Rise of Adaptive Immunity

download Rise of Adaptive Immunity

of 13

Transcript of Rise of Adaptive Immunity

  • 8/3/2019 Rise of Adaptive Immunity

    1/13

    Th adaptiv imm sstm (AIS) is fasciatigt bth scitists ad lam: w hav a spcific ticrdibl divrs sstm that ca fight mriad pathgs ad has a mmr th basis f vacciati that abls a rapid rsps t prvisl ctrd pathgs. Th cmplxit f imm rspsrglati rivals that f th rvs sstm i trmsf th cct is frgd ad spprssd btwclls, bt imm clls mst als travrs th bdthrgh bld, lmph ad tiss til th ctrivadig rgaisms. Hw did sch a sstm aris, adca stdis f mammalia vrtbrats hlp s tdrstad th immit gstalt?

    Atibdis wr discvrd vr 100 ars ag, admajr qstis rlatig t th grati f divrsitwr slvd i th 1970s with th dtcti fsomatic

    hyprmutation1 advariabldivrsityjoining rarrangmnt(VDJ rarragmt)2 f atibd (r immunoglobulin (Ig) r B cll rcptr (BCR)) gs. I th 1980s, T cllrcptrs (TCRs) wr discvrd ad thr was i

    vrsal agrmt that th shard a cmm acstr with BCR gs, basd thir similar dmairgaizati ad rliac th sam rarragmtmchaism t grat divrsit3. Aftr th discvrf zms that ar ivlvd i th rarragmt fBCR ad TCR gs4 ad f hprmtati f BCRgs5, attti shiftd t askig hw a sstm thatis capabl f gratig sch divrsit vlvd. Jawdfish wr fd t hav almst all f ths gs ad

    mchaisms, bt jawlss fish (Agathas) appartlhad . This mstifig fidig ld t th big bagthr f AIS mrgc6, which is f th maitpics f this Rviw.

    Th discvr i jawlss fish f a lmphid cllbasdsstm f adaptiv immit that is strikigl similar tth sstm i jawd fish was a ttal srpris7. Th sstm i jawlss fish is similar t VDJ rarragmt bthas rarragig rcptrs that ar cdd b athrg famil th variabl lmphct rcptr (VLR)famil. W discss th cmpllig pssibilit that thVLR rarragmt prcss is dr th ctrl fth sam famil f zms that ar rspsibl frsmatic hprmtati f BCR gs8, which pshs thrigis f acqird immit back t th acstr f all

    vrtbrats. Hwvr, dspit this w fidig f adap

    tiv immit i jawlss fish, th big bag thr ccrig th rigi ad rapid dvlpmt f th highlcmplx BCR ad TCRbasd AIS rmais itact.

    I this Rviw, w dscrib th basic fatrs f BCRs,TCRs ad th major histocompatibility complx (MHC)ad strss thir prsrvati ad mdificati vr vltiar tim. W th discss th tw catastrphic,ivativ vts bhid th big bag rigis f thBCRTCRMHCbasd AIS th rcmbiatiactivatig g (RAG) trasps ivasi ad gmwid dplicatis arl i vrtbrat histr ad wdiscss th w tp f AIS that has b discvrdi jawlss fish. Fiall, w spclat th rigis f

    *Department of Microbiology

    and Immunology, University

    of Maryland at Baltimore,655 West Baltimore Street,

    Biosciences Research

    Building 3056, Baltimore,

    Maryland 21201, USA.Department of Pathology,

    Hokkaido University

    Graduate School of Medicine,

    North 15 West 7, Sapporo

    0608638, Japan.

    emails: mflajnik@som.

    umaryland.edu; mkasaha@

    med.hokudai.ac.jp

    doi:10.1038/nrg2703

    Publishd onlin

    8 Dcmbr 2009

    Somatic hypermutation

    Mutation of th variabl gn

    aftr matur B clls ar

    stimulatd. It rsults in affinity

    maturation of th antibody

    rspons. Lik th class switch,

    it rquirs activation-inducd

    cytidin daminas.

    Origin and evolution of the adaptiveimmune system: genetic events andselective pressuresMartin F. Flajnik* and Masanori Kasahara

    Abstract | The adaptive immune system (AIS)in mammals, which is centred on lymphocytes

    bearing antigen receptors that are generated by somatic recombination, arose approximately

    500 million years ago in jawed fish. This intricate defence system consists of many molecules,mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary

    events are believed to have contributed to the genesis of the AIS: the emergence of the

    recombination-activating gene (RAG) transposon, and two rounds of whole-genome

    duplication. It has recently been discovered that a non-RAG-based AIS with similarities to

    the jawed vertebrate AIS including two lymphoid cell lineages arose in jawless fish by

    convergent evolution. We offer insights into the latest advances in this field and speculate

    on the selective pressures that led to the emergence and maintenance of the AIS.

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |47

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/3/2019 Rise of Adaptive Immunity

    2/13

    Innate immunity based on pattern-recognition receptors

    TCR, BCR and MHC

    Adaptive immunity based on rearranging antigen receptors

    VLR

    (Mya)

    APARVLR-like

    VCBP

    TLR, NLR and SR

    NICIR

    222

    476

    326

    525

    891

    652

    370

    896

    794

    Bonyfish(sturgeons)

    Amphibians(frogs)

    Reptiles(snakes)

    Birds(chickens)

    Mammals(humans)

    Bonyfish(zebrafish,me

    dakafish)

    Cartilaginousfish(shark

    s)

    Cyclostomes(lampreys)

    Echinoderms(seaurchins)

    Cephalochordates(amphioxi)

    Urochordates(seasquirts)

    Cyclostomes(hagfish)

    Hemichordates(acornworms)

    3R

    RAG1 and RAG2RAG1/2-like

    RAG1-like

    2R

    1R

    adaptiv immit i all vrtbrats, mphasizig thlsss w hav lard frm xtat imm sstms.

    The AIS of jawed vertebrates

    Th mst vltiaril acit xtat rgaismsi which th AIS, as dfid i hmas, is fd arth cartilagis fish. It is blivd t hav aris i thfirst jawd vrtbrats (gathstms) th placdrms(FIG. 1). Cmpts f th iat imm sstm, frxampl, pattrrcgiti rcptrs (PRRs) icldig th Tlllik rcptrs (TLRs), ndlik rcptrs (nLRs) ad scavgr rcptrs (SRs) ar fdthrght th aimal kigdm (FIG. 1). I sm ivrtbrats, sch as th sa rchi9, ad i ma plats10thr has b a grat xpasi f PRR familis, whichsggsts that i th absc f a AIS, cmplx iatmchaisms might b rqird fr dfc.

    Lmphid clls th cr f th AIS ar firstfd i prvrtbrat dtrstms (that is, thsar th mst vltiaril acit livig phlgticgrp i which lmphid clls ca b fd). Th AIS

    rqirs a larg pplati f clls i ach idividal tprmit clal slcti f clls with rcptrs spcific fra particlar pathg. Largbdid vrtbrats wr thfirst rgaisms t flfil this rqirmt (FIG. 1). Hr,w discss imprtat fatrs f th AIS i jawd vrtbrats ad csidr thir csrvati r plasticitvr vltiar tim. Th ccpt f plasticit wasfirst prpsd b Kli ad cllags i th ctxt fMHC mlcls11, bt ca b xtdd t all fatrsf th AIS.

    B cell receptors

    Immunoglobulin M. Lik mst mlcls f th AIS asdfid i hmas, amg livig aimals Igs ar firstfd i cartilagis fish (sharks, skats, ras adchimaras r ratfish) ad ar gratd b a smaticrcmbiati mchaism. Thir vltiar fatrsar smmarizd i FIG. 2a. IgM is th mst acit atibd class ad has th sam fcti i all gathstms12.Th trasmmbra frm f IgM dfis thB cll liag. Aftr B cll stimlati b a atigad cgat itractis frm T clls this istpis scrtd it th plasma as a mltimric prti.I b fish, IgM is scrtd as a ttramr i diffrt rdcti r xidati stats that sm t mdifth bidig strgth f th atibdis13. I cartilagis fish, IgM is a abdat scrtd mmr; this

    scrti crrlats with a switch t a highr affiitrsps14. It is t kw whthr a cll prgrammdt prdc mltimric IgM switchs t prdc thmmric frm r whthr sharks hav liags fB clls that ar spcializd t mak ithr th mltimricr mmric Ig. Dspit ths mdificatis i fish,IgM is grall vltiaril csrvd.

    Immunoglobulin D. Th fcti f IgD rmais prldrstd. It had grall b thght t b a vltiar wcmr, prbabl arisig i mammals (FIG. 2a),bt th dtcti i b fish15 ad frgs16,17 f a Ig istp that rsmbls IgD shwd that this is t th cas

    Figure 1 | Ow o ouo o mmu ym uoom.

    The stages in phylogeny at which the immune molecules referred to in this Review

    emerged. Molecules restricted to jawed and jawless vertebrates are indicated in blue

    and green, respectively. Molecules that emerged at the stage of invertebrates are in

    pink. Recombination-activating gene (RAG)-like genes (indicated in purple) are of viral

    or bacterial origin (from the transib transposon family) and are also present in the

    genomes of sea urchins and amphioxi. Agnathan paired receptors resemblingantigen receptors (APAR) and novel immunoreceptor tyrosine-based activation

    motif-containing immunoglobulin superfamily receptor (NICIR, also known as T cell

    receptor (TCR)-like) are agnathan immunoglobulin superfamily (IgSF) molecules that are

    thought to be related to the precursors of TCRs and B cell receptors (BCRs). 1R and 2R

    indicate the two rounds of whole-genome duplication (WGD). Whether the 2R, the

    second round of WGD, occurred before or after the divergence of jawed and jawless

    vertebrates is controversial; the figure places it after the divergence according to the

    commonly held view (BOX 2). An ancestor of the majority of ray-finned fish is thought to

    have experienced an additional, lineage-specific WGD (designated as 3R) ~320 million

    years ago134,135. The divergence time of animals (shown in Mya (million years ago)) is

    based on Blair and Hedges136. MHC, major histocompatibility complex; NLR, Nod-like

    receptor; SR, scavenger receptor; TLR, Toll-like receptor; VCBP, V-region containing

    chitin-binding protein; VLR, variable lymphocyte receptor.

    R E V I E W S

    48 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

  • 8/3/2019 Rise of Adaptive Immunity

    3/13

    Vn

    Dn

    Jn

    Dn

    C CCJn

    Mammal Vn

    Dn

    Jn

    C C C others

    V D D J C/

    C

    Mammal

    CJV

    Mammal C

    Mammal

    Mammal

    Mammal

    Translocon

    Cluster

    Translocon

    Cluster:some germline-joined

    Translocon

    Translocon or cluster

    Translocon

    Double V (one rearranging):cluster + germline-joined

    Double V (two rearranging):cluster + translocon

    Mammal

    n

    V D D D J CNAR

    Vn

    Dn

    Jn

    CVn

    Jn

    Vn

    V D J V D J

    V D J V Vn

    Jn

    CD

    Vn

    Jn

    Jmany

    D13 C C

    Primordial Ig Transmembrane

    form defines B cells Pentamer/hexamer

    in most vertebrates Tetramer in teleosts Secreted monomer

    in cartilaginous fish (associated with

    affinity increase)

    Primordial Ig Highly plastic in

    evolution Lost in several

    species Known as IgW

    in several fish Secreted form

    associated withgranulocytes andinflammation

    Derived fromIgY-likeancestor

    First appearedin amphibiansand the classswitch

    Derived fromIgY-likeancestor

    First foundin reptiles

    Dimer insecretions,monomer in sera

    Mucosal Igs inother vertebratesvia convergence(e.g. IgX in frogs)

    Derived formofbona fide IgG

    Single-chain Vconvergentwith a similarform, IgNAR, incartilaginousfish

    IgM

    a

    b

    IgD IgG IgE IgA Camelid IgG

    Ig H chain, amphibians

    Ig H chain, bony fish

    Ig H chain, cartilaginous fish

    Ig L chain, bony fish

    Ig L chain, bony and cartilaginous fish

    TCR, cartilaginous fish

    TCR, cartilaginous fish

    TCR, bony fish

    TCR, marsupials(form of)

    NAR-TCR, cartilaginousfish (form of)

    n

    n

    n

    n

    n

    V, , J, , C,,

    V, , J, , C,,

    n n

    Variablediversityjoining

    rearrangement(VDJ rarrangmnt.) Th

    rcombination-activating gn

    (RAG)-mdiatd ligation of

    T cll rcptor or B cll

    rcptor variabl (V), divrsity

    (D) and joining (J) gn

    sgmnts during lymphocyt

    ontogny, which gnrats th

    antign rcptor rprtoir.

    Immunoglobulins

    Also known as antibodis or

    B cll rcptors, thy ar

    composd of two idntical

    havy (H) and light (L) chains

    that ar covalntly linkd by

    disulphid bonds. Monomric

    immunoglobulins ar bivalnt,

    and th binding sit is mad up

    of th amino-trminal variabl

    domains of on H and on L

    chain. Th class or isotyp of

    an immunoglobulin is dfind

    by its H chain.

    Jawless fish

    Primordial vrtbrats without

    jaws, of which th only two

    xtant forms ar lamprys

    and hagfish.

    Major histocompatibility

    complexA larg complx of tightly

    linkd gns, many of which

    ar involvd in immunity. It

    ncods th polymorphic class

    I and class II molculs, which

    prsnt antigns in th form of

    pptids to cytotoxic and

    hlpr T clls, rspctivly.

    Jawed vertebrates

    Vrtbrats from cartilaginous

    fish to mammals. Th first

    class of vrtbrats with

    jaws, th placodrms, all

    bcam xtinct.

    (FIG. 2b). Frthrmr, phlgtic aalss sggst thatathr istp i cartilagis fish ad sm b fish,IgW1820, is rlatd t IgD. Thrfr, a IgDlik istpwas prst i th acstr f all gathstms. I frgsad mammals, IgD/IgW ccrs prdmiatl i thtrasmmbra frm, bt i b fish thr ar highlvls f scrtd IgD, which is mstl bd t th srfac f gralcts. This wrk i fish prmptd a rctrxamiati f th fcti f IgD i hmas, adit was fd that th scrtd frm f IgD is bd tth srfac f basphils ad has strg priflammatrprprtis21. Thrfr, althgh this w std ds taddrss th fcti f cllsrfac IgD, th wrk i fishhraldd a tirl w drstadig f scrtr IgD

    fcti i hmas. Lik IgM, IgD is a acit atibd class, bt lik IgM, it has b xtrardiarilmallabl i strctr ad (prsmabl) i fcti vrvltiar tim.

    Other immunoglobulins. Bsids IgM ad IgD, mammals hav thr Ig istps: IgG, which is ivlvd ihighaffiit mmr rspss; Ige, which fctisi iflammatr (ad allrgic) rspss at pithlialsrfacs; ad th mcsal atibd IgA (FIG. 2a). IgGad Ige rigiat frm a istp kw as Igy, whichis first fd i amphibias ad has th sam fctias IgG (at last i frgs ad birds17,22). Shrtr frms fIgy, which ar frmd ithr b altrativ splicig r

    Figure 2 | Ag o o a g jaw ba. a | The different B cell receptor (BCR) isotypes

    in mammals and their features in other vertebrates. Each oval represents an immunoglobulin superfamily (IgSF) domain

    consisting of 90100 amino acids. Immunoglobulin D (IgD) is represented in two forms, mouse (left) and human (right);

    note that even in mammals the IgD structure is highly plastic. Major phylogenetic features are described in the text.

    b | BCR genes (which are defined by their heavy (H) chain) and T cell receptor (TCR) genes throughout phylogeny.

    Recombination signal sequences are located at the 3 end of all variable (V) loci, and the 5 end of joining (J) seqments and

    on both sides of diversity (D) segments. Note that in both the bony fish Ig H chain and vertebrate TCRs, entire antigenreceptor families are deleted upon rearrangement of the V segment to the downstream D and J segments ( genes aredeleted in bony fish and is deleted at the TCR locus). Note also that, despite its name, TCR in marsupials is related to TCR and not the IgM constant region. L chain, light chain; NAR, new antigen receptor.

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |49

  • 8/3/2019 Rise of Adaptive Immunity

    4/13

    Mucosal immunity

    Immun rsponss mad

    across pithlial surfacs, such

    as th gut and lung.

    Immunoglobulin new

    antigen receptor

    (IgNAR.) A spcializd antibody

    in sharks that is composd of

    disulphid-linkd havy chains

    and no associatd light chains.

    Translocon organization

    An organization of

    immunoglobulin gns in whichthr ar multipl variabl (V),

    divrsity (D) and joining (J)

    sgmnts upstram of a singl

    constant gn.

    Cluster organization

    An organization of

    immunoglobulin gns in which

    thr ar singl variabl (V),

    divrsity (D), joining (J) and

    constant gn sgmnts,

    although somtims two or

    thr divrsity sgmnts occur

    togthr. Also known as

    minilocus organization.

    Receptor editingTh r-rarrangmnt of

    antign rcptor gns to

    avoid slf ractivity in th cas

    of B clls or to xprss nw

    rcptors that can b positivly

    slctd in th cas of T cl ls.

    Class switch

    Th rarrangmnt of an

    xisting variabldivrsity

    joining (VDJ) xon from th 5

    nd of th immunoglobulin M

    gn to downstram constant

    (C) gns. Lik somatic

    hyprmutation, it rquirs

    activation-inducdcytidin daminas.

    Major histocompatibility

    complex restriction

    T cll rcptors rcogniz

    antigns in th form of small

    pptids ranging from 922

    amino acids that ar bound to

    major histocompatibility

    complx (MHC) class I or class

    II molculs. Th T cll rcptor

    rcognizs both th MHC

    protin and th pptid

    antign this is known as

    MHC rstriction.

    frm sparat gs, ar prst i mltipl taxa; thsshrt frms ar blivd t traliz pathgs withtactivati f iflammatr rspss. IgA is fd firsti rptils ad sms t srv th sam fctis i allaimals. Itrstigl, i lwr taxa, thr istps fr xampl, IgX i frgs23 prvid mucosal immunity.Fiall, i camlids, thr is a mdifid frm f IgG thatds t assciat with light (L) chais, ad its V rgisar fr t itract with atigs; a similar frm calldimmunoglobulin nw antign rcptor (IgnAR) is fd icartilagis fish; th IgnAR V rgi is als csrvdi sm TCRs24,25 (s blw). I smmar, i vltiar trms all vrtbrats hav mltipl istps thatprvid distict ffctr fctis. Amphibias ar thmst primitiv class, with a classical mmr rspsthat is basd istp switchig t IgG ad Igy aftratig stimlati.

    B cell receptor light chains. It was prvisl blivdthat th tw istps f th BCR L chais i hmas ad ars lat i vlti, prbabl i th

    mammalia liag (FIGS 2,3a). Hwvr, gm adeST prjcts ad stdis f mdl vrtbrat spcishav shw that ths tw istps mrgd i th cmm acstr f all livig vrtbrats2629. Frthrmr,athr L chai idtifid i frgs ad amd 30 als ars arl i vlti ad has b rtaidi all cldbldd gathstms. Th ras(s) frth mrgc ad maitac f mltipl L chais is(ar) t kw, bt it might b rlatd t th frmatif spcific bidig sits b particlar cmbiatis fL chais ad hav (H) chais.

    B cell receptor heavy chains. Frm b fish t mammals, BCR H chai gs ar arragd i a scalldtraslc rgaizati (FIGS 2b,3a): mltipl V gsccr pstram f mltipl D ad J sgmts, fllwdb sigl gs that cd th diffrt cstat (C)rgis. Th primar H chai rprtir is gratdb rarragmt i th primar lmphid tisss (frxampl, b marrw), which ivlvs a sigl V g(t f ts t hdrds f V gs) big rarragdt th dwstram D ad J sgmts31. I sm spcis,sch as chicks ad rabbits, aftr th rarragmtf a sigl V g, g cvrsi vts ivlvigarb fctial V gs grat divrsit ith primar rprtir32,33. I cartilagis fish, th Iggs ar i a clstr cfigrati with a sigl V, D, J

    ad C g i ach clstr34. RAGmdiatd rarragmt ccrs withi a clstr, bt divrsit is gratd b jctial divrsit at th VD, DD ad DJrarragmt jits ad b smatic hprmtatiaftr atigic stimlati f B clls3537. Th sitatiis similar fr th L chai gs, xcpt th lack D sgmts (FIG. 2b). Als, i b fish th L chai gs caccr i translocon organization r clustr organization;this sggsts that xtsiv rcptor diting that is,rrarragmt f BCR gs ca ccr fr L chaigs i all fish3841(FIG. 2b).

    Th H chai class switch first vlvd i amphibias,which hav a mammalialik Ig H chai lcs. I b

    fish, th Ig H chai istps IgM ad IgD ar gratd b altrativ splicig. Th rctl discvrdIgT istp is gratd b altrativ rarragmt:th IgT D, J ad C g sgmts ar lcatd btw thV gs ad th IgM ad IgD D, J ad C sgmts42,43(FIG. 2b), ad rarragmt that jis V gs t th IgMD sgmts dlts th IgT gs, a sitati similar tthat at th TCR lcs. Thr is switchig appart btw clstrs i cartilagis fish, ithr withith IgM class r btw th IgM ad cartilagisfishspcific IgnAR/IgW classs.

    Amphibias, which hav class switchig ad Igy,mark a majr trasiti frm th AIS i fish. A sigl B cll has th capacit t mdif th ffctr fcti f its scrtd mlcl ad t prvid a mmrrsps. I sharks, a switch at th bichmical lvlfrm mltimric t mmric IgM prvids at lastsm f th fctis f a IgG fr xampl, thcapacit t tr xtravasclar sits ad a icrasi affiit, bt th mmr rsps is clarl ifrirt that f th highr vrtbrats.

    T cell receptors

    T cell receptors. TCRs rcgiz bth th atig(i th frm f a pptid) ad th MHC class I r IImlcl t which it is bd. This is kw as majorhistocompatibility complx rstriction (MHC rstricti)44.T clls dvlp i th thms, ad th basic vlti fth thms ad T cll dvlpmt is csrvd fr allgathstms, xcpt i sm spcis i which th sstm sms t hav dgratd (FIG. 1 ad s blw). Atraslc rgaizati f bth th ad TCR gsis fd i all aimals (FIG. 2b). Th prsc f a D sgmt i th TCRlcs ad th absc f D sgmtsad th prsc f a larg mbr f J sgmts i th TCR lcs ar als vltiaril csrvd, at lastfrm mammals t b fish45(FIG. 2b). Th ma J sgmts i th lcs allw xtsiv rcptr ditigi dvlpig T clls, rsltig i gratr pprtitis fr mdificati f th atig rcptr, fllwdb pttial slcti f slfMHCrstrictd TCRs ith thms46.

    T cell receptors. TCRs ar qit diffrt frm TCRs. Th basic g rgaizati is csrvd igathstms, with l J sgmts i th g, sall tw D sgmts i th g, ad a cls likagf th ad TCR gs. Hwvr, th rcptr ca

    b adaptd i svral was. It was shw i mic that T clls that ars arl i tg bar ivariatrcptrs ad hm t sits, sch as th ski, whrth frm a first li f dfc ad slfrw fr thlif f th rgaism47. Similarl, i hmas, T cllswith caical rcptrs mak p a larg prctag f lmphcts i th bld ad bcm highlxpadd p ifcti. Ths clls rspd t thmtablit isprlphsphat, which is prdcd ball clls bt is prdcd i a mr immgic frmb iclllar pathgs48. Th iatlik T cllsca mak p th majrit f T clls i sm spcis,bt i thrs T clls d t bar caical rcptrs,

    R E V I E W S

    50 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

  • 8/3/2019 Rise of Adaptive Immunity

    5/13

    ba

    SP

    Germline VLR gene

    5-LRRCT

    Heavy chain gene Light chain gene

    Transcriptionand translation

    LRRVe

    LRR

    3-terminus5-LRRNT3-LRRNT

    3-LRRCTLRR1 CPSP

    LRRCTLRRNT LRR

    3-terminusCP

    J CV V V D DD JJ

    JV V V JJ C

    CV D J CV J

    Membrane-bound Igs

    Secreted Igs

    Transcription and translation

    Membrane-bound VLRs

    Secreted VLRs

    Rearranged gene

    RAG-independent rearrangementRAG-mediated rearrangement

    Rearranged gene

    Complementarity-

    determining region 3

    A loop in th variabl (V)

    rgion of th B cll rcptor

    and T cll rcptor chains that

    is ncodd by th variabl

    divrsityjoining (VDJ)

    intrsction that is gnratd

    by rcombination-activating

    gn (RAG)-mdiatd somatic

    rarrangmnt. It is th part of

    th antign-binding sit that is

    most divrs in amino acid

    squnc and lngth.

    ar a larg prprti f th T clls i th bd, adsm t b mr adaptiv i atr49. Th bidigsits f ths rcptrs (v f sm f th iatrcptrs) ar mr lik BCR bidig sits: th hav lg ad shrt complmntarity-dtrminingrgion 3 (CDR3), whras TCRs hav similarl sizdCDR3s fr bth chais50.

    Rctl, w tps f TCR gs hav b dis

    cvrd i diffrt vrtbrat taxa. I abt a qartr f thir TCR gs, sharks hav a thrdmaircptr chai with tw amitrmial V dmaisad a mmbraprximal C dmai calld nARTCR51 (FIG. 2b). Bth V dmais ar gratd b VDJrarragmt: th ntrmial dmai is cdd ba IgnARlik clstr, ad th thr is gratdb rarragmt f V t caical D ad J lmts.It is likl that this TCR chai rcgizs atigs i asimilar wa t th bona fide IgnAR, which is prsmdt hav a sigldmai bidig sit. I marspials,th TCR lcs has b dplicatd. A appartlacit trans rarragmt f IgV rgis t this lcs

    i grm clls52 has rsltd i st f V, D ad J sgmts that rarrag i a clstr that is pstram fa prrarragd (that is, grmlijid) VDJ g.This is prdictd t rslt i a thrdmai TCR chaithat has tw V dmais ad C dmai ad is similar t th TCR chai i sharks (FIG. 2b). Althgh thfcti f ths rcptrs is t kw, it is prpsdthat lik th MHCrstrictd TCRs th rc

    giz slbl atigs, which wld giv thm a similar fcti t Igs53. Csistt with this ida, shark TCR gs hav rctl b shw t hprmtatlik BCR gs bt lik TCR gs54. Thrfr, aw paradigm mrgig frm th cmparativ stdisis that TCRs prbabl hav th capacit t itractwith fr atigs i a similar wa t Igs. Additiall,wh cmparig TCRs ad TCRs, th frmrclarl ar th mr vltiaril csrvd, prbablbcas th ar cstraid b MHC rstricti. Bctrast, TCRs ar mr vltiaril labil adhav adaptiv imm ad iat imm fctisthat diffr v btw vrtbrats i th sam class.

    Figure 3 | two om o aa mmuy ba. a | Immunoglobulin (Ig) genes in jawed

    vertebrates. Ig genes generate repertoire diversity by recombining variable (V), diversity (D) and joining (J) gene

    segments with the help of the recombination-activating gene (RAG) recombinase. D gene segments occur only in

    the heavy chain genes. T cell receptors generate diversity in a similar manner (not shown). They occur only in a

    membrane-bound form. b | Variable lymphocyte receptors (VLRs) in jawless vertebrates. Multiple amino-terminal

    leucine-rich repeat (LRRNT)-, leucine-rich repeat (LRR)-, connecting peptide (CP)- and carboxy-terminal LRR

    (LRRCT)-encoding modules are located adjacent to the germline VLR gene. During the development of lymphoid cells,

    these modules are incorporated into the VLR gene. The rearranged VLR gene encodes a membrane-bound protein.

    VLRB has a secreted form and functions as an antibody, whereas VLRA apparently occurs only in a membrane-bound

    form. Whether membrane-bound VLRs occur as monomers or multimers is not known. LRR1 and LRRVe denote LRR

    modules located at the N- and C-termini, respectively. The organization of the VLR locus shows minor variations

    depending on loci and species. The figure is intended to emphasize the essential features ofVLR assembly and does not

    accurately reproduce the organization of a specific VLR locus. SP, signal peptide.

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |51

  • 8/3/2019 Rise of Adaptive Immunity

    6/13

    Transporter associated with

    antigen processing(TAP). A transportr of th

    ATP-binding casstt

    suprfamily that is involvd

    in th transport of pptids

    from th cytosol into th lumn

    of th ndoplasmic rticulum.

    It is a htrodimr composd

    of TAP1 and TAP2 subunits

    and has a crucial rol in

    th transport of major

    histocompatibility complx

    class I-binding pptids.

    Tapasin

    A protin that facilitats th

    binding of pptids to majorhistocompatibility complx

    (MHC) class I molculs by

    forming a bridg btwn

    MHC class I molculs and

    transportr associatd with

    antign procssing (TAP).

    Recombination signal

    sequences

    Consrvd nuclotid

    squncs flanking variabl (V),

    divrsity (D) and joining (J)

    sgmnts that ar rcognizd

    by th rcombination-activating

    gn (RAG) protins to

    induc rarrangmnt.

    Immunoglobulin

    superfamily

    Domains of 90100 amino

    acids composd of 79

    strands forming two shts,

    gnrally stabilizd by a

    disulphid bond. Found in B

    cll rcptor, T cll rcptor

    and major histocompatibility

    complx molculs.

    Ohnologues

    Paralogus, namd aftr

    Susumu Ohno, that ar

    thought to hav mrgd clos

    to th origin of vrtbrats bywhol-gnom duplication.

    Paralogy group

    A st of paralogons that

    ar drivd from a singl

    ancstral rgion.

    Paralogues

    (Also known as paralogous

    gns.) Gns within a singl

    spcis that blong to th

    sam gn family. In contrast

    to paralogus, orthologus

    rfrs to gns that divrgd

    by spciation vnts.

    Major histocompatibility complex

    Th MHC is dfid b: MHC class I ad class II gs;gs that cd transportr associatd with antignprocssing (TAP) ad tapasin, which ar ivlvd iprcssig atigs fr prstati b MHC class Imlcls; ad gs that ar ivlvd i gral immit (s blw). Th MHC, lik TCRs ad BCRs, is firstfd i cartilagis fish55. Gs ivlvd i class Iprcssig ad prstati ar clsl likd i almstall vrtbrats (xcpt i plactal mammals, i whichthr is cls likag f th class I prcssig gs adclass II gs) ad ar blivd t hav cvlvd55,56. Asdscribd blw, gs that cd atral killr (nK) cllrcptrs ar assciatd with th MHC f varis livig

    vrtbrats, ad ths srv as cctis t what smst hav b a primrdial g cmplx cmpsd frcptrs ad ligads55,57,58. Thrfr, it sms likl thatnK rcptrs (ad prhaps als th frrrs f atig rcptrs) wr phsicall likd t th primrdialMHC i a similar wa t th liks btw rcptrs adligads i th mriad histcmpatibilit sstms f md

    rda lwr dtrstms ad prtstms59; thsliks wr sbsqtl fragmtd i gathstms.

    How did the jawed vertebrate AIS arise?

    As discssd abv, th BCRTCRMHCbasd AIS isprst i cartilagis fish bt abst i lwr chrdats. Tw macrvltiar vts th ivasi fth RAG trasps ad tw whlgm dplicatis (WGDs) ar blivd t hav prvidd th i

    vati ad raw matrial, rspctivl, fr th rlativlrapid mrgc f th AIS i jawd vrtbrats. I thisscti w discss th pttial ctribti f thstw vts.

    The recombination-activating gene transposon. I thlat 1970s, Saka ad Tgawa discvrd rcombi-nation signal squncs (RSSs) flakig V, D ad J rarragig sgmts60, ad th ticd that th ivrtdrpats withi th RSSs wr rmiisct f a trasps. This sggstd that a g cdig a immunoglob-ulin suprfamily (IgSF) x was ivadd b a trasps.Thrfr, th g cld t b xprssd lss it wasstitchd back tgthr thrgh th acti f a rcmbias. Thr ar ma IgSF gs i lwr chrdats thatar rlatd t BCR ad TCR V rgis (th scalld VJtp f IgSF g; FIG. 1), s thr ar ma cadidatgs that cld hav b ivadd b th RAG tras

    ps i a vrtbrat acstr61. Fr xampl, th gfamil cdig th variabl rgi ctaiig chitibidig prtis (VCBPs) i amphixs is prsmd tb ivlvd i dfc ad cld b rlatd t th rarragig acstr f th BCR ad TCR gs62. othrgs that might b rlatd t th acstral VJ g (frxampl, ReFS6365) ar dscribd blw.

    Th RAG1 ad RAG2 gs hav hmlgsrgis ad itrs bt ar clsl likd t ach thr,which sggsts that th cld hav b acqird b vrtbrats as part f th rigial trasps4,66. CmpltRAG gs hav b islatd frm all gathstmsstdid, bt t frm jawlss fish. This is csistt with

    th ida that acqisiti f th RAG trasps hlpdt triggr BCR ad TCRbasd immit. Srprisigl,likd RAG1 ad RAG2 gs wr fd i th gmf th sa rchi (a chidrm)67(FIG. 1), which implisithr that th RAG trasps ivadd th gm 100milli ars bfr th mrgc f adaptiv immitad rmaid drmat, r that it had ivadd at mltipl tims. Th athrs sggstd that a RAG1lik givadd th gm ad isrtd ar a RAG2likg that was sbsqtl icldd i th rigial trasps. Th RAG1lik g cld hav rigiatd frmtrasib a trasps that cds th RAG1 cr adthat has b fd i ma rgaisms68 r, as Drfshas rctl sggstd69, frm a viral gtic lmt.RAG2 th lst its rigial fcti ad was cptdt th VDJ rarragmt prcss. This prpsiti iscsistt with rct wrk shwig that RAG2 ds tctribt t rarragmtper se, bt istad itractswith mdifid hists at sits f activ trascripti70. Wprps a wrkig mdl i which RAG2 bids t activrgis f trascripti ad RAG1 bids t th xpsd

    RSS. RAG1 itracts with, ad is dpdt , RAG2 tiitiat VDJ rarragmt, bt RAG1 prfrms all f thmajr fctis assciatd with rcmbiati.

    Rgardlss f th rt f its mrgc i chrdats,th RAG trasps ivasi mst hav b crcialfr adaptiv immit, as all f th BCR ad TCRgs s th sam mchaism f VDJ rarragmt.Frthrmr, dspit argmts t th ctrar71, RAGactivit was likl t hav b a ivativ vt fradaptiv immit, as jawd vrtbrats hav ma vlmchaisms ad mlcls that ar ivlvd i immit i gral, ad adaptiv immit i particlar,cmpard with jawlss fish (discssd frthr blw)72.

    Whole-genome duplication. narl 40 ars ag, Ssmoh prpsd that th vrtbrat gm drwt r tw rds f WGD at th stag f fish r amphibias thrgh a ttraplidizati prcss73. Althgh thisprpsal was a mattr f ht dbat til rctl(BOX 1),it is w widl accptd that th vrtbrat gmxpricd tw rds f WGD aftr th mrgcf rchrdats ad bfr th radiati f jawd vrtbrats7477(FIGS 1,4). WGDs sm t hav had a crcialrl i th mrgc f jawd vrtbrattp adaptivimmit78,79. This is idicatd b th fact that maohnologus, which ars as a rslt f WGDs, ar sstialcmpts f th jawd vrtbrattp AIS80,81.

    Th MHC paralogy group(FIG. 4a) ad th HoX paralg grp (Spplmtar ifrmati S1 (figr)) arillstrativ xampls. I th cas f th MHC paralggrp8284, paralogus f mr tha 100 g familis ardistribtd i fr sts fparalogons (fr a list f gfamilis, s ReF. 85). As wld b xpctd frm ohsthr f WGD, th gms f ivrtbrats, sch asamphixi84,86 ad Ciona intestinalis87, d t hav mltipl sts f MHC paralgs ad ctai l MHClik rgi, which is dvid f class I ad II gs(a prtMHC).

    Rctl, oliski et al.85 sggstd that th rtrphi paralg grp (FIG. 4, lft) ad th MHC

    R E V I E W S

    52 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

    http://www.ncbi.nlm.nih.gov/gene/5896http://www.ncbi.nlm.nih.gov/gene/5897http://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.ncbi.nlm.nih.gov/gene/5897http://www.ncbi.nlm.nih.gov/gene/5896
  • 8/3/2019 Rise of Adaptive Immunity

    7/13

    Paralogons

    Chromosomal sgmnts that

    contain closly linkd sts of

    paralogus. Also known as

    paralogous rgions.

    Agglutinin

    Any substanc that can

    clump particls togthr.

    AID-APOBEC

    A family of cytidin

    daminass that ar involvdin th hyprmutation of

    variabldivrsityjoining

    (VDJ) sgmnts, in th

    immunoglobulin class switch

    and in dfnc against viruss.

    Two mmbrs of th family

    ar implicatd in gnrating

    divrsity in variabl

    lymphocyt rcptors.

    Allelic exclusion

    Th xprssion of a singl

    rcptor in clls with th

    potntial to xprss mor

    than two rcptors.

    paralg grp (FIG. 4, right) wr drivd frm ighbrig rgis th sam acstral chrmsm.This sggsti is basd th bsrvati that svral gs f th MHC ad rtrphiparalggrps ar likd i th gms fC. intestinalis85ad amphixi88. Itrstigl, chrmsmal rgis12p13.2p12.3 ad 19q13.4, which cd th hmanK cmplx (nKC) ad lkct rcptr cmplx(LRC), rspctivl(BOX 2), ar mbddd i th rtrphi paralgs89. Thrfr, oliski et al.s sggsti prvids a lgical basis fr th arlir prpsals thatth acstrs f nK rcptr gs cdd i th nKCad LRC wr lcatd i th prtMHC55,57,90,91.

    Strikigl, th itgratd MHC/rtrphi paralg grp cds ma hlgs that hav imprtatfctis i th AIS, particlarl i atig prstatib MHC class I ad II mlcls (FIG. 4; Spplmtarifrmati S2 (tabl)). I additi t TAP ad tapasi,

    thr prtasm sbits that ar spcializd fr atigprstati ar cdd i this paralg grp, tgthrwith sm f thir paralgs. Similarl, th itgratdparalg grp cds 10 f th 11 cathpsi hlgs, icldig cathpsis S ad L, which hav crcialrls i atig prstati b class II mlcls adi thmic slcti. othr xampls icld: rtiidX rcptr (RXRB) ad rglatr factr X5 (RFX5),which cd prtis that rglat th xprssi fclass I ad II mlcls, rspctivl; NOTCH1, which isivlvd i lmphct diffrtiati; ad VAV1, whichis rqird fr T ad B cll dvlpmt ad activati(Spplmtar ifrmati S2 (tabl)).

    The convergent AIS of jawless vertebrates

    With sm xcptis, ad dspit th ivlvmtf th wllcsrvd ad rapidl vlvig mlclarfatrs dscribd abv, th AIS f jawd vrtbratshas b rmarkabl ifrm vr 500 milli ars.Fctial assas f jawlss vrtbrats (lamprs adhagfish) hav shw sigs f adaptiv immit, btithr adaptiv imm mlclar charactristics rtisss, sch as a thms r spl, wr dtctd iths aimals. Fr xampl, jawlss vrtbrats prdcspcific agglutinins wh immizd with particlatad slbl atigs9295, bt xtsiv trascriptmaalsis f jawlss fish lkcts prvidd vidc fr th prsc f MHC, BCR r TCR mlcls9698. Thir absc has b rctl cfirmdb th aalsis f th sa lampr (Petromyzon marinus)draft gm sqc. Hw ca th mt adaptivimm rspss i th absc f BCR, TCR adMHC mlcls? Th discvr f a VLR g, whichgrats divrsit b smaticall rarragig lcirich rpat (LRR) mdls7, prvidd a aswr99. Th

    grmli VLR g lacks g sgmts cdig fr LRRmdls ad is t capabl f cdig fctial prtis (FIG. 3b). Drig th dvlpmt f lmphid clls,LRR mdls that flak th g ar sqtiall icrpratd it VLR b a prcss calld cp chic100.Icrprati is prsmabl mdiatd b ctididamiass f th AID-APOBeC famil8. Th matr VLRg cds a glcslphsphatidlisitlachrdplpptid. Th sqc f idividal LRR mdlsassmbld it th VLR g is highl divrs, ad thmbr f LRR mdls prst i a rarragd g

    varis frm t i. Thrfr a sigl VLR g cahav cmbiatrial divrsit cmparabl t that f Igs(~1014 cmbiatis)101. Th crstal strctrs f hagfish VLR mmrs idicat that th adpt a hrsshlik slid strctr that is charactristic f LRRfamil prtis. Th majrit f variabl rsids i thVLR ar lcatd th ccav srfac, which sggststhat this srfac is ivlvd i atig bidig 102. Thiswas rctl cfirmd bin vitro mtagsis xprimts103 ad th crstal strctr aalsis f VLR icmplx with th hma bld grp Htrisaccharid104r with h gg lszm105.

    Lamprs hav tw VLR gs: VLRA ad VLRB8.Bth sm t b xprssd xclsivl i lmphid clls,ad th sall xhibit alllic xclusion. Stimlati withatigs cass lmphid clls xprssig spcific VLRB

    mlcls t drg clal xpasi ad t scrtVLRs i a mar aalgs t th scrti f Igs bB clls7,101. Scrtd VLRB mlcls ccr as ptamrsr ttramrs f dimrs ad hav ight t t atigbidig sits103. Thrfr, th sbit rgaizati fscrtd VLRB mlcls rsmbls that f IgM atibdis. Th mltivalt strctr f VLRB abls itt bid atigs carrig rptitiv pitps with highavidit ad spcificit, ad it displas strg aggltiatig activitis106. It has b sggstd that, lik sbclasssf IgM, VLRB might prfrtiall r xclsivl rcgiz thmsidpdt atigs106. B ctrast,VLRA sms t ccr l i a cllbd frm ad is

    Box 1 | Controversies surrounding whole-genome duplication

    The idea that the vertebrate genome underwent two rounds of whole-genome

    duplication (WGD) at a time close to the origin of vertebrates known as the

    two-round (2R) hypothesis caused hot debate for more than a decade. The major

    evidence in favour of this hypothesis was that paralogues that emerged close to the

    origin of vertebrates are not distributed at random in the human genome, but have a

    strong tendency to occur in clusters, known as paralogons, on multiple typically four

    chromosomes. The major arguments against this hypothesis were twofold127,128

    . First,ohnologues (for example, A, B, C and D) generated by two rounds of WGD should

    display the tree topology (that is, A and B together and C and D together), which is not

    always the case127. Second, paralogons occasionally contain paralogues that duplicated

    much earlier than the origin of vertebrates. We now know that incongruent tree

    topologies can occur if two waves of genome doubling occurred in close succession129,

    if paralogues have evolved at different evolutionary rates130 or if the resolving power of

    phylogenetic trees is not sufficient129. Also, the divergence time of paralogues can be

    much older than the age of WGD if tandem duplication preceded WGD and the

    duplicated genes were lost differentially after WGD. Therefore, neither of these two

    counterarguments contradicts the 2R hypothesis.

    Recently, comparison of the human and amphioxus (Branchiostoma floridae) genomes

    revealed widespread quadruple conserved synteny, in which four sets of human

    paralogons corresponded to one set of linked genes in B. floridae131. This observation

    provided definitive evidence for the 2R hypothesis and settled the long-standing

    debate. The exact timing of WGD relative to the emergence of jawless vertebrates(FIG. 1) is still controversial. A commonly held view, which we also favour, is that the first

    round of WGD occurred in a common ancestor of jawed and jawless vertebrates, and

    the second round in a common ancestor of jawed vertebrates76. However, recent

    analysis of 55 gene families in jawless vertebrates suggested that both rounds of WGD

    might have taken place in a common ancestor of all vertebrates, although this analysis

    could not discount the idea that the second round of WGD occurred in a common

    ancestor of jawed vertebrates132, as depicted in FIG. 1.

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |53

    http://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.html
  • 8/3/2019 Rise of Adaptive Immunity

    8/13

    TAPBPL

    MHC

    NOTCH3

    ABL2

    RXRG

    TNFSF4, 6, 18PIAS3SHC1

    19q13q14

    LRC

    A2M

    KRAS

    NRAS

    NKC

    TAPL

    RFX4SPIC

    AKT3

    TICAM2ERAP1

    CD74

    Two rounds of WGD

    Proto-MHC chromosome

    PSME1, 2TCRA/D

    14q11q32

    AKT1NFKBIA

    2

    IGKCCD8A, B2

    p12p23

    20p11p12

    HRASSPI1

    11q12q13

    6p21p22

    PIK3R1

    CTSH

    15

    5

    15q13q26

    5q11q23

    PIAS1CSKMAP2K1SHC4B7H3B2M

    6

    9

    CTSL2

    CTSL

    C5

    PSMB7

    VAV2TNFSF8SHC3

    ABL1NOTCH1RXRA

    RFX3

    9q32q34

    9p13p

    24

    TAPBPTAP

    PSMB8, 9

    C4

    JAK2

    MHC class I, II

    TNFSF1, 2, 3NOTCH4RXRB

    19

    114

    11

    12

    1

    20

    19

    RFX1, 2

    C3

    JAK3VAV1IL12RB1TNFSF4, 7, 9TICAM1PIAS4MATKJUNB, JUNDMAP2K2SHC2

    RFX5

    CTSK, CTSS

    NOTCH2JAK1VAV3IL12RB2JUNB7H4

    19p13.1p13.3

    1q21q25

    1p11p32

    CTSD

    CTSC, F, W

    11p12p15

    11q23q24

    CTSG

    PSMB5, 11

    LGMN

    NKG2

    CD4LAG3

    12p11p13

    12q22q24

    PIK3R3

    1p13

    1q32q44

    PIK3R2

    KIRSPIBBCL3AKT2NFKBIB

    RXR

    PSMB

    TAP-like

    TAPBP-like

    RFXCTS

    NOTCH

    A2M/C3/4/5

    VAV

    TNFSF

    JAKMHCprecurso

    NKRprecursor

    PDCD1LG1

    PDCD1LG2

    xprssd lmphid clls that fctiall rsmblT clls. Thrfr lamprs hav tw pplatis flmphid clls that sm t b fctiall similar t thT ad B clls f jawd vrtbrats107.

    Hagfish als hav tw VLR gs108, VLRA adVLRB, which ar prsmd t b rthlgs t lamprVLRA ad VLRB, basd sqc cmparis.Th map t th sam chrmsm bt ar distat frmach thr, which idicats that th fcti as sparat its109. Csistt with this, th rarragd VLRAad VLRB gs d t shar a LRR mdl with a

    idtical cltid sqc. It rmais t b dtrmid whthr hagfish VLRA adVLRB ar fctiallsimilar t th crrspdig lampr gs.

    Origin of the two distinct forms of AIS

    Bth VLRs ad BCRs/TCRs rl cmbiatrial divrsit t grat a vast rprtir f bidig spcificitis;hwvr, th gs f VLRs shw strctral similaritt ths f BCRs r TCRs (FIG. 3). Thir rcmbiatimachiris mst diffr bcas RAG1 ad RAG2 arrqird l fr BCR/TCRs. Ths bsrvatis sggst

    Figure 4 | t majo oomaby omx aaogy gou a uoo aaogy gou

    uma gom. Four sets of major histocompatibility complex (MHC) paralogons are located on chromosomes 1, 6,

    9 and 19 (ReFS 55,137,138). A number of smaller-sized MHC paralogons, which presumably originated from fragmentation

    and subsequent translocation of the major paralogons, have been identified55. Among them, those located on

    15q13q26 and 5q11q23 seem to have broken off from the paralogons on chromosomes 6 and 9, respectively130. Four sets

    of major neurotrophin paralogons are located on chromosomes 1, 11, 12 and 19 (ReF. 89).The MHC paralogy group (right)and neurotrophin paralogy group (left) are thought to have descended from neighbouring regions on a single ancestral

    chromosome. Paralogues that are distributed across the two paralogy groups are indicated by blue highlighted text. In

    addition to genes that share paralogues among the relevant paralogons, immunologically important genes, such as those

    encoding MHC class I, MHC class II, T cell receptors (TCRs), and immunoglobulins (Igs) are shown. A2M, 2-macroglobulin;B2M, 2-microglobulin; BCL, B cell leukaemia/lymphoma; CSK, cytoplasmic tyrosine kinase; CTS, cathepsin; ERAP,endoplasmic reticulum aminopeptidase; IL12RB, interleukin 12 receptor,-subunit; JAK, Janus kinase; KIR, killer Ig-likereceptor; LAG3, lymphocyte activation gene 3; LGMN, legumain; LRC, leukocyte receptor complex; MAP2K,

    mitogen-activated protein kinase kinase; MATK, megakaryocyte-associated tyrosine kinase; NFKBIA, nuclear factor-Binhibitor; NKC, natural killer complex; NKR, NK receptor; NRAS, neuroblastoma RAS; PD, programmed cell death 1 ligand;

    PIAS, protein inhibitors of activated STAT; PIK3R, phosphatidylinositol 3-kinase, regulatory subunit; PSMB, proteasome

    subunits, -type; PSME, proteasome activator subunits; RFX, regulatory factor X; RXR, retinoid X receptor; SPI1, spleenfocus forming virus proviral integration oncogene; TAP, transporter associated with antigen processing; TAPBP, TAP-binding

    protein (also known as tapasin); TAPBPL, TAPBP-like; TAPL, TAP-like (also known as ABCB9); TICAM, TIR domain-containing

    adaptor molecule; TNFSF, tumour necrosis factor ligand superfamily; WGD, whole-genome duplication.

    R E V I E W S

    54 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

  • 8/3/2019 Rise of Adaptive Immunity

    9/13

    Vertebrate ancestors

    Jawless vertebrates Jawed vertebrates

    Ig V-like domain closely relatedto the BCR and TCR domains

    BCR TCR

    T cellsB cells

    BCR/TCR ancestor

    T-like lymphoid cellsB-like lymphoid cells

    VLRAVLRB

    T-like lymphoid cellsB-like lymphoid cells T-like lymphoid cellsB-like lymphoid cells

    VLR ancestor

    2R

    1R

    RAG activity

    Differential recruitment of receptors

    GPIb- B-like lymphoid cel ls T-like lymphoid cel ls

    S

    SV

    J

    that th acstrs f jawd ad jawlss vrtbratsdvlpd thir atig rcptrs idpdtl.

    Althgh VLRs prbabl xist l i lamprs ad

    hagfish, th rigi f LRR mdls is acit; LRR mdl rpats ar fd i ma aimal ad plat prtis,i which th sm t mdiat prti itractis rmicrbial rcgiti. It has b prpsd, th basisf th similarit f g strctrs ad a charactristicisrti i th LRR carbxtrmial (LRRCT) dmai,that a acstr f VLR might hav mrgd frm a glcprti Ib (GPIb)lik prti (GPIb is a cmpt f th platlt glcprti rcptr cmplx thatis csrvd i all vrtbrats)8. Frthrmr, sarchsfr IgSF prtis i jawlss vrtbrats hav idtifidmlcls that ar thght t b rlatd t th pttialvltiar prcrsrs f BCRs ad TCRs6365. Ths

    ar: th agatha paird rcptrs rsmblig atigrcptrs (APAR) famil f iat imm rcptrs,which cd a grp f mmbra prtis carrig a

    sigl xtraclllar Vtp Iglik dmai with a caical J sgmt64; ad a immrcptr trsibasdihibiti mtifbarig mmbra prti, amdTCRlik65, which has VC2tp dmai rgaizatiad sms t b clsl rlatd t th vl immrcptr trsibasd activati mtifctaiigIgSF rcptr (nICIR) famil f activatig iatimm rcptrs110. Th ccrrc f ths rcptrsi jawlss vrtbrats sggsts that a cmm acstrf all vrtbrats had Vtp Iglik dmais that vlvdit th Iglik dmais f BCRs ad TCRs. Hc, asmtid abv, it sms that a vrtbrat acstr hadbth BCR/TCR ad VLR prcrsrs (FIG. 5). I a jawd

    Figure 5 | A yoa mo o og o wo majo om o aa mmu ym.

    The occurrence of B- and T-like lymphoid cells in jawless vertebrates indicates that they were likely to be present in

    a common ancestor of all vertebrates107. Similarly, the occurrence of a V-type immunoglobulin (Ig)-like domain with a

    canonical joining (J) segment in jawless vertebrates indicates that a common ancestor of all vertebrates had V-type Ig-like

    domains that could be converted to B cell receptor (BCR) or T cell receptor (TCR) Ig-like domains. Amphioxus, a basalchordate, has a glycoprotein Ib- (GPIb-)-like protein, which is the most likely precursor to the variable lymphocytereceptor (VLR)8. Therefore, a common ancestor of all vertebrates presumably had all of the key structural elements of the

    two radically different antigen receptors. Acquisition of recombination-activating gene (RAG) recombinase activities and

    the second round of whole-genome duplication (WGD; indicated as 2R) are thought to have had a crucial role in the

    emergence of the BCRTCRMHC-based adaptive immune system (AIS). Little is known about the genetic events that

    contributed to the emergence of the VLR-based AIS in jawless vertebrates. It is possible that the first round of WGD

    (indicated as 1R) contributed to the emergence of the two lineages of lymphoid cells; however, we cannot rule out the

    possibility that their origin predates the emergence of vertebrates.

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |55

  • 8/3/2019 Rise of Adaptive Immunity

    10/13

    vrtbrat liag i which RAG isrti ccrrd, aIgSF prti was chs as a atig rcptr, whichld t th BCRs ad TCRs. I a jawlss vrtbrat liagwith apprpriat RAG isrti, a LRR prti famil that cld mdiat micrbial rcgiti was chsas a atig rcptr, which ld t th VLRs.

    Th ccrrc f strctrall rlatd rcptrsthat ar sd fr th sam r similar prpss is tprcdtd (BOX 2). Fr xampl, i primats thnK rcptrs that itract with classical MHC class Imlcls ar mmbrs f th killr cll Iglik rcptr(KIR) famil, bt i rdts th crrspdig rcptrsar Ctp lctilik mlcls kw as L49 rcptrs111. A cmm acstr f primats ad rdts isthght t hav had prcrsr gs fr bth tps fnK rcptrs; th KIR g famil xpadd i th primat liag ad th L49 famil xpadd i th rdtliag112,113. W sggst that th acstrs f jawd ad

    jawlss vrtbrats adptd distict mlcls as thiratig rcptrs i a aalgs mar.

    Th bsrvati that jawlss vrtbrats hav B ad

    Tlik lmphid clls107 idicats that th tw liagsf lmphid clls mrgd bfr th divrgc f

    jawd ad jawlss vrtbrats (FIG. 5). Thrfr, thrigi f B ad Tlik lmphid clls is likl t bmr acit tha prvisl thght. This is cmpatibl with rct bsrvatis that B ad T clls d tshar a immdiat cmm prgitr, bt diffrtiat frm mlid B prgitrs ad mlid T prgitrs, rspctivl88,113115. This sggsts that B ad Tliklmphid clls divrgd bfr th divrgc f mlidad lmphid clls. Althgh w mst b catis whsig cll liag ifrmati as a prx fr th rdr f

    vltiar mrgc, it sms likl that th bildigblcks fr bth tps f atig rcptrs ad als thtw liags f lmphid clls wr prst i a cmmacstr f all vrtbrats (FIG. 5).

    Pressures for adaptive immunity

    Wh did th AIS aris? As td abv, ivrtbratsad plats maag with iat mchaisms f dfc(hwvr, it shld b mtid that primitiv adaptiv sstms hav b dscribd i svral ivrtbrattaxa116 ad that a RnAilik mchaism prvids aptt adaptiv rsps i ma rgaisms117). Idd,it has b argd that a aticipatr sstm f dfcis mr trbl tha it is wrth, as it cssitats thgrati f tlrac t slf drig th tg flmphcts, ad failr t rglat ths dfc mchaisms ca rslt i atimmit118. Frthrmr, thadaptiv sstm might l b maitaid wh drstrg slctiv prssr: rgaisms sch as cd119, sahrss120 ad axltl121, which might t b dr strgprssr frm pathgs, sm t hav lst th capacit

    t mt ffctiv imm rspss, at last as far asth ca b masrd xprimtall121.

    Hwvr, w thik that at last th BCRTCRMHCsstm ars as a ptt sstm f dfc. It is blivdthat this sstm mrgd i aimals with jaws, which arlikl t hav b prdatr. Larg prdatrs gralld t hav ma ffsprig, thrb maitaiig a ratif prdatrtpr that prptats th status quo122.Sharks, th ldst livig vrtbrats with this adaptivsstm, hav ma w mchaisms f rprdctit prtct g ffsprig sch as imptrabl ggcass ad mds f viviparit that hav cvrgd thmchaisms i mammals. Thrfr it ca b prpsdthat a ptt sstm f dfc ars i cjctiwith th d t prtct ffsprig. I jawlss fish, thAIDAPoBeC famil mmbrs might hav abld thdivrsificati f a primm rprtir f IgSF gs,as sms t b th cas fr th VLR sstm. Th additif th RAG trasps t this adaptiv sstm wld havprvidd a grat advatag, casig a brak drig rarragmt that wld hav cratd th pttial fr larg

    variatis i th siz f f th CDR lps that itractwith atigs37. This advatag, alg with th raw matrial f a larg mbr f wl dplicatd gs that cldb cptd fr imm fctis, prbabl rsltdi th highl cmplx AIS s tda i gathstms.

    ConclusionsThr ar ma charactristics f th AIS that ca grall b agrd p: jawlss ad jawd fish bth hav aAIS basd diffrt g familis, bt th BCRTCRMHCbasd sstm is mr cmplx; th RAG trasps ad WGDs had majr rls i th mrgc fth jawd vrtbrat AIS, ad th majr fatrs f thsstm ars arl i a big bag ad hav b mdifidl slightl vr vltiar tim; ad th jawd vrtbrat AIS displas bth csrvd ad plastic fatrs,th frmr prsmabl t allw fr a gral fctiigf th sstm ad th lattr t prmit rapid chags vrvltiar tim t rspd t pathgs11.

    Box 2 | Natural killer cell receptors

    Natural killer (NK) cells are part of the innate immune system. They can produce

    cytokines and kill virally infected cells without a clonal proliferation phase. NK cells

    share many characteristics with T cells, including most cell-surface markers,

    elaboration of the same effector functions and origins from a similar haematopoietic

    precursor111. However, the NK cell receptor (NKR) recognition strategy is different

    from that of T cells (although the signalling cascades are homologous). When cells

    become virally infected, major histocompatibility complex (MHC) class I molecules

    are often downregulated, making the cells invisible to cytotoxic T cells. Inhibitory

    NKRs on NK cells recognize MHC class I molecules; when the inhibitory NKRs are not

    engaged, the NK cells can be stimulated by activating receptors that often recognize

    stress-induced molecules that are upregulated on viral infection. This is known as the

    missing self hypothesis133.

    Unlike T cell receptors (TCRs), NKRs are not generated by recombination-activating

    gene (RAG)-mediated recombination, but rather through stochastic, clonal expressionof a few receptors from a cluster of genes encoding activating and inhibitory NKRs.

    These receptors are encoded by the NK complex (NKC) and leukocyte receptor

    complex (LRC), found on different chromosomes in all mammals examined. The NKRs

    that recognize classical (polymorphic) class I molecules are encoded by genes in

    different gene families in various species, for example the C-type lectin Ly49 genes

    found in the NKC in mice and the killer immunoglobulin superfamily (IgSF) receptor

    (KIR) genes found in the LRC of humans. This is the only known case in the immune

    system in which receptors from different gene families perform precisely the same

    functions in closely related species, and it is a testament to the rapid evolution of the

    NK system of defence. Evidence from comparative studies of the MHC, LRC and NKC

    strongly suggest that the three complexes were originally linked and that their

    polymorphic receptors and ligands have co-evolved, as has been found in many

    histocompatibility systems in plants and invertebrates59.

    R E V I E W S

    56 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

  • 8/3/2019 Rise of Adaptive Immunity

    11/13

    Ma qstis still d t b addrssd, mst fwhich will rqir icrmtal prgrss. Fr xampl,what is th atr f th RAG trasps? What ar thfctis f atig rcptrs i diffrt rgaisms,spciall th TCR? Ad hw is th VLR sstm rglatd? Hwvr, thr ar tw glarig qstis: did Tad Blik lmphid clls rall mrg i th cmmacstr f jawlss ad jawd vrtbrats, ad what wrth prssrs that slctd fr th mrgc f th AIS?Rgardig th first f ths qstis, bsids what whav discssd abv ccrig th atig rcptrs,it is sstial t dtrmi whthr, lik gathstm T clls, th Tlik lmphid clls f jawlss vrtbrats rcgiz prcssd atigs, prhaps thrghprstati a cvrgt tp f MHC mlcl.Istad, th might rcgiz ativ atigs i a cllbd frm, prhaps i a wa similar t th rcgitithat ccrs fr sm sbsts f gathstm T clls.Bcas th lampr T cll atig rcptr VLRAhas b shw t bid slbl atigs ad bcasits g appartl mtats aftr atigic stimlati,

    r prdicti is that th TCRlik mchaism willprv t b crrct123. Rgardig th scd qsti, wwill vr b abl t rslv this prblm xprimtall.

    nw idas ccrig slcti prssrs sggst that thcapacit f th imm sstm t distigish btwcmmsal ad pathgic micrrgaisms rsltd ith grat cmplxit f th gathstm AIS124,125. Thdrstadig f th imm sstms itractis withcmmsal rgaisms is i its ifac, ad prhaps wca dvlp dfid hpthss as this fild dvlps.o hpthsis, which mphasizs th imprtac fth gt, sggsts that with th advt f jaws, digstdmatrial cld ijr th itsti ad thrfr rslti massiv ifctis. Th sahrs, which has smigl lst fatrs f adaptiv immit, is a filtrfdig aimal, s it is spclatd t hav rvrtd ta pradaptiv stat120. or viw is that th AIS ars as asstm f dfc ad bcam mr crcial ad mrsphisticatd with th mrgc f th larg prdatr

    jawd vrtbrats that br fw ffsprig. W thik thatr psiti has b strgthd b rct vidcthat has shw that th jawd vrtbrats i which it isblivd that th AIS first mrgd th placdrms had itral frtilizati126. W hp that this Rviw

    will spark frthr itrst i this ara, spciall amgimmlgists wh might s th prblm frm afrsh prspctiv.

    1. Weigert, M. G., Cesari, I. M., Yonkovich, S. J. & Cohn, M.

    Variability in the light chain sequences of mouseantibody. Nature228, 10451047 (1970).

    2. Tonegawa, S. Reiteration frequency of immunoglobulin

    light chain genes: further evidence for somatic

    generation of antibody diversity. Proc.NatlAcad.Sci.

    USA73, 203207 (1976).

    3. Davis, M. M., Chien, Y. H., Gascoigne, N. R. &

    Hedrick, S. M. A murine T cell receptor gene complex:

    isolation, structure and rearrangement. Immunol.Rev.

    81, 235258 (1984).

    4. Oettinger, M. A., Schatz, D. G., Gorka, C. &

    Baltimore, D. RAG1 and RAG2, adjacent genes thatsynergistically activate V(D)J recombination. Science

    248,15171523 (1990).5. Muramatsu, M. et al. Class switch recombination and

    hypermutation require activation-induced cytidine

    deaminase (AID), a potential RNA editing enzyme. Cell

    102, 553563 (2000).

    6. Schluter, S. F., Bernstein, R. M., Bernstein, H. &

    Marchalonis J. J. Big Bang emergence of the

    combinatorial immune system. Dev.Comp.Immunol.

    23,107111 (1999).

    7. Pancer, Z. et al. Somatic diversification of variable

    lymphocyte receptors in the agnathan sea lamprey.

    Nature 430, 174180 (2004).

    This is a seminal paper that described a novel

    rearranging gene in the lamprey. This work

    suggested strongly that jawless vertebrates have

    an alternative form of adaptive immunity that is

    not dependent on BCRs, TCRs or the MHC.

    8. Rogozin, I. B., Iyer, L. M. et al. Evolution and

    diversification of lamprey antigen receptors: evidencefor involvement of an AID-APOBEC family cytosine

    deaminase. NatureImmunol.8, 647656 (2007).

    This paper suggests that the diversity of the VLR

    gene is generated by a gene conversion-like process

    that is presumably mediated by cytidine deaminases

    of the AID-APOBEC family. It also describes the

    identification of the lampreyVLRA gene.9. Hibino, T., Loza-Coll. M. et al. The immune gene

    repertoire encoded in the purple sea urchin genome.

    Dev.Biol.300, 349365 (2006).10. Jones, J. D. & Dangl, J. L. The plant immune system.

    Nature444,323329 (2006).

    11. Klein, J., Satta, Y., OhUigin, C. & Takahata, N. The

    molecular descent of the major histocompatibility

    complex.Annu.Rev.Immunol. 11, 269295 (1993).

    12. Flajnik, M. F. Comparative analyses of immunoglobulin

    genes: surprises and portents. NatureRev.Immunol.

    2, 688698 (2002).

    13. Kaattari, S., Evans, D. & Klemer, J. Varied redox forms

    of teleost IgM: an alternative to isotypic diversity?

    Immunol.Rev.166, 133142 (1998).

    14. Dooley, H. & Flajnik, M. F. Shark immunity bites back:

    affinity maturation and memory response in the nurse

    shark, Ginglymostoma cirratum. Eur.J.Immunol.35,

    936945 (2005).

    15. Wilson, M. et al. A novel chimeric Ig heavy chain from

    a teleost fish shares similarities to IgD. Proc.Natl

    Acad.Sci.USA94, 45934597 (1997).

    16. Ohta, Y. & Flajnik, M. IgD, like IgM, is a primordial

    immunoglobulin class perpetuated in most jawed

    vertebrates. Proc.NatlAcad.Sci.USA103,1072310728 (2006).

    17. Zhao, Y. et al. Identification of IgF, a hinge-region-

    containing Ig class, and IgD inXenopus tropicalis.

    Proc.NatlAcad.Sci.USA103, 1208712092 (2006).

    References 16 and 17 confirm that IgD is much

    older than previously realized and that it has

    evolved rapidly over evolutionary time.

    18. Greenberg, A. S. et al. A novel chimeric antibody class

    in cartilaginous fish: IgM may not be the primordial

    immunoglobulin.Eur.J.Immunol.26, 11231129 (1996).

    19. Berstein, R. M., Schluter, S. F., Shen, S. &

    Marchalonis, J. J. A new high molecular weight

    immunoglobulin class from the carcharhine shark:

    implications for the properties of the primordial

    immunoglobulin. Proc.NatlAcad.Sci.USA93,

    32893293 (1996).20. Ota, T., Rast, J. P., Litman, G. W. & Amemiya, C. T.

    Lineage-restricted retention of a primitive

    immunoglobulin heavy chain isotype within the Dipnoi

    reveals an evolutionary paradox. Proc.NatlAcad.Sci.USA100, 25012506 (2003).

    21. Chen, K. et al. Immunoglobulin D enhances immune

    surveillance by activating antimicrobial,

    proinflammatory and B cell-stimulating programs in

    basophils. NatureImmunol.10,889898 (2009).

    22. Warr, G. W., Magor, K. E. & Higgins, D. A. IgY: clues to

    the origins of modern antibodies. Immunol.Today16,

    392398 (1995).

    23. Mussmann, R., Du Pasquier, L. & Hsu, E.

    IsXenopus IgX an analog of IgA? Eur.J.Immunol.26,

    28232830 (1996).

    24. Desmyter, A. et al. Crystal structure of a camel single-

    domain VH antibody fragment in complex with

    lysozyme. NatureStruct.Biol. 3, 803811 (1996).

    25. Greenberg, A. S. et al. A new antigen receptor gene

    family that undergoes rearrangement and extensive

    somatic diversification in sharks. Nature374,

    168173 (1995).

    26. Greenberg, A. S., Steiner, L., Kasahara, M. &

    Flajnik, M. F. Isolation of a shark immunoglobulin light

    chain cDNA clone encoding a protein resembling

    mammalian light chains: implications for theevolution of light chains. Proc.NatlAcad.Sci.USA90,

    1060310607 (1993).

    27. Criscitiello, M. F. & Flajnik, M. F. Four primordial

    immunoglobulin light chain isotypes, including and ,identified in the most primitive living jawed

    vertebrates. Eur.J.Immunol.37, 26832694 (2007).

    28. Hohman, V. S., Schuchman, D. B., Schluter, S. F. &

    Marchalonis, J. J. Genomic clone for sandbar shark

    light chain: generation of diversity in the absence ofgene rearrangement. Proc.NatlAcad.Sci.USA90,

    98829886 (1993).29. Rast, J. P. et al. Immunoglobulin light chain class

    multiplicity and alternative organizational forms in

    early vertebrate phylogeny. Immunogenetics 40,

    8399 (1994).

    30. Schwager, J., Burckert, N., Schwager, M. & Wilson, M.

    Evolution of immunoglobulin light chain genes:

    analysis ofXenopus IgL isotypes and their contribution

    to antibody diversity. EMBOJ. 10, 505511 (1991).

    31. Tonegawa, S. Somatic generation of antibody diversity.

    Nature302, 575581 (1983).32. Reynaud, C. A., Anquez, V., Grimal, H. & Weill, J. C.

    A hyperconversion mechanism generates the chicken

    light chain preimmune repertoire. Cell48, 379388

    (1987).

    33. Knight, K. L. & Becker, R. S. Molecular basis of the

    allelic inheritance of rabbit immunoglobulin VH

    allotypes: implications for the generation of antibody

    diversity. Cell60, 963970 (1990).34. Hinds, K. R. & Litman, G. W. Major reorganization of

    immunoglobulin VH segmental elements during

    vertebrate evolution. Nature320,546549 (1986).

    35. Hinds-Frey, K. R., Nishikata, H., Li tman, R. T. &

    Litman, G. W. Somatic variation precedes extensive

    diversification of germline sequences and combinatorial

    joining in the evolution of immunoglobulin heavy chain

    diversity.J.Exp.Med.178, 815824 (1993).

    36. Diaz, M., Greenberg, A. S. & Flajnik, M. F. Somatic

    hypermutation of the new antigen receptor gene

    (NAR) in the nurse shark does not generate the

    repertoire: possible role in antigen-driven reactions in

    the absence of germinal centers. Proc.NatlAcad.Sci.

    USA95, 1434314348 (1998).

    37. Lee, S. S., Tranchina, D., Ohta, Y., Flajnik, M. F. &

    Hsu, E. Hypermutation in shark immunoglobulin light

    chain genes results in contiguous substitutions.

    Immunity16, 571582 (2002).

    R E V I E W S

    nATuRe ReVIeWS |Genetics VoLuMe 11 | JAnuARy 2010 |57

  • 8/3/2019 Rise of Adaptive Immunity

    12/13

    38. Daggfeldt, A., Bengten, E. & Pilstrom, L. A cluster

    type organization of the loci of the immunoglobulin

    light chain in Atlantic cod (Gadus morhua L.) and

    rainbow trout (Oncorhynchus mykiss Walbaum)

    indicated by nucleotide sequences of cDNAs and

    hybridization analysis. Immunogenetics 38, 199209

    (1993).

    39. Hsu, E. & Criscitiello, M. F. Diverse immunoglobulin

    light chain organizations in fish retain potential to

    revise B cell receptor specificities.J.Immunol.177,

    24522462 (2006).

    40. Lange, M. D., Waldbieser, G. C. & Lobb, C. J. Patternsof receptor revision in the immunoglobulin heavy

    chains of a teleost fish.J.Immunol.182, 56055622

    (2009).

    41. Zimmerman, A. M., Yeo, G., Howe, K., Maddox, B. J. &

    Steiner, L. A. Immunoglobulin light chain (IgL) genes in

    zebrafish: genomic configurations and inversional

    rearrangements between (VL-J

    L-C

    L) gene clusters. Dev.

    Comp.Immunol. 32, 421434 (2008).

    42. Danilova, N., Bussmann, J., Jekosch, K. & Steiner, L. A.

    The immunoglobulin heavy-chain locus in zebrafish:

    identification and expression of a previously unknown

    isotype, immunoglobulin Z. NatureImmunol.6, 295

    302 (2005).

    43. Hansen, J. D., Landis, E. D. & Phillips, R. B. Discovery of

    a unique Ig heavy-chain isotype (IgT) in rainbow trout:

    implications for a distinctive B cell developmental

    pathway in teleost fish. Proc.NatlAcad.Sci.USA102,

    69196924 (2005).

    44. Zinkernagel, R. M. & Doherty, P. C. Immunological

    surveillance against altered self components by

    sensitised T lymphocytes in lymphocytic

    choriomeningitis. Nature251, 547548 (1974).

    45. Charlemagne, J., Fellah, J. S., De Guerra, A.,

    Kerfourn, F. & Partula, S. T-cell receptors in ectothermic

    vertebrates. Immunol.Rev.166, 87102 (1998).

    46. Guo, J. et al. Regulation of the TCR repertoire by thesurvival window of CD4+CD8+ thymocytes. Nature

    Immunol.3, 469476 (2002).47. Havran, W. L. et al. Limited diversity of T-cell receptor

    -chain expression of murine Thy-1+ dendriticepidermal cells revealed by V 3-specific monoclonalantibody. Proc.NatlAcad.Sci.USA86, 41854189

    (1989).

    48. Morita, C. T. et al. Direct presentation of nonpeptide

    prenyl pyrophosphate antigens to human T cells.Immunity 3, 495507 (1995).

    49. Thedrez, A. et al. Self/non-self discrimination by

    human T cells: simple solutions for a complexissue? Immunol.Rev.215, 123135 (2007).

    50. Rock, E. P., Sibbald, P. R., Davis, M. M. & Chien, Y. H.

    CDR3 length in antigen-specific immune receptors.J.Exp.Med.179, 323328 (1994).

    51. Criscitiel lo, M. F., Saltis, M. & Flajnik, M. F.

    An evolutionarily mobile antigen receptor variable

    region gene: doubly rearranging NAR-TcR genes in

    sharks. Proc.NatlAcad.Sci.USA103, 50365041

    (2006).

    52. Parra, Z. E. et al. A unique T cell receptor discovered

    in marsupials. Proc.NatlAcad.Sci.USA104,

    97769781 (2007).

    53. Sciammas, R. & Bluestone, J. A. TCR cells andviruses. MicrobesInfect.1, 203212 (1999).

    54. Chen, H. et al. Characterization of arrangement and

    expression of the T cell receptor locus in the sandbarshark. Proc.NatlAcad.Sci.USA106, 85918596

    (2009).

    55. Flajnik, M. F. & Kasahara, M. Comparative genomics of

    the MHC: glimpses into the evolution of the adaptive

    immune system. Immunity15, 351362 (2001).56. Kaufman, J. Co-evolving genes in MHC haplotypes: the

    rule for nonmammalian vertebrates? Immunogenetics50, 228236 (1999).

    57. Trowsdale, J. Genetic and functional relationships

    between MHC and NK receptor genes. Immunity15,

    363374 (2001).

    58. Rogers, S. L., Viert lboeck, B. C., Gobel, T. W. &

    Kaufman, J. Avian NK activities, cells and receptors.

    Semin.Immunol.20, 353360 (2008).

    59. Nyholm, S. V. et al.fester, a candidate allorecognition

    receptor from a primitive chordate. Immunity25,

    163173 (2006).

    60. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S.

    Sequences at the somatic recombination sites of

    immunoglobulin light-chain genes. Nature280,

    288294 (1979).

    61. Du Pasquier, L., Zucchetti, I. & De Santis, R.

    Immunoglobulin superfamily receptors in

    protochordates: before RAG time. Immunol.Rev.

    198, 233248 (2004).

    62. Hernndez Prada, J. A. et al. Ancient evolutionary

    origin of diversified variable regions demonstrated by

    crystal structures of an immune-type receptor in

    amphioxus. NatureImmunol.7, 875882 (2006).

    63. Yu, C. et al. Genes waiting for recruitment by the

    adaptive immune system: the insights from

    amphioxus.J.Immunol.174,34933500 (2005).

    64. Suzuki, T., Shin, I., Fujiyama, A., Kohara, Y. &

    Kasahara, M. Hagfish leukocytes express a paired

    receptor family with a variable domain resembling

    those of antigen receptors.J.Immunol.174,

    28852891 (2005).65. Pancer, Z., Mayer, W. E., Klein, J. & Cooper, M. D.

    Prototypic T cell receptor and CD4-like coreceptor are

    expressed by lymphocytes in the agnathan sea

    lamprey. Proc.NatlAcad.Sci.USA101,

    1327313278 (2004).

    66. Thompson, C. B. New insights into V(D)J

    recombination and its role in the evolution of the

    immune system. Immunity3, 531539 (1995).

    67. Fugmann, S. D., Messier, C., Novack, L. A.,

    Cameron, R. A. & Rast, J. P. An ancient evolutionary

    origin of the Rag1/2 gene locus. Proc.NatlAcad.Sci.

    USA103, 37283733 (2006).

    This paper demonstrates thatRAG1 andRAG2

    were present in echinoderms (sea urchins)

    approximately 100 million years before the

    emergence of the AIS.

    68. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J

    recombination signal sequences were derived from

    Transib transposons. PLoSBiol. 3, e181 (2005).

    This work shows that a transposable element,

    transib, contains theRAG1core element

    and is found in many animal species,

    including invertebrates.

    69. Dreyfus, D. H. Paleo-immunology: evidence consistent

    with insertion of a primordial herpes virus-like element

    in the origins of acquired immunity. PLoSONE4,

    e5778 (2009).

    70. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. &

    Desiderio, S. A plant homeodomain in RAG-2 that

    binds hypermethylated lysine 4 of histone H3 is

    necessary for efficient antigenreceptorgene

    rearrangement. Immunity27, 561571 (2007).

    71. Klein, J. & Nikolaidis, N. The descent of the antibody-

    based immune system by gradual evolution. Proc.Natl

    Acad.Sci.USA102, 169174 (2005).72. Flajnik, M. F. & Du Pasquier, L. Evolution of innate and

    adaptive immunity: can we draw a line? Trends

    Immunol.25,640644 (2004).

    73. Ohno, S. Evolution by Gene Duplication (Springer,

    1970).

    74. Furlong, R. F. & Holland, P. W. Were vertebratesoctoploid? Phil.Trans.R.Soc.Lond.B357,531544

    (2002).

    75. Panopoulou, G. & Poustka, A. J. Timing and

    mechanism of ancient vertebrate genome duplications

    the adventure of a hypothesis. TrendsGenet.21,

    559567 (2005).

    76. Kasahara, M. The 2R hypothesis: an update. Curr.

    Opin.Immunol.19,547552 (2007).77. Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary

    significance of ancient genome duplications. Nature

    Rev.Genet.10, 725732 (2009).78. Kasahara, M., Nakaya, J., Satta, Y. & Takahata, N.

    Chromosomal duplication and the emergence of the

    adaptive immune system. TrendsGenet.13, 9092

    (1997).79. Kasahara, M., Suzuki, T. & Du Pasquier, L. On the

    origins of the adaptive immune system: novel insights

    from invertebrates and cold-blooded vertebrates.

    TrendsImmunol.25,105111 (2004).

    80. Okada, K. & Asai, K. Expansion of signaling genes foradaptive immune system evolution in early

    vertebrates. BMCGenomics 9, 218 (2008).

    This paper provides a comprehensive analysis

    of ohnologues that are involved in the AIS of

    jawed vertebrates.81. Kasahara, M. What do the paralogous regions in the

    genome tell us about the origin of the adaptive immune

    system? Immunol.Rev.166, 159175 (1998).

    82. Kasahara, M. et al. Chromosomal localization of the

    proteasome Z subunit gene reveals an ancient

    chromosomal duplication involving the major

    histocompatibility complex. Proc.NatlAcad.Sci.USA

    93, 90969101 (1996).

    83. Katsanis, N., Fitzgibbon, J. & Fisher, E. M. Paralogy

    mapping: identification of a region in the human MHC

    triplicated onto human chromosomes 1 and 9 allows

    the prediction and isolation of novel PBXand NOTCH

    loci. Genomics35, 101108 (1996).

    84. Vienne, A. et al. Evolution of the proto-MHC ancestral

    region: more evidence for the plesiomorphic

    organisation of human chromosome 9q34 region.

    Immunogenetics55, 429436 (2003).

    85. Olinski, R. P., Lundin, L. G. & Hal lbook, F. Conserved

    synteny between the Ciona genome and human

    paralogons identifies large duplication events in the

    molecular evolution of the insulin-relaxin gene family.

    Mol.Biol.Evol.23,1022 (2006).

    Based on the comparative analysis of the

    insulin-relaxin family in humans and C. intestinalis,

    this paper proposes that the MHC paralogy groupand the neurotrophin paralogy group were derived

    from a single contiguous region on an invertebrate

    proto-chromosome.

    86. Abi-Rached, L., Gilles, A., Shiina, T., Pontarotti, P. &

    Inoko, H. Evidence ofen bloc duplication in vertebrate

    genomes. NatureGenet.31,100105 (2002).

    87. Azumi, K. et al. Genomic analysis of immunity in a

    Urochordate and the emergence of the vertebrate

    immune system: wait ing for Godot. Immunogenetics

    55, 570581 (2003).

    88. Holland, L. Z. et al. The amphioxus genome

    illuminates vertebrate origins and cephalochordate

    biology. GenomeRes.18, 11001111 (2008).

    This paper provides a comprehensive analysis of

    the genes that encode the major biological systems

    in amphioxi. Among the genes analysed are those

    involved in host defence.

    89. Hallbook, F., Wilson, K., Thorndyke, M. & Olinski, R. P.

    Formation and evolution of the chordate neurotrophin

    and Trk receptor genes. BrainBehav.Evol. 68,

    133144 (2006).

    90. Belov, K. et al. Reconstructing an ancestral

    mammalian immune supercomplex from a

    marsupial major histocompatibility complex.

    PLoSBiol.4, e46 (2006).91. Kasahara, M. Genome dynamics of the major

    histocompatibility complex: insights from genome

    paralogy. Immunogenetics 50,134145 (1999).

    92. Marchalonis, J. J. & Edelman, G. M. Phylogenetic

    origins of antibody structure. III. Antibodies in the

    primary immune response of the sea lamprey,

    Petromyzon marinus.J.Exp.Med.127, 891914

    (1968).

    93. Finstad, J. & Good, R. A. The evolution of the immune

    response. III. Immunologic responses in the lamprey.

    J.Exp.Med.120, 11511168 (1964).

    94. Litman, G. W., Finstad, F. J., Howell, J., Pollara, B. W.

    & Good, R. A. The evolution of the immune response.

    III. Structural studies of the lamprey immunoglobulin.

    J.Immunol.105,12781285 (1970).

    95. Linthicum, D. S. & Hildemann, W. H. Immunologicresponses of Pacific hagfish. III. Serum antibodies

    to cellular antigens.J.Immunol.105,912918 (1970).

    96. Mayer, W. E. et al. Isolation and characterization of

    lymphocyte-like cells from a lamprey. Proc.NatlAcad.

    Sci.USA99, 1435014355 (2002).

    97. Uinuk-Ool, T. et al. Lamprey lymphocyte-like cells

    express homologs of genes involved in immunologically

    relevant activities of mammalian lymphocytes. Proc.

    NatlAcad.Sci.USA 99, 1435614361 (2002).

    98. Suzuki, T., Shin, I., Kohara, Y. & Kasahara, M.

    Transcriptome analysis of hagfish leukocytes:

    a framework for understanding the immune system

    of jawless fishes. Dev.Comp.Immunol.28,

    9931003 (2004).

    99. Pancer, Z. & Cooper, M. D. The evolution of adaptive

    immunity.Annu.Rev.Immunol. 24, 497518 (2006).

    100. Nagawa, F. et al. Antigen-receptor genes of the

    agnathan lamprey are assembled by a process involving

    copy choice. NatureImmunol. 8, 206213 (2007).

    This paper is the first to analyse the geneticmechanisms involved in VLR gene assembly. It

    proposes that LRRmodules are tethered by a

    copy-choice mechanism.

    101. Alder, M. N. et al. Diversity and function of adaptive

    immune receptors in a jawless vertebrate. Science

    310, 19701973 (2005).

    102. Kim, H. M. et al. Structural diversity of the hagfish

    variable lymphocyte receptors.J.Biol.Chem.282,

    67266732 (2007).103. Herrin, B. R. et al. Structure and specificity of lamprey

    monoclonal antibodies. Proc.NatlAcad.Sci.USA

    105, 20402045 (2008).104. Han, B. W., Herrin, B. R., Cooper, M. D. & Wilson, I. A.

    Antigen recognition by variable lymphocyte receptors.

    Science321,18341837 (2008).

    105. Velikovsky, C. A. et al. Structure of a lamprey variable

    lymphocyte receptor in complex with a protein antigen.

    NatureStruct.Mol.Biol.16, 725730 (2009).

    R E V I E W S

    58 | JAnuARy 2010 | VoLuMe 11 www.au.om/w/g

  • 8/3/2019 Rise of Adaptive Immunity

    13/13

    106.Alder, M. N. et al. Antibody responses of variable

    lymphocyte receptors in the lamprey. NatureImmunol.

    9, 319327 (2008).

    107. Guo, P. et al. Dual nature of the adaptive immune

    system in lampreys. Nature 459, 796801 (2009).

    This paper indicates that lampreys have two

    lineages of lymphoid cells that resemble T and

    B cells of jawed vertebrates.

    108. Pancer, Z. et al. Variable lymphocyte receptors in

    hagfish. Proc.NatlAcad.Sci.USA102,92249229

    (2005).

    109. Kasamatsu, J., Suzuki, T., Ishijima, J., Matsuda, Y. &Kasahara, M. Two variable lymphocyte receptor genes

    of the inshore hagfish are located far apart on the same

    chromosome. Immunogenetics59, 329331 (2007).

    110. Haruta, C., Suzuki , T. & Kasahara, M. Variable

    domains in hagfish: NICIR is a polymorphic multigene

    family expressed preferentially in leukocytes and is

    related to lamprey TCRlike. Immunogenetics 58,

    216225 (2006).

    111. Yokoyama, W. M. & Plougastel, B. F. Immune functions

    encoded by the natural killer gene complex. Nature

    Rev.Immunol.3, 304316 (2003).112. Takahashi, T. et al. Natural killer cell receptors in the

    horse: evidence for the existence of multiple transcribed

    LY49 genes. Eur.J.Immunol.34, 773784 (2004).113. Bell, J. J. & Bhandoola, A. The earliest thymic

    progenitors for T cells possess myeloid lineage

    potential. Nature452, 764767 (2008).

    114. Boehm, T. One problem, two solutions. Nature

    Immunol.10, 811813 (2009).

    115. Wada, H. et al. Adult T-cell progenitors retain myeloid

    potential. Nature452, 768772 (2008).116. Litman, G. W., Cannon, J. P. & Dishaw, L. J.

    Reconstructing immune phylogeny: new perspectives.

    NatureRev.Immunol.5, 866879 (2005).

    117. Beutler, B. et al. Genetic analysis of resistance to viral

    infection. NatureRev.Immunol.7,753766 (2007).

    118. Hedrick, S. M. The acquired immune system: a

    vantage from beneath. Immunity 21, 607615 (2004).119. Solem, S. T. & Stenvik, J. Antibody repertoire

    development in teleosts a review with emphasis on

    salmonids and Gadus morhua L. Dev.Comp.Immunol.

    30, 5776 (2006).

    120. Matsunaga, T. & Rahman, A. What brought the

    adaptive immune system to vertebrates? The jaw

    hypothesis and the seahorse. Immunol.Rev.166,

    177186 (1998).

    121. Kaufman, J., Volk, H. & Wallny, H. J. A minimal

    essential Mhc and an unrecognized Mhc: two

    extremes in selection for polymorphism. Immunol.

    Rev.143, 6388 (1995).

    122. Flajnik, M. F. Churchill and the immune system of

    ectothermic vertebrates. Immunol.Rev.166, 514

    (1998).

    123. Tasumi, S. et al. High-affinity lamprey VLRA and VLRB

    monoclonal antibodies. Proc.NatlAcad.Sci.USA

    106, 1289112896 (2009).

    124. Travis, J. Origins. On the origin of the immune system.

    Science324, 580582 (2009).125. Fall-Ngai, M. Adaptive immunity: care for the

    community. Nature445, 153 (2007).

    126. Long, J. A., Trinajstic, K. & Johanson, Z. Devonian

    arthrodire embryos and the origin of internal fertilization

    in vertebrates. Nature457, 11241127 (2009).

    127. Friedman, R. & Hughes, A. L. Pattern and timing of

    gene duplication in animal genomes. GenomeRes. 11,

    18421847 (2001).

    128. Hughes, A. L. & Friedman, R. 2R or not 2R: testing

    hypotheses of genome duplication in early vertebrates.

    J.Struct.Funct.Genomics3, 8593 (2003).

    129. Gibson, T. J. & Spring, J. Evidence in favour of ancient

    octaploidy in the vertebrate genome. Biochem.Soc.

    Trans.28,259264 (2000).130. Lundin, L. G., Larhammar, D. & Hallbook, F. Numerous

    groups of chromosomal regional paralogies strongly

    indicate two genome doublings at the root of the

    vertebrates.J.Struct.Funct.Genomics3,5363

    (2003).

    131. Putnam, N. H. et al. The amphioxus genome and the

    evolution of the chordate karyotype. Nature453,

    10641071 (2008).

    This paper, written by core members of the

    amphioxus genome project, describes the salient

    features of the amphioxus genome, with emphasis

    on genome evolution. It provides strong evidence to

    support the 2R hypothesis.

    132. Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome

    duplications relative to the origin of the vertebrates:

    did cyclostomes diverge before or after? Mol.Biol.

    Evol. 26, 4759 (2009).

    This paper proposes that, contrary to the

    commonly held view, both the first and second

    rounds of WGD occurred after the emergence of a

    common ancestor of vertebrates and before the

    divergence of jawed and jawless vertebrates.

    133. Karre, K. NK cells, MHC class I molecules and the

    missing self. Scand.J.Immunol. 55, 221228

    (2002).

    134. Jaillon, O. et al. Genome duplication in the

    teleost fish Tetraodon nigroviridis reveals the

    early vertebrate proto-karyotype. Nature431,

    946957 (2004).

    135.Vandepoele, K., De Vos, W., Taylor, J. S., Meyer, A. &

    Van de Peer, Y. Major events in the genome

    evolution of vertebrates: paranome age and

    size differ considerably between ray-finned fishes

    and land vertebrates. Proc.NatlAcad.Sci.USA101,16381643 (2004).

    136. Blair, J. E. & Hedges, S. B. Molecular phylogeny and

    divergence times of deuterostome animals. Mol.Biol.

    Evol.22, 22752284 (2005).137. Kasahara, M. The chromosomal duplication model of

    the major histocompatibility complex. Immunol.Rev.

    167, 732 (1999).138. Horton, R. et al. Gene map of the extended

    human MHC. NatureRev.Genet.5, 889899

    (2004).

    AcknowledgementsM.F.F. has been funded by the US National Institutes of

    Health grants AI027877 and RR006603. M.K. has been

    funded by a KAKENHI grant for the priority area Comparative

    Genomics from the Ministry of Education, Culture, Sports,

    Science and Technology of Japan.

    Competing interests statementThe authors declare no competing financial interests.

    DATABASESEntrez Gene:http://www.ncbi.nlm.nih.gov/geneRAG1 | RAG2

    FURTHER INFORMATIONMasanori Kasaharas homepage:http://www.med.hokudai.

    ac.jp/en/dept/outline/path/index.html

    Pre-Ensembl genome database:http://pre.ensembl.org

    Lamprey (Petromyzon marinus) draft genome sequence

    SUPPLEMENTARY INFORMATIONSee online article:S1 (figure) |S2 (table)

    All links Are Active in the Online pdf

    R E V I E W S

    http://www.ncbi.nlm.nih.gov/genehttp://www.ncbi.nlm.nih.gov/gene/5896http://www.ncbi.nlm.nih.gov/gene/5897http://www.med.hokudai.ac.jp/en/dept/outline/path/index.htmlhttp://www.med.hokudai.ac.jp/en/dept/outline/path/index.htmlhttp://pre.ensembl.org/http://pre.ensembl.org/http://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://www.nature.com/nrg/journal/v11/n1/suppinfo/nrg2703.htmlhttp://pre.ensembl.org/Petromyzon_marinus/Info/Indexhttp://pre.ensembl.org/http://www.med.hokudai.ac.jp/en/dept/outline/path/index.htmlhttp://www.med.hokudai.ac.jp/en/dept/outline/path/index.htmlhttp://www.ncbi.nlm.nih.gov/gene/5897http://www.ncbi.nlm.nih.gov/gene/5896http://www.ncbi.nlm.nih.gov/gene