š2 ๐‘Ž12 +

1

3๐‘Ž22

๐‘š2๐‘Ž1๐‘Ž21

3๐‘š2๐‘Ž2

2

1

2๐‘š1 +๐‘š2

1

2๐‘š2๐‘Ž2

๐‘1๐‘2

.

41

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Christoffel Matrix

The Coriolis and centrifugal vector may be written in Matrix form:

v ๐’’, แˆถ๐’’ = ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’

To derive this Matrix, recall Kronecker product:

For two matrices ๐‘จ๐‘›ร—๐‘š, and ๐‘ฉ๐‘ร—๐‘Ÿ โ†’ ๐‘จโจ‚๐‘ฉ = ๐‘Ž๐‘–๐‘—๐‘ฉ ๐‘›๐‘ร—๐‘š๐‘Ÿ

The matrix has ๐‘ ร— ๐‘Ÿ blocks, each determined by term-by-term multiplication of ๐‘Ž๐‘–๐‘—๐‘ฉ

Note that ๐‘ฐ๐‘›ร—๐‘›โจ‚๐’™ โ‰  ๐’™โจ‚๐‘ฐ๐‘›ร—๐‘› but ๐‘ฐ๐‘›ร—๐‘›โจ‚๐’™ ๐’™ = ๐’™โจ‚๐‘ฐ๐‘›ร—๐‘› ๐’™

For any arbitrary ๐’™ โˆˆ โ„๐‘›

Finally,

๐œ•๐‘จ

๐๐’’=

๐œ•๐‘จ

๐๐’’๐Ÿ

โ‹ฎ๐œ•๐‘จ

๐๐’’๐’

โ†’๐

๐๐’’๐‘จ ๐’’ ๐‘ฉ(๐’’) = ๐‘ฐ๐‘›ร—๐‘›โจ‚๐‘จ

๐œ•๐‘ฉ

๐๐’’+

๐œ•๐‘จ

๐๐’’๐‘ฉ.

42

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Christoffel Matrix

The Coriolis and centrifugal vector is defined by

v ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ แˆถ๐’’ โˆ’1

2

๐œ•

๐œ•๐’’แˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’

Use Kronecker product, and note that ๐œ• แˆถ๐’’๐‘‡

๐œ•๐’’= 0, then

v ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ โˆ’1

2๐‘ฐ๐‘›ร—๐‘›โจ‚ แˆถ๐’’๐‘ป

๐œ•๐‘ด

๐๐’’แˆถ๐’’.

Hence,

v ๐’’, แˆถ๐’’ = ๐‘ช1 ๐’’, แˆถ๐’’ แˆถ๐’’

In which,

๐‘ช1 ๐’’, แˆถ๐’’ = แˆถ๐‘ด ๐’’ โˆ’1

2๐‘ผ ๐’’, แˆถ๐’’

where, ๐‘ผ ๐’’, แˆถ๐’’ = ๐‘ฐ๐‘›ร—๐‘›โจ‚ แˆถ๐’’๐‘ป๐œ•๐‘ด

๐๐’’=

แˆถ๐‘ž1 00 แˆถ๐‘ž2

โ‹ฏ 0โ‹ฏ 0

โ‹ฎ โ‹ฎ0 0

โ‹ฑ โ‹ฎโ‹ฏ แˆถ๐‘ž๐‘›

๐œ•๐‘ด

๐๐‘ž1

๐œ•๐‘ด

๐๐‘ž2โ‹ฏ

๐œ•๐‘ด

๐๐‘ž๐‘›.

43

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Christoffel Matrix

This representation is not unique! Find another one.

๐‘ช2 ๐’’, แˆถ๐’’ = ๐‘ผ๐‘ป ๐’’, แˆถ๐’’ โˆ’1

2๐‘ผ ๐’’, แˆถ๐’’

Notice แˆถ๐‘ด โ‰  ๐‘ผ๐‘ป but แˆถ๐‘ด แˆถ๐’’ = ๐‘ผ๐‘ป แˆถ๐’’.

The most celebrated Christofell Matrix is derived by:

๐‘ช ๐’’, แˆถ๐’’ =1

2แˆถ๐‘ด ๐’’ + ๐‘ผ๐‘ป ๐’’, แˆถ๐’’ โˆ’ ๐‘ผ ๐’’, แˆถ๐’’

โ€ข Skew-Symmetric Property

For all ๐ถ๐‘– โ€™s this relation holds

แˆถ๐’’๐‘ป แˆถ๐‘ด ๐’’ โˆ’ ๐Ÿ๐‘ช๐’Š ๐’’, แˆถ๐’’ แˆถ๐’’ = 0

But for ๐‘ช ๐’’, แˆถ๐’’ the own matrix แˆถ๐‘ด ๐’’ โˆ’ ๐Ÿ๐‘ช ๐’’, แˆถ๐’’ is skew symmetric.

44

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Christoffel Matrix

Proof:

1) แˆถ๐’’๐‘ป แˆถ๐‘ด โˆ’ ๐Ÿ๐‘ช๐Ÿ แˆถ๐’’ = แˆถ๐’’๐‘ป แˆถ๐‘ด โˆ’ ๐Ÿ แˆถ๐‘ด + ๐‘ผ แˆถ๐’’ = แˆถ๐’’๐‘ป๐‘ผโˆ’ แˆถ๐’’๐‘ป แˆถ๐‘ด แˆถ๐’’ = ๐ŸŽ since แˆถ๐‘ด แˆถ๐’’ = ๐‘ผ๐‘ป แˆถ๐’’.

2) แˆถ๐’’๐‘ป แˆถ๐‘ด โˆ’ ๐Ÿ๐‘ช๐Ÿ แˆถ๐’’ = แˆถ๐’’๐‘ป แˆถ๐‘ด โˆ’ ๐Ÿ๐‘ผ๐‘ป + ๐‘ผ แˆถ๐’’ = แˆถ๐’’๐‘ป แˆถ๐‘ด แˆถ๐’’ โˆ’ (๐Ÿ๐‘ผ๐‘ป โˆ’ ๐‘ผ) แˆถ๐’’ = แˆถ๐’’๐‘ปเตซโˆ’๐‘ผ๐‘ป

45

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Passivity

Claim: the amount of energy dissipated by the robot has a negative lower

bound โˆ’๐›ฝ

เถฑ0

๐‘‡

แˆถ๐’’๐‘‡ ๐œ‰ ๐‰ ๐œ‰ ๐‘‘๐œ‰ โ‰ฅ โˆ’๐›ฝ

Note แˆถ๐’’๐‘‡๐‰ has the units of power, and the integral denotes the energy produced

(or dissipated) by the system in the interval [0, ๐‘‡]

How this is related to the rate of total energy แˆถ๐ป:

In robotic manipulators:

Total Energy ๐ป = ๐พ + ๐‘ƒ =1

2แˆถ๐’’๐‘‡๐‘ด ๐’’ แˆถ๐’’ + ๐‘ƒ ๐’’

46

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Formulation Properties

โ€ข Passivity Rate of total energy is:

แˆถ๐ป = แˆถ๐’’๐‘‡๐‘ด ๐’’ แˆท๐’’ +1

2แˆถ๐’’๐‘‡ แˆถ๐‘ด ๐’’ แˆถ๐’’ + แˆถ๐’’๐‘ป

๐๐‘ƒ ๐’’

๐๐’’= แˆถ๐’’๐‘‡ ๐‰ โˆ’ ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ โˆ’ g(๐’’) +

1

2แˆถ๐’’๐‘‡ แˆถ๐‘ด ๐’’ แˆถ๐’’ + แˆถ๐’’๐‘ป

๐๐‘ƒ ๐’’

๐๐’’

= แˆถ๐’’๐‘‡๐‰ +1

2แˆถ๐’’๐‘‡ แˆถ๐‘ด ๐’’ โˆ’ ๐Ÿ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + แˆถ๐’’๐‘‡

๐๐‘ƒ ๐’’

๐๐’’โˆ’ g(๐’’) = แˆถ๐’’๐‘‡๐‰

The last two terms are both zero by skew-symmetric property and definition of gravity vector.

Hence, because แˆถ๐ป = แˆถ๐’’๐‘‡๐‰

เถฑ0

๐‘‡

แˆถ๐ป ๐œ‰ ๐‘‘๐œ‰ = เถฑ0

๐‘‡

แˆถ๐’’๐‘‡ ๐œ‰ ๐‰ ๐œ‰ ๐‘‘๐œ‰ = ๐ป ๐‘‡ โˆ’ ๐ป 0 โ‰ฅ โˆ’๐ป(0)

Since the total energy of the system is always positive, for any robotic system the passivity property is

held with ๐›ฝ = ๐ป(0).

47

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Simulation

โ€ข Forward Dynamics

In forward dynamics given the actuator forces

applied to the robot, the resulting output

trajectory of the robot is found.

General Dynamics:

๐‰ + ๐‰๐’… = ๐‘ด ๐’’ แˆท๐’’ + ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + g ๐’’

The Dynamics equations shall be integrated to find the trajectory

The mass matrix is positive definite, hence it is invertible in all configurations

แˆท๐’’ = ๐‘ดโˆ’๐Ÿ ๐’’ ๐‰ + ๐‰๐’… โˆ’ ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ โˆ’ g ๐’’

Use numerical integration like Runge-Kutta method (ode45 in Matlab or Simulink)

Given the torques ๐‰, ๐‰๐’… and the initial conditions for the augmented states ๐’™ = ๐’™๐Ÿ, ๐’™๐Ÿ๐‘ป = ๐’’, แˆถ๐’’ ๐‘ป, use

numerical integration to solve for the trajectory.

แˆถ๐’™1 = แˆถ๐’’ = ๐’™2

แˆถ๐’™2 = แˆท๐’’ = ๐‘ดโˆ’๐Ÿ ๐’™1 ๐‰ + ๐‰๐’… โˆ’ ๐‘ช ๐’™๐Ÿ, ๐’™๐Ÿ ๐’™๐Ÿ โˆ’ g ๐’™๐Ÿ

48

Forward Dynamics๐’’๐‰

๐‰๐

Actuator Torques

Output Trajectory

Disturbance torque

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamic Simulation

โ€ข Forward Dynamics in Feedback loop

By using, trajectory planner, and controller design, a desired trajectory is traversed.

(Chapter 6)

โ€ข Inverse Dynamics

In inverse dynamics given the trajectory of the robot ๐’’ ๐‘ก , แˆถ๐’’ ๐‘ก , แˆท๐’’(๐‘ก) , the required

actuator forced to traverse this trajectory ๐‰ is found.

Use general dynamics: ๐‰ = ๐‘ด ๐’’ แˆท๐’’ + ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + g ๐’’

No integration is needed, direct calculation is possible.

49

๐’’๐’…Forward DynamicsController

๐’’๐’†๐’’ ๐‰

+ โˆ’

Trajectory Planner

Inverse Dynamics๐’’ ๐’• , แˆถ๐’’, แˆท๐’’ ๐‰

Trajectory Required actuator torque

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Contents

In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

50

Actuator DynamicsElectrical actuators, permanent magnet DC motors, servo amplifiers, gearbox, motor-gearbox-load dynamics, motor-gearbox-multiple joint robot,

4

Dynamics CalibrationLinear Regression, linear model with constant gravity, house holder reflection, varying gravity term, filtered velocity, model verification, consistency measure.

5

PreliminariesAngular acceleration, linear acceleration of a point, mass properties, center of mass, moments of inertia, inertia matrix transformations, linear and angular momentum, kinetic energy.

1

Lagrange FormulationMotivating example, generalized coordinates and forces, kinetic energy, mass matrix, potential energy, gravity vector, Coriolis and centrifugal vector, case studies.

2

Dynamic Formulation PropertiesMass matrix properties, linearity in parameters, Christoffel Matrix, skew-symmetric property, general dynamic formulation, passivity,

3

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Robot Electrical Actuators

51

Permanent MagnetDC Motors

Brushless DC Motors

AC Induction Motors

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข DC Motors

Principle of operation

A current carrying conductor in a magnetic field

experiences a Force

๐น = ๐‘– ร— ๐œ™

๐‘–: the current in the conductor, ๐œ™: the magnetic field flux

DC motor consists of

A fixed Stator (Permanent magnet)

A rotating rotor (Armature)

A commutator: to switch the direction of current

The torque generated in the motor

๐œ๐‘š = ๐พ1๐œ™๐‘–๐‘Ž๐‘–๐‘Ž: the armature current, ๐œ™: the magnetic field flux

Lenzโ€™s Law: back-emf voltage

๐‘‰๐‘ = ๐พ2๐œ™๐œ”๐‘š๐œ”๐‘š: the angular velocity of the rotor, ๐œ™: the magnetic field flux

52

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข DC Motors

Principle of operation

For a permanent magnet DC motor ๐œ™ is constant

If SI unit is used:

๐œ๐‘š = ๐พ๐‘š๐‘–๐‘Ž and ๐‘‰๐‘ = ๐พ๐‘š๐œ”๐‘š

๐พ๐‘š: the DC motor torque or velocity constant

Electrical model of the PMDC motor

๐ฟ๐‘‘๐‘–๐‘Ž

๐‘‘๐‘ก+ ๐‘…๐‘–๐‘Ž + ๐‘‰๐‘ = ๐‘‰ ๐‘ก or ๐ฟ๐‘  + ๐‘… ๐‘–๐‘Ž = ๐‘‰ โˆ’ ๐‘‰๐‘

๐‘–๐‘Ž =๐‘‰ โˆ’ ๐‘‰๐‘๐ฟ๐‘  + ๐‘…

Electro-mechanical model of the PMDC motor

๐œ๐‘š = ๐พ๐‘š๐‘–๐‘Ž = ๐œ๐‘š = ๐พ๐‘š๐‘‰ โˆ’ ๐พ๐‘š๐œ”๐‘š๐ฟ๐‘  + ๐‘…

53

๐‘–๐‘Ž

๐œ๐‘š

๐œ”๐‘š

๐‘‰๐‘๐‘‰(๐‘ก)

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข DC Motors

Principle of operation

Usually ๐ฟ

๐‘…โ‰ช 1 โ‰… 10โˆ’2 โˆ’ 10โˆ’3

Then up to 100 โˆ’ 1000 ๐ป๐‘ง bandwidth neglect induction

๐œ๐‘š =๐พ๐‘š

๐‘…๐‘‰ โˆ’ ๐พ๐‘š๐œ”๐‘š

The Motor characteristic torque-velocity curve is linear

To avoid overheating ๐‘–๐‘Ž is clamped to ๐‘–๐‘š๐‘Ž๐‘ฅ by current limiters

The stall torque ๐œ๐‘  is the maximum output torque of the motor,

when the velocity of the motor is stalled.

๐‘‰๐‘  =๐‘…๐œ๐‘ ๐พ๐‘š

The maximum speed of the motor ๐œ”๐‘š๐‘Ž๐‘ฅ is obtained when no load

torque is applied to the motor

Back-emf acts like a disturbance on the output torque, the more

the velocity the less the output torque.

How to compensate?!!

54

๐œ๐‘š

๐‘‰1

๐‘‰2

๐‘‰๐‘š๐‘Ž๐‘ฅ

๐œ”๐‘š๐œ”๐‘š๐‘Ž๐‘ฅ

๐œ๐‘  ๐œ๐‘š๐‘Ž๐‘ฅ = ๐พ๐‘š๐‘–๐‘š๐‘Ž๐‘ฅ

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Servo Amplifier

Principle of operation

Voltage is generated in PWM (pulse-width modulation)

If the duty cycle is = 50% โ†’ ๐‘ฃ๐‘œ๐‘ข๐‘ก = 0

If the duty cycle is > 50% โ†’ ๐‘ฃ๐‘œ๐‘ข๐‘ก > 0

If the duty cycle is < 50% โ†’ ๐‘ฃ๐‘œ๐‘ข๐‘ก < 0

The PWM frequency is usually > 25๐ป๐‘ง

55

๐‘‰๐‘š๐‘Ž๐‘ฅ

๐‘‰๐‘š๐‘–๐‘›

time

Duty cycle

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Servo Amplifier

Principle of operation

Current (Torque) mode

An internal current feedback with a tuned PI controller

Ideally considered as a current (torque) source

Back-emf effect limits the performance up to 100 ๐ป๐‘ง bandwidth

Command signal ๐‘–๐‘‘ is tracked within the bandwidth

Velocity (Voltage) Mode

An external tacho (or velocity) feedback with a tuned lead controller

Command signal ๐œ”๐‘‘ is tracked within the bandwidth when switched to this mode

Current limiter with current foldback

Usually ยฑ๐‘–๐‘š๐‘Ž๐‘ฅ at continuous operation while permitting higher current intermittently

FWD and REV current clamp

56

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Servo Amplifier (Function Diagram)

57

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Servo Amplifier (Current Mode Frequency Response)

58

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

โ€ข Gearbox

Principle of operation

Electric motors provide low torque but have high velocity

Use Gear box to increase the torque while reducing the speed

Ideal Gearbox with ratio ๐œ‚

๐œƒ๐‘š = ๐œ‚ ๐œƒ and ๐œ”๐‘š = ๐œ‚ ๐œ” while ๐œ๐‘š =1

๐œ‚๐œ

By use principle of virtual work: ๐œ๐‘š โ‹… ๐œƒ๐‘š = ๐œ โ‹… ๐œƒ

59

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

Motor โ€“ Gearbox โ€“ Load Dynamics

Notation: subscript ๐‘š for motor side, no subscript for load side

Suppose inertia ๐ผ๐‘š, ๐ผ and viscous friction ๐‘๐‘š, ๐‘

Motor side dynamics: Load side dynamics:

๐œ๐‘š = ๐ผ๐‘š แˆท๐œƒ๐‘š + ๐‘๐‘š แˆถ๐œƒ๐‘š +1

๐œ‚๐œ,

๐œ = ๐ผ แˆท๐œƒ + ๐‘ แˆถ๐œƒ

Overall dynamics:

๐œ๐‘š = ๐ผ๐‘š แˆท๐œƒ๐‘š + ๐‘๐‘š แˆถ๐œƒ๐‘š +1

๐œ‚๐ผ แˆท๐œƒ + ๐‘ แˆถ๐œƒ

Substitute: แˆถ๐œƒ๐‘š = ๐œ‚ แˆถ๐œƒ and แˆท๐œƒ๐‘š = ๐œ‚ แˆท๐œƒ and consider ๐œ๐‘š =1

๐œ‚๐œ

@ motor side: ๐œ๐‘š = ๐ผ๐‘š +1

๐œ‚2๐ผ แˆท๐œƒ๐‘š + ๐‘๐‘š +

1

๐œ‚2๐‘ แˆถ๐œƒ๐‘š

@ Load side: ๐œ = ๐œ‚2๐ผ๐‘š + ๐ผ แˆท๐œƒ + ๐œ‚2๐‘๐‘š + ๐‘ แˆถ๐œƒ

60

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

The effect of motor inertia and damping is highlighted

by a factor of ๐œ‚2

Actuator Dynamics

Motor โ€“ Gearbox โ€“ Multiple (n) DOFs Robot

Shorthand Dynamics:

๐œ = ๐ผ๐‘’ แˆท๐œƒ + ๐‘๐‘’ แˆถ๐œƒ

In which the effective inertia and viscous friction are:

๐ผ๐‘’ = ๐œ‚2๐ผ๐‘š + ๐ผ and ๐‘๐‘’ = ๐œ‚2๐‘๐‘š + ๐‘

Consider the general model of the robot

๐‰ โˆ’ ๐’ƒ แˆถ๐’’ = ๐‘ด ๐’’ แˆท๐’’ + ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + g ๐’’

Add motor โ€“ gearbox dynamics

๐‰ โˆ’ ๐’ƒ๐’† แˆถ๐’’ = ๐‘ด๐’† แˆท๐’’ + ๐‘ช ๐’’, แˆถ๐’’ แˆถ๐’’ + g ๐’’

In which:

๐‘ด๐’† ๐’’ = ๐‘ด ๐’’ +

๐œ‚12๐ผ๐‘š1

โ€ฆ 0

โ‹ฎ โ‹ฑ 00 โ€ฆ ๐œ‚๐‘›

2๐ผ๐‘š๐‘›

and ๐’ƒ๐’† =

๐‘1 + ๐œ‚2๐‘๐‘š1

โ‹ฎ๐‘๐‘› + ๐œ‚2๐‘๐‘š๐‘›

61

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Actuator Dynamics

Motor โ€“ Gearbox โ€“ Multiple (n) DOFs Robot

If ๐œ‚๐‘– โ‰ซ 1 โ‡’ ๐œ‚๐‘–2 dominates and dynamic equations will be decoupled

๐œ๐‘– โˆ’ ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘– = ๐‘€๐‘–๐‘– ๐‘ž + ๐œ‚๐‘–2๐ผ๐‘š๐‘–

แˆท๐‘ž๐‘– + ๐‘ฃ๐‘– ๐‘ž, แˆถ๐‘ž + ๐‘”๐‘–(๐‘ž)

If ๐œ‚๐‘– โ‹™ 1 โ‡’ ๐œ‚๐‘–2 dominates and the dynamics becomes decoupled and linear

๐ผ๐‘’๐‘– = ๐‘€๐‘–๐‘– + ๐œ‚๐‘–2๐ผ๐‘š๐‘–

โ‰ˆ ๐œ‚๐‘–2๐ผ๐‘š๐‘–

๐‘๐‘’๐‘– = ๐‘๐‘– + ๐œ‚๐‘–2๐‘๐‘š๐‘–

โ‰ˆ ๐œ‚๐‘–2๐‘๐‘š๐‘–

Then ๐‘‰๐‘– ๐‘ž, แˆถ๐‘ž + ๐บ๐‘– ๐‘ž may become negligible compared to ๐ผ๐‘’๐‘– แˆท๐‘ž๐‘– + ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘–

We usually keep the gravity term ๐‘”๐‘– ๐‘ž but may neglect ๐‘ฃ๐‘– ๐‘ž, แˆถ๐‘ž then

๐œ๐‘– = ๐ผ๐‘’๐‘– แˆท๐‘ž๐‘– + ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘– + ๐‘”๐‘–(๐‘ž)

62

1

๐ผ๐‘’๐‘–๐‘ 2 + ๐‘๐‘’๐‘–๐‘ 

๐‘”๐‘– ๐‘ž

+

๐‘ž๐‘–(๐‘ )๐œ๐‘– โˆ’

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Contents

In this chapter we review the dynamics analysis for serial robots. First the definition to angular and linear accelerations are given, then mass properties, linear and angular momentums, and kinetic energy of a rigid body in space is defined. Lagrange formulation is given in general form, and dynamics mass matrix, gravity and Coriolis and centrifugal vectors are defined and derived for several case studies. Dynamic formulation properties is given next, then actuator dynamics is elaborated for electrically driven robots with gearbox. Finally, linear regression method is used for dynamics calibration, and model verification methods are elaborated by introducing consistency measure.

63

Actuator DynamicsElectrical actuators, permanent magnet DC motors, servo amplifiers, gearbox, motor-gearbox-load dynamics, motor-gearbox-multiple joint robot,

4

Dynamics CalibrationLinear Regression, linear model with constant gravity, house holder reflection, varying gravity term, filtered velocity, model verification, consistency measure.

5

PreliminariesAngular acceleration, linear acceleration of a point, mass properties, center of mass, moments of inertia, inertia matrix transformations, linear and angular momentum, kinetic energy.

1

Lagrange FormulationMotivating example, generalized coordinates and forces, kinetic energy, mass matrix, potential energy, gravity vector, Coriolis and centrifugal vector, case studies.

2

Dynamic Formulation PropertiesMass matrix properties, linearity in parameters, Christoffel Matrix, skew-symmetric property, general dynamic formulation, passivity,

3

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Linear Regression

Given the structure of the linear model for each joint

๐œ๐‘– = ๐ผ๐‘’๐‘– แˆท๐‘ž๐‘– + ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘– + ๐‘”๐‘–(๐‘ž)

The dynamics parameters ๐ผ๐‘’๐‘–, ๐‘๐‘’๐‘– and ๐บ๐‘– may be identified by linear regression

Case (1)

Assume a set of experiments is done, and input torques ๐œ, and output motions ๐‘ž, แˆถ๐‘ž, แˆท๐‘ž for each joint

are logged for a large number of samples

๐‰ =

๐œ1๐œ2โ‹ฎ๐œ๐‘€

, ๐’’ =

๐‘ž1๐‘ž2โ‹ฎ๐‘ž๐‘€

, แˆถ๐’’ =

แˆถ๐‘ž1แˆถ๐‘ž2โ‹ฎแˆถ๐‘ž๐‘€

, แˆท๐’’ =

แˆท๐‘ž1แˆท๐‘ž2โ‹ฎแˆท๐‘ž๐‘€

for ๐‘– = 1,2, โ€ฆ ,๐‘€ samples

Assume the gravity term is set as a constant parameter ๐‘”๐‘– ๐‘ž = ๐‘”๐‘–.

The dynamic formulation for each link may be reformulated as a linear regression:

๐‰ = ๐ผ๐‘’๐‘– แˆท๐’’ + ๐‘๐‘’๐‘– แˆถ๐’’ + ๐‘”๐‘– = ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ ๐šฝ In which ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ =

แˆท๐‘ž1แˆท๐‘ž2โ‹ฎแˆท๐‘ž๐‘€

แˆถ๐‘ž1แˆถ๐‘ž2โ‹ฎแˆถ๐‘ž๐‘€

11โ‹ฎ1

,๐šฝ =

๐ผ๐‘’๐‘–๐‘๐‘’๐‘–๐‘”๐‘–

, ๐‰ =

๐œ1๐œ2โ‹ฎ๐œ๐‘€

64

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Linear Regression

The linear Regression ๐‰ = ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ ๐šฝ is an overdetermined set of equations

Find least-squares solution for the parameters by left-pseudo-inverse

๐šฝ = ๐“จโ€  โ‹… ๐‰ in which ๐“จโ€  = ๐“จ๐‘‡๐“จ โˆ’1๐“จ๐‘ป

Direct evaluation of ๐“จโ€  might be intractable, use house holder reflection

Factorize ๐“จ into ๐“จ๐‘ท = ๐‘ธ๐‘น

In which ๐‘ท๐‘›ร—๐‘› is a permutation matrix, ๐‘ธ๐‘€ร—๐‘› is an orthogonal matrix, and ๐‘น๐‘›ร—๐‘› is upper triangular.

Then

๐šฝ = ๐‘ท๐‘นโˆ’1 ๐‘ธ๐‘‡๐’ƒ

And ๐‘นโˆ’1 is calculated by back substitution.

Note: Matlab pinv(Y)calculates the right-pseudo inverse by householder reflection.

65

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Linear Regression

Given the structure of the linear model for each joint

๐œ๐‘– = ๐ผ๐‘’๐‘– แˆท๐‘ž๐‘– + ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘– + ๐‘”๐‘–(๐‘ž)

Case (2):

Complete input-output logging and general gravity term ๐‘”๐‘– ๐‘ž .

In many examples ๐‘”๐‘– ๐‘ž = ๐‘”๐‘– cos ๐‘ž .

๐œ๐‘”1 =1

2๐‘Ž1๐‘š1๐‘” cos(๐œƒ1) , ๐œ๐‘”2 =

1

2๐‘Ž2๐‘š2๐‘” cos(๐œƒ1 + ๐œƒ2)

Then

๐‰ = ๐ผ๐‘’๐‘– แˆท๐’’ + ๐‘๐‘’๐‘– แˆถ๐’’ + ๐‘”๐‘– cos ๐‘ž = ๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ ๐šฝ

In which

๐“จ ๐’’, แˆถ๐’’, แˆท๐’’ =

แˆท๐‘ž1แˆท๐‘ž2โ‹ฎแˆท๐‘ž๐‘€

แˆถ๐‘ž1แˆถ๐‘ž2โ‹ฎแˆถ๐‘ž๐‘€

cos ๐‘ž1cos ๐‘ž2โ‹ฎ

cos ๐‘ž๐‘€

, ๐šฝ =

๐ผ๐‘’๐‘–๐‘๐‘’๐‘–๐‘”๐‘–

, ๐‰ =

๐œ1๐œ2โ‹ฎ๐œ๐‘€

And therefore,

๐šฝ = ๐“จโ€  โ‹… ๐‰ or ๐šฝ =pinv(๐“จ)* ๐‰

66

๐‘ฅ

๐‘ฆ

๐œƒ1

๐œƒ2

๐‘š1๐‘”

๐‘š2๐‘”๐œ๐‘”1

๐œ๐‘”2

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Linear Regression

Given the structure of the linear model for each joint

๐œ๐‘– = ๐ผ๐‘’๐‘– แˆท๐‘ž๐‘– + ๐‘๐‘’๐‘– แˆถ๐‘ž๐‘– + ๐‘”๐‘–(๐‘ž)

Case (3): Only ๐‰ and ๐’’ are measured

Use filtered differentiation

In which

๐œ”๐‘“ ๐ป๐‘ง =1

๐œ๐‘“is selected such that 10 ๐œ”๐ต๐‘Š < ๐œ”๐‘“ < 0.1 ๐œ”๐‘›๐‘œ๐‘–๐‘ ๐‘’

Where ๐œ”๐ต๐‘Š denotes the system bandwidth frequency while ๐œ”๐‘›๐‘œ๐‘–๐‘ ๐‘’ denotes the major noise

frequency content

Practically 0.001 < ๐œ๐‘“ < 0.05 or equivalently 20 < ๐œ”๐‘“ < 103 would be a good choice.

Use Matlab command filtfilt to remove the delay in the filtered signal

Use the filter twice to find the angular acceleration แˆท๐‘ž๐‘“.

Check the filtered differentiation output and tune ๐œ๐‘“ to reduce the output noise.

67

๐‘ 

๐œ๐‘“๐‘  + 1

แˆถ๐‘ž๐‘“๐‘ž

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Model Verification

Note that the simplified linear model is good

For linear controller design

Shall be valid for different operating regimes

If ๐œ‚ > 100 the linear term dominates the nonlinear vector v(๐‘ž, แˆถ๐‘ž)

Verify the calibrated dynamic parameters

For different experiments by statistical analysis

68

Consistency Measure

AVGExp 10. . .Exp 2Exp 1

STDEV / ๐ผ๐‘’๐‘Ž๐‘ฃ๐‘”๐ผ๐‘’๐‘Ž๐‘ฃ๐‘”10๐ผ๐‘’. . .2๐ผ๐‘’

1๐ผ๐‘’๐ผ๐‘’

STDEV / ๐‘๐‘’๐‘Ž๐‘ฃ๐‘”๐‘๐‘’๐‘Ž๐‘ฃ๐‘”10๐‘๐‘’. . .2๐‘๐‘’

1๐‘๐‘’๐‘๐‘’

STDEV / ๐บ๐‘Ž๐‘ฃ๐‘”๐‘”๐‘Ž๐‘ฃ๐‘”10๐‘”. . .2๐‘”1๐‘”๐‘”

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Dynamics Calibration

โ€ข Model Verification

Verify the calibrated dynamic parameters

For different experiments by statistical analysis

If C.M. < 30% The average parameter is suitable for controller design

If C.M. < 80% The averaged parameters could be used for controller design using

robust linear controllers

If C.M. > 80% Then your model is incomplete and you need to add terms in your

model

If for different experiments the obtained parameters are physically inconsistent

For example you get negative moment of inertia or damping parameters

This means your model is still not good enough for calibration

You may use constrained optimization to add bound on the parameters

Matlab fmincon command may be used in this case.

69

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Hamid D. Taghirad has received his B.Sc. degree in mechanical engineering

from Sharif University of Technology, Tehran, Iran, in 1989, his M.Sc. in mechanical

engineering in 1993, and his Ph.D. in electrical engineering in 1997, both

from McGill University, Montreal, Canada. He is currently the University Vice-

Chancellor for Global strategies and International Affairs, Professor and the Director

of the Advanced Robotics and Automated System (ARAS), Department of Systems

and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology,

Tehran, Iran. He is a senior member of IEEE, and Editorial board of International

Journal of Robotics: Theory and Application, and International Journal of Advanced

Robotic Systems. His research interest is robust and nonlinear control applied to

robotic systems. His publications include five books, and more than 250 papers in

international Journals and conference proceedings.

About Hamid D. Taghirad

Hamid D. TaghiradProfessor

Robotics: Mechanics and Control K. N. Toosi University of Technology, Faculty of Electrical Engineering,

Prof. Hamid D. Taghirad Department of Systems and Control, Advanced Robotics and Automated Systems June 1, 2021

Chapter 5: Dynamic Analysis

To read more and see the course videos visit our course website:

http://aras.kntu.ac.ir/arascourses/robotics/

Thank You

Robotics: Mechanics & Control