Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics...

59
Kumpula 18.10.2010 Quantum mechanics makes nano different Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology

Transcript of Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics...

Page 1: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Kumpula 18.10.2010

Quantum mechanics makes nano differentRisto Nieminen

COMP/Applied PhysicsAalto University School of Science and Technology

Page 2: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

The basic ideas of quantum physics

1. Matter has both wave- and particle-like properties.

- WavelengthmEh

2=λ

Jsh 341062607540.6 −⋅=Planck´s constant

=m =Emass of the particle its kinetic energy

Page 3: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

In thermal equilibrium, TkE B23

=

Quantum mechanics is important when a≈λ=a interparticle spacing or device size.

For electrons, nearly always.For protons, sometimes (especially at low temperatures).For He atoms, at very low temperaturesFor other atoms, at even lower temperatures

(e.g. cold atomic gases, BEC)

Inside nuclei and nucleons: different length and energy scales!

1231038065812.1 −−⋅= JKk BBoltzmann’s constant

eVJ 1910624.0 ⋅= 300 K = 25,8 meV

Page 4: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Experimental EVIDENCEWhether it is light, orelectrons, the Double SlitDiffraction experiment showsthat in BOTH casesinterference effects occur!

What about in the oppositecase? Is light made up of

particles ?

The experimental evidencesays YES!

This is Einstein’s

photoelectric effect.

Electron Wave Interference

φ−= hfmv max2 )

21(

Page 5: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Wave-like properties:

• Diffraction• Scattering• ”Uncertainty principle”• Coherence• Quantum confinement, zero-point energy

Particle-like properties:

• Single-particle counting• Scattering• Ballistic transport

Page 6: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

The Bizarre World of Quantum

UNCERTAINTY

The quantum world is probabilistic.This is decribed by Heisenberg’s

Uncertainty Principle.The uncertainty relations are:

Notice that the uncertainty principle is unimportant to macroscopic objects since Planck's constant, h, is so small (of order 10-34). For example, the uncertainty in position of a thrown baseball is 10-30 millimeters!

2h

≥px ΔΔ2h

≥tE ΔΔ

Page 7: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

QUANTUM WORLD

• “weird” = counterintuitive : wave-particle dualism

• inherently “parallel” → quantum computing

• phase information

• many-particle symmetry/antisymmetry →mathematical description of electrons very complex(“fermion sign problem”)

• coupling to (classical) environments → decoherencedissipation

Page 8: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 9: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Quantum confinement

22

2

min 8 mLhE

π=

L

Energy

Emin

Page 10: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 11: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 12: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 13: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

2. More quantum properties

• Many physical properties are quantized, i.e. onlydiscrete values are possible, e.g.

- Energy levels → spectra(transitions between energy levels)

- Angular momentum- Conductivity- Magnetic flux- Vorticity (in quantum liquids)- etc.

Page 14: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

• Particles (e.g. electrons) have ”internal”degrees of freedom : Spin → Magnetism

•The properties of of the quantum particlesare described by the Schrödinger equation(”wave equation”) → the wave function

•The wave function describing several particlesis either symmetric or antisymmetric with respectto particle exchange → “quantum statistics”,fermions (such as electrons) and bosons(such as photons (light quanta) or some light atoms)

),( trrψ

Page 15: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

The wave function can be interpreted as the probabilityof finding the system (or an observable) in a given state.

For example, the electron density

2),(),( trtrn rr ψ=

),(),(),( trtrHdt

trdi rrr

h ψψ=

Time evolution:

Hamilton operator: ),(2 2

22

trVrm

H rh+

∂∂

−=

Page 16: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Schrödinger wave equation + boundary conditions

→ Stationary ”eigenstates” )(rnrψ

General state is a superposition of theeigenstates

)()(),( rtctr nn

nrr ψψ ∑=

→ Quantum information and computing

Page 17: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Quantum physics can be completely married withspecial relativity: ”quantum electrodynamics” (QED).

Not with general relativity (gravity), butthe energy scale is larger by a factor of 1040.

”Standard model”: QED + quantum chromodynamics (QCD).

Challenge: many interacting particles- collective properties (e.g. ferromagnetism)- emergent phenomena (e.g. superconductivity)- macroscopic quantum effects (e.g. superfluidity)

Page 18: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Coulomb interaction

Page 19: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Playing Playing withwith AtomicAtomic LegoLego

But I am not afraid to consider But I am not afraid to consider the final question as to the final question as to

whether, ultimatelywhether, ultimately------in the in the great futuregreat future------we can we can

arrange the atoms the arrange the atoms the way we want;way we want;

the very the very atomsatoms, all the way , all the way down!down!

RICHARD FEYNMAN

Page 20: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

“All things are made of atoms.“

- Richard P. Feynman, 1963

”Electrons are the glue”.

- Linus Pauling, 1962

CONDENSED MATTER PHYSICS AND CHEMISTRY

Page 21: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

“There Is Plenty of Roomat the Bottom”

Richard P. FeynmanDecember 1959

• How do we write small?• Information on a small scale• Better electron microscopes• The marvellous biological system• Miniaturizing the computer• Miniaturization by evaporation• Problems of lubrication• A hundred tiny hands• Rearranging the atoms• Atoms in a small world

10-9 m

NANOSCIENCE:

Page 22: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Central paradigms for Condensed Matter Physics

Weakly interacting electrons Strongly interacting electrons

Fermi-Landau theory Spin fluctuations

Quasiparticles Mixed-valence behavior

Band theory Anderson and Kondo resonances

BCS superconductivity Exotic superconductivity

Disorder-induced localization Wigner crystallization

Integer QHE Fractional QHE

Fantastic testbed for many-body phenomena: cold atoms in optical lattices.

Page 23: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Central paradigms for CMP (contd.)

Interacting atoms Elementary excitations

”Reductionist” approach: Emergence: phonons, plasmons,magnons, spinons etc.

Quantum mechanics and electromagnetic interactions Response functions

From chemical bonds to bands Collective phenomena

Density-functional theories

These two paradigms can be linked.

Page 24: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Central paradigms for CMP (contd.)

Ground state Dynamics and excitations

Structure-property relationships Spectroscopy

Phase stability and transitions Reactions

Equilbrium transport Non-equilibrium and dissipation

Multiscale models Entanglement and decoherence

Page 25: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

DesigningDesigning withwithConventionalConventional ATOMSATOMS

Atomic clusters havesurprising properties at the nanoscale!

Single phosphorus atomsimplanted into a siliconsubstrate.

Page 26: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

To understand the chemical bond, we need themachinery of quantum physics.

Electrons are the glue. They behave quantum-mechanicallyand give rise to the variety of chemical bonds:

- The ionic bond- The covalent bond- The metallic bond- The hydrogen bond- The van der Waals bond

Page 27: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Small is different:

the nanoscale materials and structures havenew, functional properties

Page 28: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

“Non-scalable” size region

no. of atoms/molecules N

Property

∼ Nα

1 10 100 1000 10000

Page 29: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

NANOSCIENCE AND –TECHNOLOGY: HANDSHAKING OF

• quantum and classical phenomena

• equilibrium and non-equilibrium phenomena

• top-down and bottom-up approaches

• reductionist and emergent viewpoints (“more is different”)

Page 30: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

The three pillars of nanoscience and -technology

Manufacture and manipulation

“top-down”: lithography

“bottom-up”: self-assembly

Characterisation,imaging andprobing

SPMTEMPES…

Theory, modelling andsimulation

• Predictive computation of physical, chemical and biologicalfunctions• Process design• Interpretation of probe data

Computational nanoscience

Page 31: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

makro - mm

mikro - μm

nano - nm

“TOP-DOWN”

• tarkkuusmanipulointi• mikroelektroniikka• litografia• etsaus• kasvatus

“BOTTOM-UP”

•itseorganisoituvuus•kemiallinen synteesi•molekyylisuunnittelu•SPM-manipulointi

poikkitieteellinenja -teknologinennanotutkimus

Page 32: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

NovelNovel NanosystemsNanosystems

Magnetic multilayers : Giant Magnetoresistance

Page 33: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

ExoticExotic QuantumQuantum SystemsSystems

WELCOME TO THEWORLD OF ARTIFICIAL ATOMS!

QUANTUM DOTS!FULLY TUNABLE SOLID

STATE DEVICESElectrons confined in a very small space

by an electrostatic potential.

CONFINEMENT = ATOM-LIKE PROPERTIES

Page 34: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

QuantumQuantum RingsRingsand and thingsthings......

Have very strangequantum properties,

such as persistentcurrents, when a

magnetic field is applied.Also interesting

magnetism which may beapplied in computing.

B

Page 35: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

AtomsAtoms trappedtrapped ininOpticalOptical LatticesLattices

Atoms trapped in optical potentials.

The optical potentials can be changedand therefore the artificial atomic

structure can also be changed.

This gives us greater design freedom to create new nanoscale devices, beyond

that which we could get from the periodictable elements.

Page 36: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 37: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 38: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 39: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Atomic Force Microscopy: Tip ChangeAtomic Force Microscopy: Tip Change

Tip Change

Imaging Ca2+

Imaging F-

t

Page 40: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 41: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 42: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Lipid membranes

Electrophoresis of nanocolloids

Bioworld is also a nanoworld.

Page 43: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Quantum dots in biology: changing colours

Page 44: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Quantum physics in biology: olfaction

The biggest thing we can smell is 40-50 atoms large.

Shape does not solve it: ”lock and key” not enough.

Ferrocene vs. nickeloscene: exactly the same structure,smell very different!

Explanation: inelastic electron tunnelling from the molecules.

Other examples: proton transfer – concentration gradientof protons across cell membranes

Page 45: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Quantum wires: the quantization of conductivity

G. Rubio, N. Agraït, and S. Vieira,Phys. Rev. Lett. 76, 2302 (1996)

Quantum of conductance:G0 = 2e2/h = 1/12.9 kW, elongation force oscillations

M.R. Sorensen et al., Phys. Rev. B. 57, 3283 (1998)

Au quantum wire, STM

Page 46: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

C60 (fullerene)on a metal surface

The morphology of Pt surface

Graphite surface Triblock-copolymer

Page 47: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Gordon MooreFounder of Intel Inc.

Electronics Magazine, 1965

The number of switches on a silicon chipswill double every 12 months (later revised to

18 months)

“Moore´s Law”

Page 48: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Nanoelectronics and spintronicsas a new platform for information

technology:

a possibility to extend Moore’s Lawinto the future.

Page 49: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

The shrinking feature size

Page 50: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

One needs new insulator materials…

90 nm processcapacitance 1leakage current 1

HfO2

capacitance 1.6leakage current < 0.01

Page 51: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Etching of silicon surfaces(Miguel Gosalvez)

Single-electron transistor

Carbon nanotube as a quantum wire

Page 52: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Nanoscale Au clusters are reactive!

Page 53: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Mono-layer Protected Gold Nanoclusters

Page 54: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

elektronimikroskopia

Rautaoksidi-nanopartikkeliUniv. California Berkeley

PbSe-kvanttipiste

Page 55: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Kaksosraja <110>-suunnassaSrTiO3 -perovskiitissa

ultramikroskopia :- alle 0.1 nanometrin

tarkkuus

Page 56: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

d = 2.07 nm

α = 17.02˚

( ( m, n m, n ) = (21, 9) ) = (21, 9)

dd(21,9)(21,9) = 2.09= 2.09 nmnmαα(21,9)(21,9) = 17.0= 17.0˚

Metallinen, yksiseinäinen hiilinanoputki (SWNCT)

a) elektronidiffraktiokuva → kierteisyysb) transmissioelektronimikroskopiaAalto/Uusien Materiaalien Keskus

(Esko Kauppinen)

Page 57: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling
Page 58: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Nobel 2010: Graphene

One atomic layer of hexagonal carbon

Page 59: Risto Nieminen COMP/Applied Physics Aalto University ... · Risto Nieminen COMP/Applied Physics Aalto University School of Science and Technology. ... SPM TEM PES … Theory, modelling

Samsung Electronics