ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies...

44
Rehabilitation Engineering Laboratory Toronto Rehab, Lyndhurst Centre 520 Sutherland Dr. Toronto, Ontario Canada M4G 3V9 www.toronto-fes.ca Rehabilitation Engineering Laboratory - 2012

Transcript of ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies...

Page 1: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Reh

ab

ilit

ati

on

En

gin

ee

rin

g L

ab

ora

tory

R

eh

ab

ilit

ati

on

En

gin

ee

rin

g L

ab

ora

tory

Toronto Rehab, Lyndhurst Centre 520 Sutherland Dr.

Toronto, Ontario Canada M4G 3V9

www.toronto-fes.ca

Rehabilitation Engineering Laboratory - 2012

Page 2: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

About the Rehabilitation Engineering Lab

History

The Rehabilitation Engineering Laboratory was established in 2001 at the Lyndhurst Centre of Toronto Rehab. In 2006 and in 2009, the laboratory underwent two major renovations, quadrupling the amount of space and equipment available for personnel and experiments.

What We Do

We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine interfaces, assessment tools for determining an individual’s level of function, and rehabilitation techniques for restoring walking, sitting, standing, reaching, and grasping ability. We also design neuroprosthetic systems to assist individuals with tasks such as walking, reaching, grasping, and balance during standing and sitting.

Most of our work is based on functional electrical stimulation (FES), which uses electricity to cause muscles to contract. FES can be used to provide movement to paralyzed muscles to re-train weak muscles and the injured central nervous system.

Accomplishments – 2010-2012

Completed a number of randomized control trials with stroke and SCI individuals involving FES therapies

Developed advanced communication and stimulation technologies for neuroimplants

Provided FES therapy to more than 50 individuals with SCI or stroke

Published 41 peer-reviewed journal papers

Obtained more than $1.1M in direct funding and collaborated on grants which total funding exceeded $0.6M

Trained 8 postdoctoral fellows, and 22 graduate students in SCI and stroke research, who obtained an additional $1M in funding

Want to Get Involved?

We’re always looking for participant for our studies, volunteers to help us with the experiments, and students and research collaborators. If you would like to join us, please feel free to contact us at 416-597-3422, Ext. 6206.

Page 3: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Research at the Rehabilitation Engineering Laboratory

Neuroprosthesis for Reaching and Grasping

Our reaching and grasping neuroprosthesis is designed for individuals who cannot reach and/or grasp voluntarily. These individuals are able to use the system to pick up and manipulate objects, significantly improving their independence in activities of daily living. People who have SCI at C3-C7 level or severe stroke have used this system as a rehabilitation tool to assist in retraining voluntary reaching and grasping. Neuroprosthesis for Walking

The purpose of the neuroprosthesis for walking program is to demonstrate the long-term benefits of FES therapy on walking function in patients with incomplete SCI and stroke. Our studies showed a significant improvement in walking speed and/or a reduction in the use of assistive devices for walking after using the neuroprosthesis. In this application the neuroprosthesis for walking is used as a short-term intervention for improving voluntary walking function.

Neuroprosthesis for Sitting

Trunk instability is a major problem for many people with SCI, affecting their independence and ability to perform activities of daily living. The long-term objective of this project is to produce a new device that will improve sitting stability by stimulating paralyzed trunk muscles using FES. This sitting neuroprosthesis will improve the ability of people with SCI to perform such tasks as reaching and wheeling. We are currently studying the mechanisms of balance in the trunk and the consequences of muscle paralysis on these mechanisms. This analysis will form the basis for developing the FES system for balance during sitting.

Neuroprosthesis for Standing

The neuroprosthesis for standing and balancing is a device that will allow some neurologic patients to stand up, perform stable “hands-free” standing, and sit down again. At least two applications of this technology are envisioned: 1) this device will be used as an independent system to allow complete SCI patients to stand; and 2) to retrain standing function and balance control in incomplete SCI, stroke and elderly patients through active, repetitive, balance training sessions. Besides the obvious functional benefits, this neuroprosthesis would also help maintain bone density and prevent pressure sores by allowing people to stand for extended periods of time.

Page 4: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Human-Machine Interfaces

Understanding the relationship between an assistive device and its user is a fundamental step towards designing better systems. The human-machine interface project focuses on developing new communication strategies and methodologies to allow users to have more natural control over an assistive device. One aspect of this work is our research into brain-machine interfacing, which investigates the relationship between intended arm movement and electroencephalogram (EEG) or electrocorticographic (ECoG) signals from the motor cortex of the brain.

Novel Neuroprosthesis

People with spinal cord injury have impaired movements of their arms and/or legs, due to paralyzed muscles. Rehabilitation using electrical muscle stimulation is very advantageous for this patient population. However, one aspect that often limits the use of electrical stimulation is the rapid onset of muscle fatigue. One can potentially explain the muscle fatigue following electrical stimulation by the fact that electrical stimulation contracts muscle fibers simultaneously and that electrical stimulation is unable to contract all the fibers within the muscle. In the current project, we propose a new stimulation method that would activate most of the muscle fibers in a regulated cyclic pattern.

Equipment

The Rehabilitation Engineering Laboratory has a variety of research equipment including:

Compex II stimulators

Body weight support treadmills

Force plates

Polhemus motion capture system

Optotrack dual camera motion capture systems

6-camera Raptor Motion Analysis system

ARMEO and ReJouce systems for upper limb rehabilitation

ERIGO tilt table with motorized leg movement

Electromagnetically shielded room for EMG and EEG measurements

Vibration platforms

REL-PAPPS perturbation system

Biodex System 3

Various EMG and EEG measurement systems

Page 5: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Our People

Principal Investigators

Dr. Milos R. Popovic (biomedical engineering), Head of the Laboratory,

Toronto Rehab Chair in Spinal Cord Injury Research, Senior Scientist, and

Professor

Dr. Cesar Marquez-Chin (biomedical engineering), Research Scientist

Dr. Kei Masani (exercise physiology), Research Scientist and Assistant

Professor

Dr. Mary Nagai (surgery), Research Scientist and Assistant Professor

Postdoctoral Fellows

Dr. Elias Daniel Guestrin (biomedical engineering), Postdoctoral Fellow

Dr. Santa Concepción Huerta Olivares (electronics), Postdoctoral Fellow

Dr. Reza Javaheri (electronics), Postdoctoral Fellow

Dr. Masae Miyatani (exercise physiology), Postdoctoral Fellow

Dr. Aravind Kumar Namasivayam (speech/language), Postdoctoral Fellow

Dr. Hossein Rouhani (biomedical engineering), Postdoctoral Fellow

Dr. Dimitry Sayenko (space medicine), Postdoctoral Fellow

Dr. Jose Zariffa (biomedical engineering), Postdoctoral Fellow

Graduate Students

Davide Agnello, MASc student

Kathryn Atwell, MASc student

Sara Ayatollahzadeh, MEng student

Rob Babona-Pilipos, PhD student

Martha Gabriela Garcia-Garcia, MASc student

Diane Kostka, MHSc student

Meredith Kuipers, MSc student

Cheryl Lynch, PhD student

Andresa R. Marinho, PhD student

Steve McGie, PhD student

Bahar Memarian, MASc student

Matija Milosevic, PhD student

Michael Same, MASc student

Egor Sanin, MASc student

Miyuki Tsukimoto, MASc student

Albert Vette, PhD student

Noel Wu, MASc student

Takashi Yoshida, PhD student

Page 6: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Our People

International Research Placements

Stefanie Buley - University of Applied Science Senftenberg, Germany

Ubaldo Garcia - Universidad Iberoamericana, Mexico

Marisol Martinez - Universidad Iberoamericana, Mexico

Karen Rodriguez - Universidad Iberoamericana, Mexico

Catalina Villa Saenz - School of Engineering of Antioquia, Columbia

Support Staff

Shaghayegh Bagher, Research Engineer

Zina Bezruk, Administrative Assistant

Betty Chan, Grants & Accounts Coordinator

Naaz Desai, REL Manager, Research Coordinator and Physiotherapist

Jennifer Holmes, Occupational Therapist

Anne Hu, Physiotherapist

Lorna Lo, Occupational Therapist

Esther Oostdyk, Secretary

Abdulazim Rashidi, Research Engineer

Egor Sanin, Research Engineer

Dr. Vera Zivanovic, Research Coordinator

Page 7: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Awards and Distinctions

Robert Babona-Pilipos

2010 Scientific Day 2010 Best “Lightning Round” Presentation

Institute of Biomaterials and Biomedical Engineering, University of Toronto

2011 St. George’s Society Graduate Scholarship

University of Toronto

2011 CREATE – CARE Graduate Scholarship

Natural Sciences and Engineering Research Council of Canada

2011 Best Paper Award 2010-2011 in the category “Biomaterials, Tissue Engineering and Regenerative Medicine

Institute of Biomaterials and Biomedical Engineering, University of Toronto

Zachary Dulberg

2011 Summer Student Scholarship

Natural Sciences and Engineering Research Council of Canada

Martha Gabriela Garcia-Garcia

2011 Graduate Scholarship Ontario Council on Graduate Studies of Canada and the National Council of Science and Technology of the United Mexican States

2012 Connaught Grant for Foreign Students

University of Toronto

Vasily Grigorovsky

2011 Finalist of the Centennial Thesis Award

Engineering Sciences, University of Toronto

Navid Javadi

2011 Summer Student Scholarship

Natural Sciences and Engineering Research Council of Canada

Meredith Kuipers

2010 Ontario Graduate Scholarships in Science and Technology

University of Toronto

2010 Student Travel Award, Young Investigators’ Forum

Institute of Circulatory and Respiratory Health, Canadian Institute of Health Research

Page 8: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Awards and Distinctions

Cheryl Lynch

2010 Best Student Paper Award – Third Place

15th International Functional Electrical Stimulation Society Conference

2011 Neural Engineering and Therapeutics Team Excellence Award

Toronto Rehabilitation Institute

Steve McGie

2010 Barbara and Frank Milligan Graduate Fellowship

University of Toronto

2011 Ontario Graduate Scholarship in Science and Technology (declined)

University of Toronto

2011 OSOTF: Graduate Student Studentship

Toronto Rehabilitation Institute

2012 OSOTF: Graduate Student Studentship

Toronto Rehabilitation Institute

Matija Milosevic

2010 Graduate Research Excellence Award (GREA)

Electrical and Computer Engineering, Ryerson University

2011 CREATE-Care Graduate Scholarship

Natural Sciences and Engineering Research Council of Canada

2012 School of Graduate Studies Conference Grant

University of Toronto

Dr. Masae Miyatani

2011 Postdoctoral Fellowship The Craig H. Neilsen Foundation Dr. Milos R. Popovic

2011 Elected Fellow American Institute for Medical and Biological Engineering, Washington, USA

2012 TiEQuest Business Venture Competition: 1st Prize

TiEQuest, Toronto, Canada

2012 TiEQuest Business Venture Competition: Best Intellectual Property Award

TiEQuest, Toronto, Canada

2012 Innovation Award Connaught Committee, University of Toronto

Page 9: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Awards and Distinctions

Saswat Pradhan

2011 Summer Student Scholarship

Natural Sciences and Engineering Research Council of Canada

Dr. Hossein Rouhani

2012 Postdoctoral Fellowship Swiss National Science Foundation

Dr. Dimitry Sayenko

2010 Best Poster Award 9th Annual Charles Tator-Barbara Turnbull Lectureship on Spinal Cord Injury, Toronto, Canada

Noel Wu

2010 Graduate Fellowship Barbara and Frank Milligan Graduate Fellowship, University of Toronto

Dr. Albert Vette

2010 CIHR Strategic Research Training Post-Doctoral Fellowship in Health Care, Technology & Place

Canadian Institute of Health Research

2010 MITACS Industrial Fellowship Award

MITACS

2010 “Focus on Stroke 9” Postdoctoral Fellowship

Heart and Stroke Foundation of Canada, Canadian Institute of Health Research and the Canadian Stroke Network

2010 Best Paper Award 2009-2010 - category “Neural, Sensory System and Rehabilitation Engineering

Institute of Biomaterials and Biomedical Engineering, University of Toronto

2010 Best Student Paper Award – Third Place

4th National Spinal Cord Injury Conference, Niagara Falls.

Takashi Yoshida

2010 Institute for Technology Thesis Award

Institute of Biomaterials and Biomedical Engineering, University of Toronto

2010 CREATE – CARE Graduate Scholarship

Natural Sciences and Engineering Research Council of Canada

2012 Student Scholarship Toronto Rehabilitation Institute, the Faculty of Medicine, University of Toronto

Page 10: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Awards and Distinctions

Takashi Yoshida

2012

Award for Student Poster in Clinical Science

Aftab Patla Research Innovation Award, 20th International Society for Gait and Posture Conference, Trondheim, Norway

2012 Best Paper Award 2011-2012 – category “Neural, Sensory System and Rehabilitation Engineering

Institute of Biomaterials and Biomedical Engineering, University of Toronto

Dr. Jose Zariffa

2011 Clinical Research Fellowship

Canadian Paraplegic Association Ontario

2011 Winner of the Gordon Hiebert Prize for Best Postdoctoral Fellow Poster

ICORD Annual Research Meeting

Page 11: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Recent Research Posters

Neuroprosthesis for Grasping

1. Brain-Controlled Functional Electrical Stimulation for Retraining of Grasp Function

2. FES Therapy for grasping in incomplete SCI: Randomized Control Trial 3. Toronto Rehabilitation Institute’s Hand Function Test For Gross Motor

Assessment

Neuroprosthesis for Sitting

4. Respiratory Function Increases with Trunk Muscle Stimulation Among Individuals with Spinal Cord Injury

5. Visualization of Trunk Muscle Synergies during Sitting Perburbations 6. Does Functional Electrical Stimulation of Trunk Muscles Alter

Respiration in Spinal Cord Injury? 7. Linking FES-assisted sitting stability and breathing in spinal cord injury 8. A Complete, Universal, and Verifiable Set of Upper Body Segment

Parameters for Three-Dimensional Dynamic Modeling 9. Self-Organizing Map for Data Mining of EMG Trunk Muscle Signals

During Sitting 10. Quantifying Multi-directional Trunk Stiffness During Sitting with and

without Functional Electrical Stimulation

Neuroprosthesis for Standing

11. Center of Pressure Velocity Captures Body Acceleration Rather Than Body Velocity During Quiet Standing

12. Decomposing the Ankle during Quiet Standing into Active and Passive Components using EMG

13. Controlling Balance during Quiet Standing via Co-Contraction in the Elderly May Not Be Advantageous

Cardiovascular

14. Decrease in Venous Return due to Postural Change is Mitigated by Functional Electrical Stimulation for People with Spinal Cord Injury

15. The Associations Between Aerobic Capacity and Arterial Stiffness in People with Chronic Spinal Cord Injury

Human-Machine Interfaces

16. Typing with Eye-Gaze and Tooth-Clicks 17. EMG-onset Detection using Change-point Analysis

Page 12: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Rehabilitation Engineering Laboratory – 2012

Contact us:

Lyndhurst Centre Toronto Rehab 520 Sutherland Dr. Toronto, ON M4G 3V9 Canada

416-597-3422 x 6206

www.toronto-fes.ca

[email protected]

Brain Machine Interface

18. A Novel Assistive Device for Cursor Control 19. Estimation of Arm Kinematics From ElectroCorticoGraphic Recording 20. Using Electrocorticographic Recordings to Estimate Upper Limb

Kinematics

Whole Body Vibration

21. Acute Effects of Passive Standing and Whole Body Vibration on Arterial Stiffness

22. Serum 25(OH)D Levels and Tibia Volumetric Bone Mineral Density (vBMD) in Chronic Spinal Cord Injury (SCI)

23. Usability of the Juvent™ and WAVE® Whole Body Vibration Plates for Men with and without Spinal Cord Injury

24. Whole Body Vibration and EMG Activation: Effects of Vibration Frequency, Amplitude and Posture

25. Development of a Sham Condition for Future Whole Body Vibration Intervention Trials

Other Projects

26. Bilateral Soleus H-Reflexes in Humans During Sitting and Passive Standing: Variability and Correlation.

27. Effects of Voluntary Exercise, Functional Electrical Stimulation and Vibration on Corticomuscular Coherence

28. Response of Individual Muscles to Neuromuscular Electrical Stimulation Training of Knee Extensors

29. Novel Methodology to Reduce Muscle Fatigue during Functional Electrical Stimulation using Spatially Distributed Sequential Stimulation

30. A Multi-Channel Current-Regulated Output Stage for an Electrical Stimulator

31. Including Non-Ideal Behaviour in FES Simulations 32. Including Non-Ideal Behaviour in Simulations of FES 33. Improved Fatigue Resistance in Leg Muscles during Spatially

Distributed Sequential Stimulation

Page 13: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health ResearchInstituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of CanadaConseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

Partners:Rehabilitation Engineering LaboratoryInstitute of Biomaterials and Biomedical Engineering, University of TorontoToronto Rehabilitation InstituteContact: [email protected] (or your email address)www.toronto-fes.ca

Brain-Controlled Functional Electrical Stimulation for Retraining of Grasp Function

Steven McGie1, Milos Popovic1,21University of Toronto, IBBME; 2Toronto Rehab Institute

• Functional electrical stimulation (FES) can facilitate rehabilitation following a spinal cord injury (SCI).• Brain-machine interfaces (BMI) read neural signals, and use them to control external devices.• BMI can be used to control an FES stimulator.• This can restore innervation to otherwise paralyzed limbs.

Introduction

• System completed and tested on able-bodied volunteers.• Recruitment for individuals with high-level SCI opened; no participants at the time of writing.• System needed modification to account for stimulation artefact.

Discussion

Conclusions• The feasibility of BMI-controlled FES has been proven.• The hypothesis (that BMI-controlled FES can provide greater rehabilitative effect than regular FES) remains to be tested; contingent on recruitment.

Fig. 1: Schematic of how BMI-controlled FES can circumventa spinal lesion. The red line indicates alternate paths bywhich a motor command can reach the target muscles.

Normal SCI + BMI + FES

Fig. 2: Mechanisms of Hebbian plasticity. Ca2+ influx through NMDA channels causes synaptic strengthening. BMI-

controlled FES may establish this contingency by ensuring consistent pairing of activity on both sides of the synapse.

• Neural recordings are non-invasively obtained from hand-related areas of primary motor cortex using electroencephalography (EEG).• EEG recordings are analyzed in real-time to determine the bandpower in a specific frequency band.• Sustained changes in bandpower across a threshold send a signal to switch FES from “Rest” to “Flexion” mode.• Switch from “Flexion” to “Extension” is done via push-button, since artefacts from stimulation contaminate the EEG signal.• Switch from “Extension” to “Flexion” occurs after 3.5 s.• Extensive calibration routines are used to determine ideal parameter values.

• Based on a short session in which the user is cued to either attempt a movement or to relax.•The system then finds parameters which allow for ideal discrimination between the two tasks.

Methods - System

Fig. 3: Timeline of each subject's participation.

NO PLASTICITY PLASTICITY

Hypothesis• BMI-controlled FES may have a greater rehabilitative effect than regular FES, by following classic “Hebbian” rules of neuroplasticity.• Synapses are strengthened when both sides are activated simultaneously.•BMI-controlled FES may ensure consistent pairing of activity in both sides of the spinal synapse.

• Descending commands control the BMI.• Antidromic firing caused in the periphery by FES goes back up to the synapse.

Fig. 4: Sample EEG recording showing periods with and without contamination from the stimulation artefact.

Artefact Normal Recording ArtefactRecovery

• Participants will be individuals with incomplete C4-C7 SCI• The intervention will consist of 40 sessions (2 months) of using BMI- controlled FES to perform functional movements.• Outcome measures will include self-report measures of functional independence, functional assessments, and physiological assessments.

Methods - Treatment

Page 14: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Part

ners

:

Can

adia

n In

stitu

tes

of H

ealth

Res

earc

h In

stitu

ts d

e re

cher

e en

san

té d

u C

anad

a N

atur

al S

cien

ces

and

Engi

neer

ing

Res

earc

h C

ounc

il of

Can

ada

Con

seil

de re

cher

ches

en

scie

nces

nat

urel

les

et e

n gé

nie

du C

anad

a

Min

istr

y of

Hea

lth

and

Long

Ter

m C

are

•Fl

exib

le a

nd p

rogr

amm

able

FE

S s

yste

m.

•R

epet

itive

dai

ly tr

eatm

ents

. •

FES

in c

ombi

natio

n w

ith O

T.

•FI

M s

elf c

are

sub-

scor

e: 2

0 po

ints

impr

ovem

ent

(FE

S th

erap

y) a

s co

mpa

red

to 1

0 (C

OT)

(p=0

.015

)

•S

CIM

sel

f car

e su

b-sc

ore:

12

poin

ts im

prov

emen

t (F

ES

ther

apy)

as

com

pare

d to

3 (C

OT)

(p<0

.000

1)

•TR

I-HFT

: TR

I-HFT

tota

l sco

re fo

r man

ipul

atio

n of

ob

ject

s 1

to 1

0 al

so a

ppro

ache

d st

atis

tical

si

gnifi

canc

e (p

=0.0

538)

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y To

ront

o R

ehab

ilita

tion

Inst

itute

C

onta

ct: m

ilos.p

opov

ic@

utor

onto

.ca

ww

w.to

ront

o-fe

s.ca

FES

Ther

apy

for g

rasp

ing

in in

com

plet

e SC

I: R

ando

miz

ed C

ontr

ol T

rial

MR

Pop

ovic

1,2 ,

N K

apad

ia2 ,

V Z

ivan

ovic

2 , JC

Fur

lan2

, BC

Cra

ven2

,3, K

Nak

azaw

a4, a

nd C

McG

illiv

ray2

,3

1 To

ront

o R

ehab

ilita

tion

Inst

itute

, 2 IB

BM

E -

Uni

vers

ity o

f Tor

onto

, 3 D

epar

tmen

ts o

f Med

icin

e an

d H

ealth

Pol

icy

Man

agem

ent a

nd E

valu

atio

n - U

nive

rsity

of T

oron

to,

4 Dep

artm

ent o

f Life

Sci

ence

s, G

radu

ate

Sch

ool o

f Arts

and

Sci

ence

s, U

nive

rsity

of T

okyo

, Jap

an

•Th

ere

are

abou

t 350

,000

SC

I sur

vivo

rs in

US

and

Can

ada,

and

50%

of t

hem

are

Q

uadr

iple

gics

. •

50%

of t

he Q

uadr

iple

gics

rank

ed r

etur

n

of

arm

han

d fu

nctio

n as

thei

r hig

hest

prio

rity.

Met

hods

Ran

dom

ized

con

trol t

rial

•C

ontro

l: n=

12 a

nd F

ES

ther

apy:

n=9

Bot

h gr

oups

rece

ived

40

sess

ions

of

ther

apy

•C

ontro

l gro

up re

ceiv

ed 2

hou

rs o

f co

nven

tiona

l occ

upat

iona

l the

rapy

(CO

T)

and

inte

rven

tion

grou

p re

ceiv

ed 1

hou

r of

CO

T pl

us 1

hou

r of F

ES

ther

apy.

Prim

ary

outc

ome

mea

sure

was

FIM

Sel

f C

are

Sub

sco

re a

nd s

econ

dary

out

com

e m

easu

res

wer

e S

CIM

Sel

f Car

e S

ub s

core

an

d TR

I-HFT

.

Subj

ect D

emog

raph

ics

Intr

oduc

tion

R

esul

ts

FES

Ther

apy

Part

icip

ant

Ref

eren

ces

Feat

ure

Con

trol

G

roup

In

terv

entio

n G

roup

p

valu

e

Age

(yea

rs)

M

ean

age

± S

EM

44

.75

± 4.

72

43.2

± 5

.45

0.89

6 M

edia

n ag

e 51

.5

50

A

ge ra

nge

20 to

65

18 to

66

Se

x (n

)

Mal

es

9 8

1 Fe

mal

es

3 2

C

ause

of S

CI (

n)

M

otor

veh

icle

ac

cide

nt

7 2

0.00

9

Fall

2 8

O

ther

cau

ses

3 0

Se

verit

y of

SC

I (n)

AIS

B

4 4

0.51

7 A

IS C

8

5

AIS

D

0 1

Le

vel o

f SC

I (n)

C3

0 1

0.07

1 C

4 7

3

C5

4 1

C

6 1

5

Tim

e si

nce

SCI

(day

s)

Mea

n tim

e ±

SE

M

58.3

3 ±

6.55

69

.9 ±

14.

11

0.97

4 M

edia

n tim

e 63

.5

50

A

ge ti

me

22 to

102

33

to 1

64

Rec

omm

enda

tions

•P

opov

ic, K

apad

ia, Z

ivan

ovic

, Fur

lan,

Cra

ven,

and

McG

illiv

ray,

N

euro

reha

bilit

atio

n an

d N

eura

l Rep

air,

vol.

25, N

o. 5

, pp:

43

3-44

2, 2

011.

Pop

ovic

, Thr

ashe

r , A

dam

s, T

akes

, Ziv

anov

ic, a

nd T

onac

k,

Spi

nal C

ord,

vol

. 44,

No.

3, p

p. 1

43-1

51, 2

006.

Kap

adia

, Ziv

anov

ic, F

urla

n, C

rave

n, M

cGill

ivra

y, a

nd P

opov

ic,

Arti

ficia

l Org

ans,

vol

. 35,

No.

3, p

p: 2

12-2

16, 2

011.

Kap

adia

, Ziv

anov

ic, V

errie

r, an

d Po

povi

c, A

ccep

ted

for

publ

ishi

ng in

Top

ics

in S

pina

l Cor

d In

jury

Reh

abili

tatio

n in

Apr

il 20

11.

•R

esto

ratio

n of

vol

unta

ry h

and

func

tion

in

inco

mpl

ete

SC

I is

poss

ible

usi

ng F

ES

. •

Impr

ovem

ents

in h

and

func

tion

and

ther

eby

incr

ease

in le

vel o

f ind

epen

denc

e ar

e si

gnifi

cant

w

ith F

ES

trai

ning

.

Con

clus

ions

Co

ntr

ol

Gro

up

In

terv

en

tio

n

Gro

up

T

ES

T

Befo

re

Aft

er

Befo

re

Aft

er

p v

alu

es

(bo

th

han

ds)

FIM

Self

Care

Su

b-

sco

res

7.8

17.8

8.1

28.2

0.0

15

SC

IM S

elf

Care

Su

b-

sco

re

3.3

6.4

1.9

12.1

<

0.0

001

TR

I-H

FT

Co

mp

on

en

ts

10 O

bje

cts

27.2

38.5

37.1

53.8

0.0

54

Recta

ng

ula

r B

loc

ks

29.3

38.4

34.7

49.7

0.1

24

Instr

um

ente

d C

ylin

der

Ab

le t

o H

old

1.9

0

1.3

3

1.0

1.7

0.0

33

Instr

um

en

ted

Cy

lin

der

To

rqu

e V

alu

es (

Nm

) 0.2

6

2.5

9

0.2

6

1.1

3

0.4

24

7

Cre

dit

Card

A

ble

to

Ho

ld

1.3

3

1.4

1

1.0

1.7

0.0

35

Cre

dit

Card

F

orc

e V

alu

es

(N

) 2.6

7

8.7

6

4.4

2

12.5

0.4

22

Wo

od

en

Bar

Ab

le t

o H

old

0.6

3

0.9

6

0.8

1.5

0.0

65

Wo

od

en

Bar

Th

um

b

Dir

ecti

on

L

en

gth

Valu

es (

cm

) 2.8

8

10.5

1.6

7

10.9

4

0.6

22

Wo

od

en

Bar

Lit

tle

Fin

ger

Dir

ec

tio

n

Len

gth

Valu

es (

cm

) 3.1

7

11.8

5

5.5

6

12.7

8

0.7

67

T

he a

utho

rs a

ckno

wle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Pro

gram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io. T

he v

iew

s ex

pres

sed

do n

ot n

eces

saril

y re

flect

thos

e of

the

Min

istry

.

Page 15: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Part

ners

:

Can

adia

n In

stitu

tes

of H

ealth

Res

earc

h In

stitu

ts d

e re

cher

e en

san

té d

u C

anad

a N

atur

al S

cien

ces

and

Engi

neer

ing

Res

earc

h C

ounc

il of

Can

ada

Con

seil

de re

cher

ches

en

scie

nces

nat

urel

les

et e

n gé

nie

du C

anad

a

Min

istr

y of

Hea

lth

and

Long

Ter

m C

are Th

e vi

ews e

xpre

ssed

in th

is p

oste

r do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y To

ront

o R

ehab

ilita

tion

Inst

itute

C

onta

ct: k

apad

ia.n

aaz@

toro

ntor

ehab

.on.

ca

ww

w.to

ront

o-fe

s.ca

TOR

ON

TO R

EHA

BIL

ITAT

ION

INST

ITU

TE’S

HA

ND

FU

NC

TIO

N T

EST

FOR

GR

OSS

MO

TOR

ASS

ESSM

ENT

Kap

adia

N¹,

Ziva

novi

c V¹,

Verr

ier M¹,

Pop

ovic

MR¹, ²

1 To

ront

o R

ehab

ilita

tion

Inst

itute

, 2 IB

BM

E -

Uni

vers

ity o

f Tor

onto

The

Tor

onto

Reh

abili

tatio

n In

stitu

te-H

and

Func

tion

Test

(TR

I-HFT

) is

a ne

w u

ser-

frien

dly

asse

ssm

ent t

ool d

esig

ned

to

eval

uate

uni

late

ral g

ross

mot

or fu

nctio

n of

th

e ha

nd to

per

form

pow

er g

rasp

and

pr

ecis

ion

grip

in te

trapl

egic

indi

vidu

als.

Intr

oduc

tion

Met

hods

• 

Rel

iabi

lity,

val

idity

and

sen

sitiv

ity o

f TR

I-H

FT w

ere

eval

uate

d w

ithin

a ra

ndom

ized

co

ntro

l tria

l. • 

Con

trol:

n=12

FE

S: n

=9.

• B

oth

grou

ps re

ceiv

ed 4

0 se

ssio

ns o

f th

erap

y. C

ontro

l gro

up re

ceiv

ed 2

hou

rs o

f co

nven

tiona

l occ

upat

iona

l the

rapy

(CO

T)

and

inte

rven

tion

grou

p re

ceiv

ed 1

hou

r of

CO

T pl

us 1

hou

r of F

ES

ther

apy.

• 

Out

com

e m

easu

res

wer

e FI

M S

elf-c

are

Sub

-sco

re, S

CIM

Sel

f-car

e S

ub-s

core

and

TR

I-HFT

.

Res

ults

TRI-H

FT

Ref

eren

ces

Con

clus

ion

The

auth

ors

ackn

owle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Pro

gram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io. T

he v

iew

s ex

pres

sed

do n

ot n

eces

saril

y re

flect

thos

e of

the

Min

istry

.”

Left

han

d (P

re th

erap

y sc

ores

)

01020304050607080

010

2030

4050

6070

Ass

esso

r A

1

Assessor A2

Left

han

d (P

ost t

hera

py s

core

s)

01020304050607080

020

4060

80

Ass

esso

r A

1

Assessor A2

(Po

st

the

rap

y)

05101520

25

30

35

40

020

40

60

TR

I-H

FT (

10 o

bje

cts

)

(Po

st

the

rap

y)

05101520

020

40

60

TRI-­‐HFT  (10

 objects

)

(Po

st

the

rap

y)

05101520

020

4060

TRI-­‐HFT  (10

 objects

)

• Th

e TR

I-HFT

con

sist

s of

two

parts

:

1)

The

firs

t par

t of t

he te

st a

sses

ses

the

patie

nts’

abi

lity

to m

anip

ulat

e ob

ject

s th

at

they

may

enc

ount

er in

thei

r dai

ly li

ves

usin

g a

late

ral p

inch

, pul

p pi

nch

or

palm

ar g

rasp

.

2)

The

sec

ond

part

of th

e te

st m

easu

res

the

stre

ngth

of t

heir

late

ral p

inch

or p

ulp

pinc

h, a

nd p

alm

ar g

rasp

. • 

The

entir

e ev

alua

tion

for b

oth

hand

s ca

n be

com

plet

ed in

less

than

30

min

utes

.

Left

Han

d (r

val

ues)

R

ight

Han

d

(r v

alue

s)

Con

stru

ct V

alid

ity

TRI-H

FT a

nd F

IM s

elf-

care

sub

-sco

re

0.73

0.

56

TRI-H

FT a

nd S

CIM

se

lf-ca

re s

ub-s

core

0.

62

0.48

Inte

r-ra

ter R

elia

bilit

y 0.

99

0.99

• TR

I-HFT

is a

sim

ple,

relia

ble

and

valid

m

easu

re.

• TR

I-HFT

take

s le

ss th

an 3

0 m

inut

es to

be

adm

inis

tere

d an

d it

is a

pub

lical

ly

avai

labl

e te

st.

• TR

I-HFT

was

foun

d to

be

high

ly

resp

onsi

ve to

cha

nge.

(Po

st

the

rap

y)

05101520

25

30

35

40

020

40

60

TR

I-H

FT (

10 o

bje

cts

)

• P

opov

ic M

R, K

apad

ia N

, Ziv

anov

ic V

, Fur

lan

JC, C

rave

n B

C a

nd

McG

illiv

ray

C, .

Func

tiona

l Ele

ctric

al S

timul

atio

n th

erap

y of

Vo

lunt

ary

Gra

spin

g Ve

rsus

Onl

y C

onve

ntio

nal R

ehab

ilita

tion

for

Pat

ient

s W

ith S

ubac

ute

Inco

mpl

ete

Tertr

aple

gia:

A R

ando

miz

ed

Clin

ical

Tria

l Neu

rore

habi

l Neu

ral R

epai

r. 20

11 F

eb 8

. [E

pub

ahea

d of

prin

t]

• K

apad

ia N

M, Z

ivan

ovic

V, F

urla

n J,

Cra

ven

BC

, McG

illiv

ray

C a

nd

Pop

ovic

MR

Fun

ctio

nal e

lect

rical

stim

ulat

ion

ther

apy

for g

rasp

ing

in tr

aum

atic

inco

mpl

ete

spin

al c

ord

inju

ry: a

rand

omiz

ed c

ontro

l tri

al.

• P

opov

ic M

.R.,

Thra

sher

T.A

., Zi

vano

vic

V., T

akak

i J.,

and

Haj

ek V

., “N

euro

pros

thes

is fo

r res

torin

g re

achi

ng a

nd g

rasp

ing

func

tions

in

seve

re h

emip

legi

c pa

tient

s.” N

euro

mod

ulat

ion.

200

5;8(

1):6

0-74

.

Page 16: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

RES

PIR

ATO

RY

FUN

CTI

ON

INC

REA

SES

WIT

H T

RU

NK

MU

SCLE

STI

MU

LATI

ON

A

MO

NG

IND

IVID

UA

LS W

ITH

SPI

NA

L C

OR

D IN

JUR

YM

J K

uipe

rs1

M M

ilose

vic4

MR

Pop

ovic

3,4,

5 M

C V

errie

r1,2,

3,5

Dep

artm

ents

of P

hysi

olog

y1, P

hysi

cal T

hera

py2 ,

Reh

abili

tatio

n Sc

ienc

e3, a

nd th

e In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eerin

g4,

Uni

vers

ity o

f Tor

onto

; Tor

onto

Reh

abili

tatio

n In

stitu

te-U

HN

, Lyn

dhur

st C

ente

r5, T

oron

to, O

ntar

io, C

anad

a.

Alte

red

brea

thin

g fo

llow

ing

spin

al c

ord

inju

ry (S

CI)

depe

nds

on th

e le

vel a

nd c

ompl

eten

ess

of in

jury

. M

ulti-

syst

em m

otor

dys

func

tion,

incl

udin

g la

ck o

f co

ordi

nate

d ac

tivat

ion

of re

spira

tory

and

trun

k m

uscl

es, a

nd p

ostu

ral i

nsta

bilit

y in

hibi

t pro

per

diap

hrag

mat

ic fu

nctio

n. In

upr

ight

sitt

ing,

this

resu

lts

in re

duce

d ex

pira

tory

cap

acity

1 an

d tid

al v

olum

e2.

Func

tiona

l ele

ctric

al s

timul

atio

n (F

ES

) im

prov

es s

ittin

g po

stur

e, in

clud

ing

pelv

ic o

rient

atio

n an

d sp

inal

al

ignm

ent,

and

lung

cap

acity

dur

ing

a fo

rced

ex

pira

tory

man

oeuv

re3 .

How

ever

, res

pira

tory

func

tion

rem

ains

to b

e in

vest

igat

ed a

mon

g in

divi

dual

s w

ith S

CI

durin

g th

e ap

plic

atio

n of

FE

S.

Intr

oduc

tion

SCIs

: For

par

ticip

ants

with

com

plet

e S

CI,

FES

app

ears

to h

ave

a po

sitiv

e ef

fect

on

VE

. SC

I1, w

ho w

as th

e on

ly p

artic

ipan

t with

an

inco

mpl

ete

inju

ry, d

id n

ot d

emon

stra

te a

ny m

eani

ngfu

l cha

nge

in

resp

irato

ry fu

nctio

n w

ith F

ES

. The

re w

as a

n in

crea

se in

mea

sure

s of

resp

irato

ry fu

nctio

n w

ith F

ES

in p

artic

ipan

ts S

CI2

and

SC

I3:

SC

I2 a

nd S

CI3

dem

onst

rate

d in

crea

ses

in V

T an

d R

R, d

epen

ding

on

the

site

of s

timul

atio

n. V

E in

crea

sed

for a

ll pa

rtici

pant

s w

ith th

e ap

plic

atio

n of

FE

S fr

om 1

%-2

6%. T

he p

rom

inen

t cha

nges

in V

E fo

r S

CI2

and

SC

I3 m

ay b

e du

e to

the

com

plet

enes

s o

f the

ir in

jurie

s.

The

ultim

ate

goal

is to

del

inea

te c

usto

miz

ed s

timul

atio

n pa

radi

gms

that

are

pat

ient

-spe

cific

to o

ptim

ize

resp

irato

ry fu

nctio

n du

ring

func

tiona

l act

iviti

es. T

he b

enef

its o

f ach

ievi

ng o

ptim

al re

spira

tory

fu

nctio

n ar

e si

gnifi

cant

and

may

par

alle

l ach

ievi

ng o

ptim

al p

ostu

re

(i.e.

upr

ight

vs.

slo

uch

sitti

ng),

as d

emon

stra

ted

in a

ble-

bodi

ed

indi

vidu

als.

Indi

vidu

als

with

hig

h-le

vel,

mot

or a

nd s

enso

ry

com

plet

e S

CI m

ay b

enef

it fro

m tr

unk

mus

cle

FES

giv

en th

e po

tent

ial t

o in

crea

se V

E. I

t may

be

poss

ible

to u

se F

ES

to im

prov

e V

E a

nd th

eref

ore

phys

iolo

gica

l hom

eost

asis

. Fur

ther

stu

dies

are

re

quire

d to

det

erm

ine

if th

ese

prel

imin

ary

findi

ngs

can

be

repr

oduc

ed, a

nd m

ust i

nclu

de p

artic

ipan

ts w

ith d

iffer

ent l

evel

s an

d co

mpl

eten

ess

of S

CI t

o de

term

ine

spec

ifici

ty o

f stim

ulat

ion

para

met

ers

and

resu

ltant

cha

nges

in d

iffer

ent c

ompo

nent

s of

re

spira

tory

func

tion.

Dis

cuss

ion

Obj

ectiv

e1)

Des

crib

e th

e ef

fect

s of

sitt

ing

post

ure

on

resp

irato

ry fu

nctio

n in

abl

e-bo

died

indi

vidu

als

(AB

s).

2) T

est t

he fe

asib

ility

of u

sing

FE

S to

cha

nge

resp

irato

ry fu

nctio

n in

indi

vidu

als

with

SC

I.

Part

icip

ants

& P

arad

igm

Res

pira

tory

func

tion,

incl

udin

g tid

al v

olum

e (V

T),

resp

irato

ry ra

te (R

R),

and

min

ute

vent

ilatio

n (V

E),

was

m

easu

red

durin

g 60

s tri

als

of u

nsup

porte

d si

tting

.•A

Bs

(N=1

0): u

prig

ht s

ittin

g, S

ITU

P ; s

louc

h si

tting

, SIT

SL•S

CIs

(N=3

): un

supp

orte

d (S

ITU

N );

ante

rior-p

oste

rior

trunk

mus

cle

FES

, AP

-FE

S; m

edia

l-lat

eral

trun

k m

uscl

e FE

S, M

L-FE

S.

Tabl

e 2.

SC

Is re

spira

tory

func

tion

durin

g si

tting

Figu

re 1

. AB

s re

spira

tory

func

tion

durin

g si

tting

* A

diff

eren

ce o

f <5%

was

not

con

side

red

mea

ning

ful.

Age

(y)

Inj

ury

leve

l D

ur (m

) P

ack-

year

s

AB

s 31± 5

.9

--

--

6.3±

3.7

SC

I1

25

C5-

I

31

8

.0

SC

I2

25

C5-

MC

3

6

non

-sm

oker

SC

I3

33

C4-

MC

192

2

.3

Tabl

e 1.

Par

ticip

ant c

hara

cter

istic

s

VT

RR

VE

SC

I1

SIT

UN

AP

-FE

SM

L-FE

S

0.51

↓3%

*↓

2% *

18.8

3% *

6%

9.7

1% *

3% *

SC

I2

SIT

UN

AP

-FE

SM

L-FE

S

0.81

10%

19%

11.2

9%↓

2% *

9.0

12%

15%

SC

I3

SIT

UN

AP

-FE

SM

L-FE

S

0.75

7%↓

8%

13.8

5%↑

32%

9.7

14%

26%

Ref

eren

ces

1 Lin

et a

l. 20

06.A

rch

Phy

s M

ed R

ehab

il 87

(4) 5

04-9

2 Win

slow

and

Roz

ovsk

y 20

03. A

m J

Phy

s M

ed R

ehab

82(

10) 8

03-1

43 T

riolo

et a

l. 20

09. A

rch

Phy

s M

ed R

ehab

il 90

(2) 3

40-7

Ack

now

ledg

emen

tsTh

is re

sear

ch w

ould

not

be

poss

ible

with

out f

undi

ng fr

om: N

SER

C

Alex

ande

r Gra

ham

Bel

l Can

ada

Gra

duat

e Sc

hola

rshi

p an

d C

IHR

gra

nts

1291

79, 9

7953

, 940

18. T

he a

utho

rs a

lso

ackn

owle

dge

the

supp

ort o

f TR

I w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abilit

atio

n R

esea

rch

Pro

gram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io. T

he

view

s ex

pres

sed

do n

ot n

eces

saril

y re

flect

thos

e of

the

Min

istry

.

Res

ults

AB

s: D

urin

g S

ITU

P , V

T in

crea

sed

by 1

4% c

ompa

red

to S

ITSL

(0

.70±

0.27

l vs.

0.6

1±0.

19l,

p=0.

009*

*); R

R d

id n

ot c

hang

e si

gnifi

cant

ly b

etw

een

SIT

UP

and

SIT

SL (1

4±3.

47m

in-1

vs.

15±2

.97m

in-1

, p=0

.18)

. S

imila

rly, V

E w

as 6

% g

reat

er d

urin

g S

ITU

P c

ompa

red

to S

ITSL

(9.4

0±2.

20l/m

in v

s. 8

.83±

1.60

l/min

, p=

0.01

*).

Page 17: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Partners:

Ca

nad

ian

In

sti

tute

s o

f H

ealth

Re

se

arc

h

Insti

tuts

de

re

ch

ere

en

san

téd

u C

an

ad

a

Natu

ral S

cie

nce

s a

nd

En

gin

ee

rin

g R

ese

arc

h C

ou

ncil o

f C

an

ad

a

Co

nse

ild

e r

ech

erc

he

se

n s

cie

nce

s n

atu

relle

se

t e

n g

én

ied

u C

an

ad

a

Min

istr

y o

f H

ealt

h

an

d L

on

g T

erm

Care The views expressed in this poster do not necessarily reflect those of any of the granting agencies.

Re

ha

bilit

ati

on

En

gin

ee

rin

g L

ab

ora

tory

Ins

titu

te o

f B

iom

ate

ria

ls a

nd

Bio

me

dic

al

En

gin

ee

rin

g,

Un

ive

rsit

yo

f T

oro

nto

To

ron

to R

eh

ab

ilit

ati

on

In

sti

tute

Co

nta

ct:[email protected]

ww

w.t

oro

nto

fes

.ca

Vis

ua

liza

tio

n o

f T

run

k M

us

cle

Syn

erg

ies

du

rin

g S

itti

ng

Pe

rtu

rba

tio

ns

M. M

ilo

sevic

1,2

, E

. S

ejd

ic3, K

. M

asan

i2, M

. K

yan

4, K

.M. M

cC

on

ville

1,4

, M

.R. P

op

ovic

1,2

[1] Masani, K., Sin, V. W., Vette, A. H., Thrasher, T. A., Kawashima, N.,

Morris, A., R. Preuss, and M. R. Popovic(2009). Postural reactions

of the trunk muscles to multi-directional perturbations in sitting. Clin

Biomech(Bristol, Avon), 24(2), 176-182.

[2] Preuss, R., & Fung, J. (2008). Musculature and biomechanics of the

trunk in the maintenance of upright posture. J Electromyogr Kinesiol,

18(5), 815-828.

Refe

ren

ces

Vis

ua

liza

tio

n o

f T

run

k M

us

cle

Syn

erg

ies

-EMG pattern for bilateral: rectusabdominis(RA),

external oblique (EO), and internal oblique (IO), thoracic

erector spinae(T9) and lumbar erector spinae(L3)

Resu

lts

Pe

rtu

rba

tio

n C

lus

ters

-clustering based on ‘winning’directions on each node

a) all directions (b) ‘winning’cluster for 8 directions

-spatial proximity of clusters = similarity of synergies

b)

a)

5 1

7

3

64

82

Syn

erg

y C

om

pa

ris

on

-Euclidian distance between the center of each cluster

-implies postural synergy similarities and differences

-small distance = similar; large distance = dissimilar

Dir

ec

tio

n 1

0123451

2

3

4

5

6

7

8

Dir

ecti

on

2

0123451

2

3

4

5

6

7

8

Dir

ecti

on

5

0123451

2

3

4

5

6

7

8

Dir

ecti

on

6

0123451

2

3

4

5

6

7

8

Dir

ec

tio

n 1

0123451

2

3

4

5

6

7

8

Dir

ecti

on

2

0123451

2

3

4

5

6

7

8

Dir

ecti

on

5

0123451

2

3

4

5

6

7

8

Dir

ecti

on

6

0123451

2

3

4

5

6

7

8

Dir

ecti

on

7

0123451

2

3

4

5

6

7

8

Dir

ecti

on

8

0123451

2

3

4

5

6

7

8

Dir

ecti

on

3

0123451

2

3

4

5

6

7

8

Dir

ecti

on

4

0123451

2

3

4

5

6

7

8

Dir

ecti

on

7

0123451

2

3

4

5

6

7

8

Dir

ecti

on

8

0123451

2

3

4

5

6

7

8

Dir

ecti

on

3

0123451

2

3

4

5

6

7

8

Dir

ecti

on

4

0123451

2

3

4

5

6

7

8

Tru

nk

Mu

sc

le R

es

po

ns

e

-direction-dependant differences during sitting [1,2]

-adjacent directions most similar responses

-progressively more dissimilar as perturbations change

Syn

erg

y V

isu

ali

za

tio

n

-SOM encodes complex muscle synergies

-describes synergistic muscle relationships at a glance

-clusters could uncover deviant neuromuscular responses

-compare muscle synergies of patients (eg. SCI, stroke)

Dis

cu

ssio

n

Mu

sc

le S

yn

erg

ies

-Synergy= pattern of co-activations of muscles

-multiple muscles activate during sitting perturbations

-P

rob

lem

:how to compare postural synergies?

Vis

ua

liza

tio

n u

sin

g S

elf

Org

an

izin

g M

ap

s (

SO

M)

-SOM: encodes of data on the map

-Visualization:data summary on a 2D map projection

Intr

od

ucti

on

Ob

jec

tive

s:

-visualization of sitting trunk muscle synergies

-compare 8 perturbation direction synergies

EMG feature

SOM

Visualization

+ Clusters

EMG

data

Input data:

Output layer:

EMG feature

SOM

Visualization

+ Clusters

EMG

data

Input data:

Output layer:

Ex

pe

rim

en

t [1]

-sample: N=13; healthy

-sitting perturbations: 8 directions

-EMG: 10 trunk muscles (bilateral)

Meth

od

s

•T

rain

ing

�EMG (all) + directions (8 direction)

-input data (

xn): 104 input vectors

-output layer: 5x5 nodes have weight vectors w

j

-SOM: groups similar data patterns together

SO

M

-SOMToolbox,Helsinki University of Technology

-normalized input data

wj(n+1) = w

j(n) + hcj(n).[xn–

wj(n)]

Ou

tpu

t L

aye

r

-5x5 hexagonal map (2-D)

Inp

ut

Da

ta

-EMG filtering: rectification, low-pass & window filter

-feature: phasicEMG response after perturbation

•V

isu

ali

za

tio

n �

density / clusters analysis

2 46

8

BACKWARD

FORWARD

LEFT

RIGHT

12

3

45

6

7

8

Direction 8

Direction 1

Direction 2

Direction 6

Direction 5

Direction 4

Direction 3

Direction 7

1In

sti

tute

fo

r B

iom

ate

ria

ls a

nd

Bio

me

dic

al

En

gin

ee

rin

g, U

niv

ers

ity o

f T

oro

nto

; 2

Re

ha

bil

ita

tio

n E

ng

ine

eri

ng

La

bo

rato

ry,

To

ron

to R

eh

ab

ilit

ati

on

In

sti

tute

; 3

De

pa

rtm

en

t o

f E

lec

tric

al

an

d C

om

pu

ter

En

gin

ee

rin

g,

Un

ive

rsit

y o

f

Pit

tsb

urg

h;

4 E

lec

tric

al

an

d C

om

pu

ter

En

gin

ee

rin

g D

ep

art

me

nt,

Rye

rso

n U

niv

ers

ity

Page 18: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Part

ners

:

Can

ad

ian

In

sti

tute

s o

f H

ealt

h R

esearch

Insti

tuts

de r

ech

ere e

n s

an

du

Can

ad

a

Natu

ral S

cie

nces an

d E

ng

ineerin

g R

esearch

Co

un

cil o

f C

an

ad

a

Co

nseil d

e r

ech

erch

es e

n s

cie

nces n

atu

relles e

t en

gén

ied

u C

an

ad

a

Min

istr

y o

fH

ealt

h

an

d L

on

g T

erm

Care

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

yIn

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eeri

ng, U

nive

rsity

of T

oron

toT

oron

to R

ehab

ilita

tion

Inst

itute

Con

tact

:milo

s.pop

ovic

@ut

oron

to.c

aw

ww

.toro

nto-

fes.c

a

DO

ES F

UN

CTI

ON

AL

ELEC

TRIC

AL

STIM

ULA

TIO

N O

F TR

UN

K M

USC

LES

ALT

ER

RES

PIR

ATIO

N IN

SPI

NA

L C

OR

D IN

JUR

Y?

Kui

pers

MJ

1 ; W

u N

4 ; P

opov

ic M

R 3,

4,5 ;

Ver

rier

MC

1,2,

3,5 .

Rel

atio

nshi

p be

twee

n Po

stur

al C

ontr

ol a

nd R

espi

rato

ry C

apac

ity

Dep

artm

ents

of P

hysi

olog

y 1 ,

Phys

ical

The

rapy

2, a

nd R

ehab

ilita

tion

Scie

nce3 ,

Facu

lty o

f Med

icin

e, IB

BM

E4 ,

Uni

vers

ity o

f Tor

onto

; Tor

onto

Reh

abili

tatio

n In

stitu

te5 ,

Tor

onto

, ON

, Can

ada.

•Indi

vidu

als w

ith S

CI a

t or a

bove

L1

expe

rienc

e lo

ss o

f vo

lunt

ary

cont

rol o

f tru

nk m

uscl

es fr

om a

troph

y an

d pa

raly

sis

•Dur

ing

sitti

ng, p

ostu

ral c

ontro

l is c

ompr

omis

ed; i

ndiv

idua

ls

assu

me a

subo

ptim

al p

ostu

re to

mai

ntai

n si

tting

bal

ance

•Lum

bar k

ypho

sis a

nd p

oste

rior p

elvi

c til

t lea

d to

lim

itatio

ns

in fu

nctio

nal a

bilit

y an

d re

duce

d re

spira

tory

cap

acity

•Cur

rent

inte

rven

tions

for c

orre

ctiv

e po

stur

al c

ontro

l are

fu

nctio

nally

rest

rictiv

e •Im

plan

ted

stim

ulat

ing

elec

trode

s del

iver

ing

FES

to re

ctus

ab

dom

inus

and

ere c

tor s

pina

e has

impr

oved

ver

tebr

al a

lignm

ent

and

resp

irato

ry c

apac

ity in

a si

ngle

SC

I sub

ject

whi

le si

tting

•Tra

nscu

tane

ous f

unct

iona

l ele

ctric

al st

imul

atio

n (F

ES) i

s a

non-

inva

sive

tech

niqu

e for

trai

ning

mot

or re

cove

ry in

SC

I

Intr

oduc

tion

Tas

ks:

1a

. Qui

et si

tting

1b Q

uiet

sitti

ng w

/ FES

2a. C

ompl

ex c

ogni

tive

task

2b. C

CT

w/ F

ES

•Sub

ject

s with

:•L

evel

C5-

T12

inju

ry•A

SIA

A-D

impa

irmen

t•N

o pr

ior r

espi

rato

ry d

isea

se

Incl

usio

n C

rite

ria

Ref

eren

ces

Hob

son

and

Toom

s 19

92. S

pine

(Phi

la P

a 19

76) 1

7(3)

. K

irchb

erge

r et a

l. 20

09. S

pina

l Cor

d 48

. W

insl

ow a

nd R

ozov

sky

2003

. Am

J Ph

ys M

ed R

ehab

82.

Popo

vic

et a

l. Sp

inal

Cor

d (2

006)

44.

Han

kins

on et

al.

1999

. Am

J R

espi

r Crit

Car

e M

ed15

9.B

aydu

r et a

l. 20

01. J

App

l Phy

siol

90.

Tr

iolo

et a

l. 20

09. A

rch

Phys

Med

Reh

abil

90.

Ack

now

ledg

emen

tsTh

is re

sear

ch w

ould

not

be

poss

ible

with

out f

undi

ng fr

om:

NSE

RC

Ale

xand

er G

raha

m B

ell C

anad

a Gra

duat

e Sc

hola

rshi

p an

d C

IHR

gra

nts 1

2917

9, 9

7953

, 940

18.

•In S

CI,

resp

irato

ry im

pairm

ents

cor

rela

te w

ith in

jury

leve

l and

w

orse

n w

ith u

prig

ht (s

ittin

g) p

ostu

re: r

estri

ctiv

e na

ture

of

impa

irmen

ts m

ean

FEV

1an

d FV

C d

ecre

ase

prop

ortio

nally

so

the

ratio

may

be

norm

al o

r inc

reas

ed•In

ord

er to

pro

ve e

ffic

acy,

tran

scut

aneo

us F

ES m

ust f

acili

tate

si

mila

r gai

ns in

resp

irato

ry c

apac

ity a

s cur

rent

inte

rven

tions

: i.e

. ch

ange

on

the

mag

nitu

de o

f 10+

% in

crea

se in

FEV

1an

d 20

+%

incr

ease

in F

VC

•Oth

er im

prov

emen

ts o

f sur

face

FES

-ass

iste

d si

tting

for

indi

vidu

als w

ith S

CI m

ay in

clud

e an

aes

thet

ic a

nd c

orre

cted

-no

rmal

pos

ture

; pre

ssur

e re

lief o

ff th

e co

ccyx

; and

redu

ctio

n in

in

cide

nce o

f pre

ssur

e ul

cers

. •B

y tra

inin

g w

ith F

ES in

a m

ultit

ask

para

digm

, the

re m

ay b

e im

prov

emen

ts in

upp

er li

mb

func

tion

from

ach

ievi

ng b

ette

r po

stur

al c

ontro

l in

a si

tting

pos

ition

. •T

he b

enef

its o

f ach

ievi

ng si

tting

bal

ance

are

sign

ifica

nt,

cont

ribut

ing

to in

depe

nden

ce, i

mpr

oved

hea

lth st

atus

, and

w

ellb

eing

in th

e SC

I pop

ulat

ion

Dis

cuss

ion

Met

hods

•Dur

ing

each

tria

l, da

ta w

ill b

e re

cord

ed: k

inem

atic

mea

sure

s of

hea

d po

sitio

n, v

erte

bral

alig

nmen

t, an

d pe

lvic

tilt;

re

spira

tory

mea

sure

s of f

orce

d vi

tal c

apac

ity, f

orce

d ex

pira

tory

vol

ume

in o

ne se

cond

, and

the

ratio

of t

he tw

o va

lues

(FV

C, F

EV1,

and

FEV

1/FV

C);

dyna

mic

sitti

ng

stab

ility

mea

sure

d as

cen

ter o

f pre

ssur

e (C

OP)

. Fi

gure

1.Pl

ots

com

parin

gm

ean

norm

ativ

ere

spira

tory

valu

esFE

V1

and

FEV

1/FV

Cby

age

coho

rtto

:ave

rage

valu

esfo

rsub

ject

sw

ithpa

rapl

egia

(red

lines

)and

tetra

pleg

ia(b

lack

lines

);an

dva

lues

for

asi

ngle

tetra

pleg

icsu

bjec

tw

ith(r

eddo

t)an

dw

ithou

t(b

lack

dot)

impl

ante

dtru

nkm

uscl

eFE

S.Fi

gure

and

data

adap

ted

from

:H

anki

nson

etal

.199

9;B

aydu

reta

l.20

01;T

riolo

etal

.200

9.

Ince

ntiv

e sp

irom

etry

Mul

ti-ch

anne

l st

imul

atio

n

Forc

e pl

ate

Mot

ion

capt

ure

syst

em(n

ot sh

own)

Hyp

othe

sis

We

hypo

thes

ize

that

tran

scut

aneo

us F

ES o

f sel

ect t

runk

m

uscl

es w

ill fa

cilit

ate p

ostu

ral c

ontro

l and

gai

ns in

resp

irato

ry

capa

city

whi

le s

ittin

g

Exp

erim

enta

l Par

adig

m

Page 19: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Nat

ural

Sci

ence

s an

d E

ngin

eeri

ng R

esea

rch

Cou

ncil

of C

anad

aC

onse

ilde

rech

erch

esen

sci

ence

s na

ture

lles

et e

n gé

nie

du C

anad

a

Pilo

t Stu

dies

of T

asks

Two

indi

vidu

als,

one

abl

e-bo

died

and

one

chr

onic

SC

I, pe

rform

ed re

peat

ed

trial

s of

sta

tic a

nd d

ynam

ic s

ittin

g ta

sks

on th

e fo

rce

plat

e. R

epre

sent

ativ

e C

OP

dia

gram

s fo

r eac

h ty

pe o

f tas

k ar

e sh

own

belo

w.

Doe

s su

rface

FE

S h

ave

an e

ffect

on

sitti

ng C

OP

in a

ble-

bodi

ed in

divi

dual

s?

Doe

s pe

rform

ing

PFTs

affe

ct s

ittin

g C

OP

in in

divi

dual

s w

ith c

hron

ic S

CI?

How

do

dyna

mic

act

iviti

es a

ffect

sitt

ing

CO

P in

indi

vidu

als

with

chr

onic

SC

I?A

CE

BD

F

Figu

re 2

. Cen

ter

of p

ress

ure

excu

rsio

ns fo

r an

indi

vidu

al w

ith c

hron

ic S

CI d

urin

g m

ultip

le

trial

s of

forw

ard

reac

hing

(A, B

), la

tera

l rea

chin

g (C

, D),

and

post

erio

r lea

ning

(E, F

).

AB

Figu

re 1

. Cen

ter o

f pre

ssur

e ex

curs

ions

for a

n ab

le-b

odie

din

divi

dual

dur

ing

quie

t sitt

ing

(A) a

nd w

ith F

ES (B

).

AB

C

Figu

re 2

. C

ente

r of

pre

ssur

e ex

curs

ions

for

an

indi

vidu

al w

ith c

hron

ic S

CI

durin

g qu

iet

sitti

ng (A

), pe

rform

ing

a PF

T be

fore

(B) a

nd a

fter (

C) a

ser

ies

of fu

nctio

nal r

each

ing

task

s.

Link

ing

FES-

assi

sted

sitt

ing

stab

ility

and

bre

athi

ng in

spi

nal c

ord

inju

ryM

.J. K

uipe

rs1 ,

M.R

. Pop

ovic

3,4 ,

M.C

. Ver

rier1,

2,4

Uni

vers

ity o

f Tor

onto

, Fac

ulty

of M

edic

ine,

Dep

artm

ents

of P

hysi

olog

y1 an

d Ph

ysic

al T

hera

py2 ;

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring3 ;

Toro

nto

Reh

abili

tatio

n In

stitu

te4 .

Toro

nto

Reh

ab is

a te

achi

ng a

nd

rese

arch

hos

pita

l affi

liate

d w

ith th

e U

nive

rsity

of T

oron

to.

Res

earc

h Pr

oble

mLo

ss o

f vol

unta

ry c

ontro

l of t

he tr

unk

mus

cles

due

to p

aral

ysis

follo

win

g sp

inal

cor

d in

jury

(SC

I) is

ass

ocia

ted

with

abn

orm

al p

ostu

re, i

mpa

ired

sitti

ng

stab

ility

and

redu

ced

brea

thin

g ca

paci

ty d

urin

g si

tting

. Spe

cific

ally

, tho

raco

- lu

mba

r kyp

hosi

s an

d po

ster

ior r

otat

ion

of th

e pe

lvis

are

feat

ures

of a

typi

cal

mal

adap

tive

post

ure

in S

CI1

that

allo

w in

divi

dual

s w

ithou

t tru

nk c

ontro

l to

mai

ntai

n si

tting

bal

ance

yet

lim

its s

ome

func

tiona

l act

ivity

2,3 .

A s

imila

r po

stur

e in

hea

lthy

indi

vidu

als

resu

lts in

sig

nific

ant d

ecre

ases

in lu

ng

func

tion4 ,w

hich

is e

vide

nce

of th

e ad

vers

e ef

fect

s of

suc

h a

posi

tion

on

brea

thin

g ca

paci

ty. A

fter a

n S

CI,

trunk

mus

cle

para

lysi

s le

ads

to lo

ss o

f ab

dom

inal

mus

cle

tone

suc

h th

at in

an

uprig

ht p

ositi

on th

e ef

fect

of g

ravi

ty

and

incr

ease

d ab

dom

inal

com

plia

nce

caus

es a

cau

dal s

hift

of th

e ab

dom

inal

co

nten

ts5 .

This

shi

ft ef

fect

ivel

y re

mov

es th

e fu

lcru

m o

f the

dia

phra

gm,

affe

ctin

g th

e ab

ility

of th

e di

aphr

agm

to d

o re

spira

tory

wor

k in

an

uprig

ht

posi

tion6 ,

furth

er c

ompr

omis

ing

the

resp

irato

ry s

yste

m. S

timul

atio

n of

sel

ect

trunk

mus

cles

usi

ng im

plan

ted

elec

trode

s ha

s co

ntrib

uted

to im

prov

emen

t of

verte

bral

alig

nmen

t and

has

faci

litat

ed g

ains

in fu

nctio

nal i

ndep

ende

nce

and

brea

thin

g ca

paci

ty7 .

Obj

ectiv

eTo

det

erm

ine,

usi

ng a

pro

of-o

f prin

cipl

e pa

radi

gm, t

he fe

asib

ility

of m

uscl

e-

spec

ific

func

tiona

l ele

ctric

al s

timul

atio

n (F

ES

) to

impr

ove

verte

bral

alig

nmen

t, en

hanc

e di

aphr

agm

atic

func

tiona

, and

opt

imiz

e pa

ram

eter

s of

task

-spe

cific

fu

nctio

ns. E

lect

rical

stim

ulat

ion

is b

eing

del

iver

ed to

sel

ect t

runk

mus

cles

via

su

rface

ele

ctro

des

to s

tiffe

n ab

dom

inal

mus

cles

and

trun

k ex

tens

ors.

V

erte

bral

alig

nmen

t, si

tting

sta

bilit

y an

d br

eath

ing

capa

city

are

bei

ng

mea

sure

d du

ring

stat

ic a

nd d

ynam

ic c

ondi

tions

of u

nsup

porte

d an

d FE

S-

assi

sted

sitt

ing.

Met

hodo

logy

Indi

vidu

als

will

be

aske

d to

par

ticip

ate

base

d on

the

follo

win

g cr

iteria

:

Exp

erim

enta

l Set

-up

Con

clus

ions

In

bot

h qu

iet s

ittin

g (Q

S) a

nd in

cent

ive

spiro

met

ry (I

S) c

ondi

tions

for a

ble-

bo

died

, sur

face

stim

ulat

ion

of th

e ab

dom

inal

and

trun

k ex

tens

or m

uscl

es

redu

ced

tota

l exc

ursi

on, v

eloc

ity a

nd fr

eque

ncy

of th

e C

OP

. The

larg

er C

OP

va

lues

mea

sure

d du

ring

quie

t sitt

ing

in c

hron

ic S

CI s

ugge

st le

ss s

ittin

g st

abilit

y in

com

paris

on to

abl

e-bo

died

dur

ing

unsu

ppor

ted

sitti

ng, a

s ex

pect

ed. I

n ch

roni

c S

CI,

the

frequ

ency

of t

he C

OP

was

dec

reas

ed a

nd th

e ex

curs

ion

and

velo

city

bot

h in

crea

sed

durin

g m

ultip

le tr

ials

of d

ynam

ic ta

sks.

It

is p

ossi

ble

that

indi

vidu

als

with

chr

onic

SC

I use

alte

rnat

ive

mot

or

stra

tegi

es to

com

plet

e dy

nam

ic ta

sks,

eac

h re

pres

entin

g a

char

acte

ristic

C

OP

.

Impl

icat

ions

Ulti

mat

ely,

our

goa

l is

to d

evel

op c

ompr

ehen

sive

sub

ject

-spe

cific

pro

toco

ls

to te

st th

e re

latio

nshi

p be

twee

n si

tting

sta

bilit

y an

d br

eath

ing

capa

city

in S

CI.

Th

e ne

xt s

tep

is to

test

sur

face

FE

S d

urin

g a

dyna

mic

par

adig

m to

det

erm

ine

the

acut

e ef

fect

s of

FE

S a

nd a

ltere

d si

tting

sta

bilit

y on

bre

athi

ng.

Ref

eren

ces

1. H

obso

n D

A, T

oom

s R

E. S

pine

(Phi

la P

a 19

76) 1

992;

17(

3): 2

93-8

. 2. C

hen

CL,

et a

l. A

rch

Phy

s M

ed R

ehab

il 20

03; 8

4(9)

: 127

6-81

. 3. K

ukke

SN

, Trio

lo R

J. IE

EE

Tra

ns N

eura

l S

yst R

ehab

il E

ng 2

004;

12(

2): 1

77-8

5. 4

. Lin

F, e

t al.

Arc

h P

hys

Med

Reh

abil

2006

; 87(

4):

504-

9. 5

. Bay

dur A

, Adk

ins

RH

, Mili

c-Em

ili J

. J A

ppl P

hysi

ol 2

001;

90(

2): 4

05-1

1. 6

. W

insl

ow C

, Roz

ovsk

y J.

Am

J P

hys

Med

Reh

abil

2003

; 82(

10):

803-

14. 7

. Trio

lo R

J, e

t al.

Arc

h P

hys

Med

Reh

abil

2009

; 90(

2): 3

40-7

.

Ack

now

ledg

emen

tsTh

e au

thor

s w

ould

like

to re

cogn

ize

the

follo

win

g in

stitu

tions

for p

rovi

ding

fund

ing

for t

he

com

plet

ion

of th

is re

sear

ch: O

ntar

io G

radu

ate

Scho

lars

hip

prog

ram

(MJK

), To

ront

o R

ehab

ilita

tion

Inst

itute

(TR

I) S

tude

nt S

chol

arsh

ip (M

JK),

Alex

ande

r Gra

ham

Bel

l Sc

hola

rshi

p fro

m N

atur

al S

cien

ces

and

Engi

neer

ing

Res

earc

h C

ounc

il (M

JK),

and

Can

adia

n In

stitu

tes

of H

ealth

Res

earc

h (g

rant

#12

9179

, MR

P). T

he a

utho

rs a

lso

ackn

owle

dge

the

supp

ort o

f TR

I who

rece

ives

fund

ing

unde

r the

Pro

vinc

ial R

ehab

ilita

tion

Res

earc

h Pr

ogra

m fr

om th

e M

inis

try o

f Hea

lth a

nd L

ong-

Term

Car

e in

Ont

ario

. The

vie

ws

expr

esse

d do

not

nec

essa

rily

refle

ct th

ose

of th

e M

inis

try. F

inal

ly, t

he a

utho

r wou

ld li

ke to

ex

tend

a th

ank

you

to N

oel W

u an

d th

e SC

I Mob

ility

Lab

for t

heir

assi

stan

ce.

Incl

usio

nEx

clus

ion

25-4

5 yr

sAb

le-b

odie

d or

SC

IAc

ute

or c

hron

ic re

spira

tory

illn

ess

[C5-

T12

inju

ry le

vel]

>10

pack

yea

r sm

okin

g hi

stor

y[P

ost-a

cute

pha

se]

BMI >

25

Dev

ice

Func

tion

Out

com

e m

easu

res

Plac

emen

tSt

imul

atin

g el

ectro

des

Artif

icia

l mus

cle

stim

ulat

ion

N/A

Rec

tus

abdo

min

is,

lum

bar e

rect

or s

pina

eFo

rce

plat

eSi

tting

sta

bilit

y as

sess

men

tC

ente

r of P

ress

ure

Dis

plac

emen

t, ra

nge,

ve

loci

ty

Sitti

ng s

urfa

ce

Mot

ion

anal

ysis

sy

stem

Verte

bral

alig

nmen

t as

sess

men

tH

ead

posi

tion

Spin

al c

urva

ture

Pelv

ic ti

lt

C7,

fore

head

L1, L

3, L

4, L

5, S

1A

SIS

, PS

ISSp

irom

eter

Res

pira

tory

ass

ess-

m

ent d

urin

g pu

lmon

ary

func

tion

test

(PFT

)

Exp

irato

ry v

olum

es

and

flow

rate

sFl

ow s

enso

r at m

outh

an

d no

se c

lip

Con

ditio

nN

o.

Tr

ials

Mea

n to

tal

excu

rsio

n (m

m)

Mea

nve

loci

ty(m

m/s

)M

ean

frequ

ency

(Hz)

QS

1 23

.358

11.

0381

1.14

81pr

e PF

T3

37.4

737

1.66

550.

3862

forw

ard

reac

h4

23.0

051

1.02

240.

1843

late

ral r

each

439

.072

11.

7365

0.40

89le

an b

ack

340

.216

91.

7874

0.26

51po

st P

FT3

25.2

793

1.12

350.

2838

PFT

arm

rais

e1

52.2

974

2.32

430.

3131

QS

fina

l1

34.9

224

1.55

211.

6529

Tabl

e 2.

Sum

mar

y of

mea

n C

OP

valu

es fo

r ind

ivid

ual w

ith c

hron

ic S

CI.

Con

ditio

nN

o.Tr

ials

Mea

n to

tal

excu

rsio

n (m

m)

Mea

nve

loci

ty(m

m/s

)M

ean

frequ

ency

(Hz)

QS

3 11

.171

10.

4965

1.02

21Q

S w

/ FE

S3

8.75

360.

3890

0.88

51IS

322

.684

61.

0082

1.60

45IS

w/ F

ES

317

.178

90.

7635

1.23

13

Tabl

e 1.

Sum

mar

y of

mea

n C

OP

val

ues

for

able

-bod

ied

indi

vidu

al u

nder

diff

eren

t c o

nditi

ons.

All

trial

s w

ere

60se

c in

dur

atio

n; e

ach

trial

con

ditio

n, q

uiet

sitt

ing

(QS)

and

in

crea

sed

resp

onse

effo

rt (IR

E), w

as re

peat

ed w

ith tr

ansc

utan

eous

FES

(w/ F

ES).

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

yCOP(mm)

xCO

P (m

m)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

xCO

P (m

m)

yCOP(mm)

Page 20: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Partners:

Canadian Institutes of Health Research Instituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Physicians' Services Incorporated Foundation

Ministry of Health and Long Term Care

Methods – Inverse Dynamics Model:

•  Focuses on the action of the lumbar spine [2] - AP: flexion-extension - ML: lateral bending - RT: axial rotation

•  Six rigid bodies [2]: - L1 to L5 - Head-Arms-Thorax complex (HAT)

•  3 degrees-of-freedom (DOF) between at L5-PV joint [2] •  3 x 5 constraints (CT) at the remaining 5 joints [2]

Methods – Geometric Models and UBSP Data Source:

•  High-resolution, transverse color images from the Male Visible Human (MVH) [1] •  MVH anthropometrics: age 38; height 180 cm; weight 90 kg [1] •  Image resolution: 0.144 mm x 0.144 mm x 1 mm [1]

Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto Rehabilitation Institute Contact: [email protected] www.toronto-fes.ca

A Complete, Universal, and Verifiable Set of Upper Body Segment Parameters for Three-Dimensional Dynamic Modeling

Albert H. Vette, Takashi Yoshida, T. Adam Thrasher, Kei Masani, and Milos R. Popovic

Lyndhurst Centre, Toronto Rehabilitation Institute Institute of Biomaterials and Biomedical Engineering, University of Toronto Center for Neuromotor and Biomechanics Research, University of Houston

Conclusion

Background Dynamic models of the human trunk have been extensively used to investigate the biomechanics of lower back pain and postural instability in different populations. Despite their diverse applications, these models rely on intrinsic upper body segment parameters (UBSP), e.g., each segment’s mass-inertia characteristics. However, a comprehensive UBSP set allowing state-of-the-art, three-dimensional (3D) dynamic modeling does not exist to date.

Introduction

The purpose of this study was to establish a UBSP database that is accurate, complete, and universal, i.e., independent of pre-defined (lumped) trunk portions such as ‘upper trunk’ and ‘lower trunk’ (PART I). To demonstrate the practicality of the UBSP, they were finally implemented in a 3D dynamic model of the upper body to predict lumbar joint torques from experimental kinematics during perturbed sitting (PART II).

A comprehensive UBSP database has been obtained that can be implemented in 3D dynamic models to: (1) systemize thinking in postural control studies; (2) quantify the effect of impact forces on the head and trunk (e.g., during whiplash); (3) suggest population-specific experiments based on theoretical insights into trunk dynamics (e.g., regarding lower back pain); or (4) assess the feasibility of new surgical techniques (e.g., spinal fusion) and neuroprostheses (e.g., after spinal cord injury [3]).

Body Segmentation: •  24 vertebral trunk and head segments:

- 5 lumbar segments (L1 to L5) - 12 thoracic segments (T1 to T12) - 6 cervical segments and head (C2 to C7 and HD)

•  2 x 2 upper limb segments: - left and right upper arm (lUA and rUA) - left and right forearm-hand complex (lFA-H and rFA-H)

3D Geometric Models of: •  MVH spinal vertebrae, spinal discs, and pelvis (PV) •  MVH body shell

Results

Surface models of the MVH body shell and spine. The identified joint centers were used to define the vertebral trunk segments and upper limb segments for which respective mass-inertia characteristics were calculated using the geometric method.

Geometric Models and UBSP:

Discussion

References [1] Spitzer V et al, J Am Med Inform Assn 3, 118-130, 1996. [2] Wilkenfeld AJ et al, J Rehabil Res Dev 43, 139-152, 2006. [3] Masani K et al, Clin Biomech 24, 176-182, 2009.

We acknowledge the support of the Toronto Rehabilitation Institute, which receives funding under the Provincial Rehabilitation Research

Program from the Ministry of Health and Long-Term Care in Ontario. The views expressed do

not necessarily reflect those of the Ministry.

Identified Parameters: •  Spinal joint centers •  Segment masses •  Location of segment center-of-masses •  3 x 3 moment of inertia tensor of segments

Experiments: •  1 subject with MVH anthropometrics •  Horizontal perturbations during upright sitting •  8 perturbation directions, 5 trials each •  Impulse force of ~200 N max, applied inferior to axillae

Joint Torque Estimation: •  Inverse dynamics from kinematics to joint torques •  3 different dynamic implementations:

- Newton-Euler formulation - Lagrange formulation - Simulink & SimMechanics (Mathworks Inc.)

Inverse Dynamics:

Results of the inverse dynamics using the identified UBSP set. Shown are the AP and ML trunk angles and joint torques for an anterior-left diagonal perturbation during sitting. A visual inspection suggests that the torque outputs of the three different inverse dynamics implementations match very well (plotted on top of each other; R2 = 99.9999 %). It can also be seen that the AP torque traces are affected by the AP curvature of the spine.

Identified UBSP Set: •  Complete with respect to 3D dynamic modeling (all required parameters identified) •  Based on highly accurate 3D geometric models (1000 higher than existing sets) •  Universal with respect to potential model definitions (parameters can be lumped together) •  Uniquely verifiable and expandable (MVH dataset is freely accessible) L5

L4 L3 L2 L1

HAT

3 DOF 3 CT 3 CT

3 CT

3 CT

3 CT

Pelvis

Page 21: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health Research Instituts de recherche en santé du Canada

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

Partners:

•  Training à EMG (10 muscles) + directions (8 direction) - nodes (index j) have a weight vectors wj - input vector (xn), iteration n, compared to nodes - algorithm selects (index c) nearest node to the input xn - this weight vector and region hci(n) updated toward input xn

•  Visualization à density / clusters analysis for all directions

Experiment [1, 2] - Sample: N=13, all healthy - Sitting perturbations: 8 directions - Record EMG: (5 trunk muscles x 2 sides)

Data processing - EMG filtering: rectification, low-pass & windowing filter - Model feature: max EMG response after perturbation

Methods

Spinal Cord Injury (SCI) - causes paralysis of lumbar musculature - trunk instability is a major problem with SCI - multiple muscles contribute to trunk stability

Data Visualization using Self Organizing Maps (SOM) - SOM - encodes statistical properties of data on the map - Visualization - data summary on a 2D map projection - Models - SOM models for closed-loop control of sitting

Introduction SOM Visualization

Results

SELF-ORGANIZING MAP FOR DATA MINING OF EMG TRUNK MUSCLE SIGNALS DURING SITTING

M. Milosevic1,2, K. Masani2, M. Kyan1, M.R. Popovic2,3, K.M. McConville1,2,3 1 Electrical and Computer Engineering Department, Ryerson University, Toronto, Canada

2 Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, Toronto, Canada 3 Institute for Biomaterials and Biomedical Engineering, University of Toronto, Canada

Rehabilitation Engineering Lab, Toronto Rehabilitation Institute and Electrical and Computer Engineering, Ryerson University Contact: [email protected] www.toronto-fes.ca

EMG pre-processing

SOM training

Visualization Clustering ModelsextractionEMG

Qualitativeinformation

Quantitativeinformation

EMG pre-processing

SOM training

Visualization Clustering ModelsextractionEMG

Qualitativeinformation

Quantitativeinformation

Objectives: - SOM for electromyography (EMG) data mining - Visualization of high-dimension EMG data sets - Model trunk muscle activation patterns during sitting

SOM (SOMToolbox, Helsinki University of Technology): - 5x5 hexagonal map - normalized input - batch training mode - Euclidian measure

Input 6

wj (n+1) = wj (n) + hcj(n).[xn – wj(n)]

SOM Model - Clustering – based on ‘winning’ directions on each node - Gaussian regression models for all muscles from clusters - Normal distribution; consistent with [1, 2]

Activation pattern for abdominal muscles left (gray line) and right (black line): rectus abdominis (RA), external oblique (EO), and internal oblique (IO)

Activation pattern for back muscles for left (gray line) and right (black line): thoracic erector spinae (T9), lumbar erector spinae (L3)

[1] Masani K, et al. Postural reactions of the trunk muscles to multi- directional perturbations in sitting. Clin Biomech, 2009 [2] Preuss R, Fung J Musculature and biomechanics of the trunk in the maintenance of upright posture. J Electrom Kinesiol, 2008

References

SOM Visualization - describes synergistic muscle relationships at a glance - cluster could uncover deviant neuromuscular responses - can assess and grade trunk function in individuals

SOM Models - can model the activation patterns - opposing muscles stabilizes perturbations [1, 2]

Discussions

Page 22: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Tran

slat

iona

l Dam

ping

With

and

With

out

FES

- 2 W

ay A

NO

VA:

•M

ain

Fact

or: N

O F

ES

vs.

FE

S, p

= 0

.842

Mai

n Fa

ctor

: Dire

ctio

ns, p

<0.0

01

•In

tera

ctio

n: p

= 0

.559

Tors

iona

l Stif

fnes

s W

ith a

nd W

ithou

t FE

S - 2

Way

AN

OVA

: •

Mai

n Fa

ctor

: NO

FE

S v

s. F

ES

, p =

0.3

57

•M

ain

Fact

or: D

irect

ions

, p<0

.001

Inte

ract

ion:

p =

0.3

69

-B

oth

trans

latio

nal a

nd to

rsio

nal d

ampi

ng a

re s

igni

fican

tly d

iffer

ent b

etw

een

dire

ctio

ns

-B

oth

trans

latio

nal a

nd to

rsio

nal d

ampi

ng a

re n

ot s

igni

fican

tly d

iffer

ent b

etw

een

with

and

w

ithou

t FE

S

Ti

me=

0 fo

r ana

lysi

s

Forc

e in

the

pulli

ng D

irect

ion

Forc

e in

the

rest

ing

Dire

ctio

ns

Pla

nar m

ovem

ent o

f T10

in th

e pu

lling

D

irect

ion

Qua

ntify

ing

Mul

ti-di

rect

iona

l Tru

nk S

tiffn

ess

Dur

ing

Sitti

ng w

ith a

nd w

ithou

t Fun

ctio

nal E

lect

rical

Stim

ulat

ion

A

ble-

Bod

ied

Indi

vidu

als

N W

u1,2

, M T

suki

mot

o1,3

, AH

Vet

te2,

4 , K

Mas

ani1 ,

MR

Pop

ovic

1,2

1 Ly

ndhu

rst C

entre

, Tor

onto

Reh

abili

tatio

n In

stitu

te, T

oron

to, C

AN

AD

A; 2

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring,

Uni

vers

ity o

f Tor

onto

, Tor

onto

, CA

NA

DA

3 D

epar

tmen

t of E

lect

rical

and

Com

pute

r Eng

inee

ring,

Uni

vers

ity o

f Tor

onto

, Tor

onto

, CA

NA

DA

; 4 D

epar

tmen

t of K

ines

iolo

gy, U

nive

rsity

of W

ater

loo,

Wat

erlo

o, C

AN

AD

A

Obj

ectiv

es

Syst

em Id

entif

icat

ion

Tech

niqu

e R

esul

ts

Reh

abili

tatio

n En

gine

erin

g La

bora

tory

C

onta

ct: m

ilos.

popo

vic@

utor

onto

.ca

ww

w.to

ront

o-fe

s.ca

Con

clus

ion

Bac

kgro

und

•In

abili

ty t

o vo

lunt

arily

con

trol

the

trunk

mus

cula

ture

for

ind

ivid

uals

with

sp

inal

cor

d in

jury

(S

CI)

caus

es b

oth

func

tiona

l pr

oble

ms

and

seco

ndar

y he

alth

com

plic

atio

ns.

•O

ne p

ossi

ble

solu

tion

to i

mpr

ove

sitti

ng b

alan

ce i

s to

use

a f

unct

iona

l el

ectri

cal s

timul

atio

n (F

ES

) to

activ

ate

patie

nt’s

ow

n m

uscu

latu

re to

sup

port

the

trunk

[1].

•To

bui

ld s

uch

FES

sys

tem

one

nee

ds to

det

erm

ine

mul

tidire

ctio

nal s

tiffn

ess

of t

he t

runk

dur

ing

sitti

ng a

nd t

o de

mon

stra

te t

hat

this

stif

fnes

s ca

n be

in

fluen

ced

by F

ES

.

Expe

rimen

t Su

bjec

ts:

•15

abl

e-bo

dy m

ale

subj

ects

with

ave

rage

s: 2

7yrs

, 176

cm a

nd 7

3kg

Task

: •

Sitt

ing

uprig

ht w

ith e

yes

clos

ed

•P

ertu

rbed

thro

ugh

a ch

est h

arne

ss in

8 h

oriz

onta

l dire

ctio

ns ra

ndom

ly

usin

g PA

PP

S, f

or a

tota

l of 1

60 tr

ials

[3]

•20

tria

ls fo

r eac

h pe

rturb

ed d

irect

ion:

10

with

out F

ES

and

10

with

FE

S

•FE

S a

pplie

d to

ere

ctor

spi

nae

& a

bdom

inal

mus

cles

in th

e lu

mba

r reg

ion

Mea

sure

men

ts:

•H

oriz

onta

l per

turb

atio

n fo

rce

•K

inem

atic

s of

T10

as

CO

M o

f tru

nk, u

sing

mot

ion

capt

ure

syst

em

Ana

lysi

s:

•Fi

rst 1

s tim

e pe

riod

from

the

onse

t of t

he p

ertu

rbat

ion

was

ana

lyze

d •

Trun

k w

as m

odel

led

as a

mas

s-sp

ring-

dam

per s

yste

m

•Tr

ansl

atio

nal a

nd to

rsio

nal t

runk

stif

fnes

s an

d da

mpi

ng w

ere

iden

tifie

d us

ing

an o

ptim

izat

ion

algo

rithm

(Mat

lab,

Mat

hwor

ks)

Part

ners

:

1.To

dev

elop

a n

ovel

pro

toco

l to

quan

tify

and

iden

tify

the

mul

tidire

ctio

nal s

tiffn

ess

of th

e tru

nk d

urin

g si

tting

2.

To te

st th

e ef

fect

of F

ES

on

the

mul

tidire

ctio

nal s

tiffn

ess

of th

e tru

nk.

- M

ultid

irect

iona

l stif

fnes

s of

the

trunk

is q

uant

ified

and

an

incr

ease

in

tran

slat

iona

l stif

fnes

s w

as s

how

n w

ith F

ES

con

ditio

n.

- Th

ese

resu

lts c

an b

e us

ed t

o de

velo

p an

FE

S p

roto

col

for

indi

vidu

als

with

SC

I to

impr

ove

thei

r sitt

ing

bala

nce

Exam

ple

of C

urve

Fitt

ing

to O

btai

n M

ass,

Stif

fnes

s, a

nd D

ampi

ng R

atio

Port

able

and

Aut

omat

ed P

ostu

ral

Pert

urba

tion

Syst

em (P

APP

S)

Loca

tions

of F

ES a

nd M

otio

n

Trac

king

Mod

el 1

) Tra

nsla

tiona

l Mas

s-Sp

ring-

Dam

per

CO

M –

cen

ter o

f mas

s of

the

syst

em

b –

dam

ping

coe

ffici

ent

k –

stiff

ness

coe

ffici

ent

F app

lied –

forc

e ex

erte

d on

the

CO

M

x –

disp

lace

men

t fro

m th

e eq

uilib

rium

pos

ition

Mod

el 2

) Tor

sion

al M

ass-

Sprin

g-D

ampe

r C

OM

– c

ente

r of m

ass

of th

e sy

stem

I –

mom

ent o

f ine

rtia

B –

tors

iona

l dam

ping

coe

ffici

ent

K –

tors

iona

l stif

fnes

s co

effic

ient

F a

pplie

d – fo

rce

exer

ted

on th

e C

OM

L

– le

ngth

from

L4/

L5 jo

int t

o th

e C

OM

g

– gr

avita

tiona

l con

stan

t –

ang

ular

dis

plac

emen

t fro

m th

e eq

uilib

rium

!""#

$%&

!!"#

$ !""#

$%&

!""#

$%&

rotoM gnitse

R dna gnilluP fo sevruC noitisoPEx

ampl

e: P

ositi

on a

nd F

orce

Pro

file

of a

Tria

l

#%!

&'((

)!*+

,!

#%!

&'((

)!-.! *+

,!

#%!

&'((

)!*+

,!

#%!

&'((

)!-.! *+

,!

#%!

&'((

)!*+

,!

#%!

&'((

)!-.! *+

,!

#%!

&'((

)!*+

,!

#%!

&'((

)!-.! *+

,!

~2.5

min

s

~30

min

s

2 m

ins

brea

k 2

min

s br

eak

2 m

ins

brea

k

Prot

ocol

of P

ertu

rbat

ion

Tim

elin

e

Tran

slat

iona

l Stif

fnes

s W

ith a

nd W

ithou

t FE

S - 2

Way

AN

OVA

: •

Mai

n Fa

ctor

: NO

FE

S v

s. F

ES

, p =

0.0

04

•M

ain

Fact

or: D

irect

ions

, p<0

.001

Inte

ract

ion:

p =

0.2

10

Tors

iona

l Stif

fnes

s W

ith a

nd W

ithou

t FE

S - 2

Way

AN

OVA

: •

Mai

n Fa

ctor

: NO

FE

S v

s. F

ES

, p =

0.1

16

•M

ain

Fact

or: D

irect

ions

, p<0

.001

Inte

ract

ion:

p =

0.1

97

-B

oth

trans

latio

nal a

nd to

rsio

nal s

tiffn

ess

are

sign

ifica

ntly

diff

eren

t bet

wee

n di

rect

ions

-

Tran

slat

iona

l stif

fnes

s is

sig

nific

antly

diff

eren

t bet

wee

n w

ith a

nd w

ithou

t FE

S

-To

rsio

nal s

tiffn

ess

is n

ot s

igni

fican

tly d

iffer

ent b

etw

een

with

and

with

out F

ES

Ref

eren

ces:

[1

] K. M

asan

i, et

al.

Clin

ical

Bio

mch

anic

s; 2

4:17

6-18

2, 2

009

[2] P

Lee

, et a

l. H

uman

Fac

tor;

49:1

00, 2

007

[3] A

H V

ette

, et a

l. A

SM

E J

. of M

edic

al D

evic

es; 2

: 200

8

Page 23: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURPOSEPURPOSE

CONCLUSIONCONCLUSION

Center of Pressure Velocity Captures Body AccelerationRather Than Body Velocity During Quiet StandingMasani K 1, 2), Vette AH 1, 2), Abe MO 3), Nakazawa K 4), Popovic MR 1, 2)

1) Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, CANADA2) Lyndhurst Centre, Toronto Rehabilitation Institute, Toronto, CANADA 3) Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, JAPAN3) Department of Motor Dysfunction, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, JAPAN

To investigate the hypothesis that the fluctuation of COPv captures the fluctuation of ACC due to larger derivative gain in the neural control system during quiet standing

Joint World Congress of ISPGRand Gait & Mental Function

Trondheim, Norway, June 24–28, 2012e-mail : [email protected]

- The COP velocity fluctuation captures the COM acceleration fluctuation rather than the COM velocity fluctuation.

- The current results suggest that the neural motor command controlling quiet standing posture contains a significant portion that is proportional to the body velocity.

Partners:Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto Rehabilitation InstituteContact: [email protected] page: http://www.toronto-fes.ca

References[1] Peterka. J Neurophysiol 88:1097-118, 2002.[2] Masani K, et al. J Neurophysiol 100:1465-1475, 2008.[3] Masani K, et al. J Neurophysiol 90: 3774-3782, 2003.[4] Masani K, et al. Gait Posture 23:164-172, 2006.[5] Masani K, et al. Neurosci Lett 422: 202-206, 2007.

The views expressed in ths poster do not necessarily reflect those of any of the granting agencies.

The authors acknowledge the support of Toronto Rehabilitation Institute who receives funding under the Provincial Rehabilitation Research Program from the Ministry of Health and Long-Term Care in Ontario.

Subjects: - Young healthy subjects: n = 27 (female 14), 27.2±4.5 yrs- Elderly healthy subjects: n = 23 (female 12), 66.2±5.0 yrs

Task: - Quiet standing with eyes open for 90 sec on a force plate, 5 trials

Measurements:- Center of pressure (COP)- Sway at L5 using a laser displacement sensor- AP horizontal force

Analysis:- The body center of mass (COM) was estimated using the sway at L5.- The body acceleration was estimated using two ways: - AP horizontal force divided by the body mass (ACCf) - Second derivative of sway at L5 (ACCl)- All derivatives (COPv, COMv, ACCfv, ACClv) were also calculated.- To assess the amount of fluctuation, the root mean square (RMS) was calculated.

Experiment

BACKGROUNDBACKGROUND

Simulation

The center of pressure (COP) velocity (COPv) has been used as one of the most sensitive posturographic measures to detect changes in balance abilities due to aging and/or neurological diseases. Since the COP trajectory matches very well with the center of mass (COM) trajectory due to the body dynamics, the COP velocity has been believed to represent the COM velocity (COMv) in most of these studies. However, there is no study to date that has investigated the physical and physiological meaning of the COP velocity. Based on the motion equation of an inverted pendulum,

where ACC = body acceleration, I, m, h = body inertia, mass, and height, g = gravity coeff. According to this,

where ACCv = derivative of ACC (= jerk). Thus, COPv can be correlated with COMv. On the other hand, as COP = mg * TQ, where TQ = ankle torque, COP represents the ankle torque, which controls COM during queit standing. Based on the suggested models [1, 2], TQ may be modeled as,

where theta = body angle, and Kp, Kd, Ki, K, and B are controller gains (see below). Therefore,

Since it has been suggested that Kd is comparatively large in the control system [2, 3, 4], and considering ACC is similarly sensitive to COPv in detecting aging of postural control [5], Kd term may be dominant in dTQ, and as the result, dTQ and COPv are proportional to ACC.

++

KP

KD

+

NeuralController

+-+

K

B

MechanicalController

+

NMS

COP &Torque

COM &Angle

NMS (Neuro-musculo-skeletal system): 2nd order filter

Noise 1

KP

Noise 2 Noise 3

Model: - Neural Controller: 0<Kp<500, 0<Kd<300, 0<Ki<300- Motor delay = Sensory delay = 40 ms- Mechanical Controler: 0<K<1000, B=5- NMS: 0.1<1/omega<0.2 s- Time constant of Noise 1, 2: 5, 100, 200 s- Time constant of Noise 3: 0.025, 0.25, 0.5 s- Pendulum 1: H=0.852 m, W=580 N, I=44.9 kgm2

- Pendulum 2: H=0.986 m, W=957 N, I=85.7 kgm2

- Pendulum 3: H=0.773 m, W=394 N, I=24.7 kgm2

Stability: - Nyquist stability with gain (2dB) and phase (5 deg) margins

(eq 1)

(eq 2)

(eq 3)

(eq 4)

Examples of Recordings1

LaserDisplacementSensor

Force Plate

[cm]

-1

0

1

-1

0

1

-1.5

0

1.5

-6

0

6

-3

0

3

-1

0

1

-20

20

-150

0

150

0

2 s

[cm]

[cm/s2]

[cm/s2]

[cm/s]

[cm/s]

[cm/s3]

[cm/s3]

COP

ACCl

ACCf

COM

COPv

ACClv

ACCfv

COMv

Measurements Derivatives

- The COP, COM, COMv were not significantly different between the young and the elderly.- The ACC (ACCf and ACCl) and COPv were significantly different between the groups.

Differentiate

Simulation Study4

- In the simulation, the same results as the experiment, i.e., 1) COP and COM were highly correlated (A), 2) COPv and COMv were not very highly correlated (B), 3) COPv and ACC were highly correlated (C), were obtained.

0

0.2

0.4

0.6

0.8

1Contribution of Each Channelto Total dTQ

dKpdTQ

dKddTQ

dKidTQ

dKdTQ

dBdTQ

p < 0.0001

5 Nm

1 s

dTQ

dB Ch.

dK Ch.

dKi Ch.

dKd Ch.

dKp Ch.

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02 0.025COP [m]

CO

M [m

]

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.01 0.02 0.03 0.04COPv [m]

CO

Mv

[m]

0

0.01

0.02

0.03

0.04

0.05

0 0.01 0.02 0.03 0.04COPv [m]

ACC

[m]

-2

0

2

4

6

8

10

0 5 10 15 20 25dTQ [Nm]

dKp

Ch.

[Nm

]

0

2

4

6

8

10

0 5 10 15 20 25dTQ [Nm]

dK C

h. [N

m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25dTQ [Nm]

dB C

h. [N

m]

0

1

2

3

4

5

6

0 5 10 15 20 25dTQ [Nm]

dKi C

h. [N

m]

0

2

4

6

8

10

12

14

0 5 10 15 20 25dTQ [Nm]

dKd

Ch.

[Nm

]

A B C

++

KP

KD

+

NeuralController

+-+

K

B

MechanicalController

+

NMS

NMS (Neuro-musculo-skeletal system): 2nd order filter

Noise 1

KP

Noise 2 Noise 3

- The fluctuation of output from Kd channel was the largest among the terms in eq 4. This result suggests that Kd channel contributes to dTQ most compared to the other channels.

A B C D E

- Among the channels, Kd and B channels more correlated with dTQ compared to the other channels. Considering the contribution of B channel was very low, Kd channel must dominate the fluctuation of dTQ.

r = 0.952 r = 0.799 r = 0.985

r = 0.527 r = 0.397 r = 0.983r = 0.946 r = 0.751

- The COM and COP were highly correlated (A), agreeing with the motion equation (eq 1).- The COMv and COPv were correlated but not very strongly (B).- The ACC (ACCf and ACCl) were more strongly correlated with COPv (C and D), agreeing with our hypothesis.- While COMv and COPv were not highly correlated (B), ACCfv and COPv were very highly correlated (F) (Re:

ACCfv (E), see below). This suggests that among the terms in eq 2, ACCv term is dominant in determining COPv.

- The COP, COM and ACC satisfied eq 1 (A and B) suggesting that ACC is satisfactorily accurate.- However, only ACCf satisfied eq 2 (C and D). ACCl may contain a higher level of high frequency measurement errors.

0

0.2

0.4

0.6

0.8 COP[cm]

0

0.2

0.4

0.6

0.8

1 ACCf[cm/s2]

p < 0.0001

0

0.2

0.4

0.6

0.8 COM[cm]

0

0.5

1

1.5 COPv[cm/s]

p < 0.0001

0

0.1

0.2

0.3

0.4

0.5 COMv[cm/s]

0

0.5

1

1.5

2

2.5 ACCl[cm/s2]

p = 0.002

Young

Elderly

Amount of Fluctuation2

Correlations between Variables3

ACC

f [cm

/s2 ] C

COPv [cm/s]0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

0.0

r = 0.900

2.0

4.0

6.0

8.0

10

0.0

COPv [cm/s]0.0 0.5 1.0 1.5 2.0

ACC

fv [c

m/s

3 ] F r = 0.951

COP [cm]

CO

M [c

m] A

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5

r = 0.919

ACC

l [cm

/s2 ] D

COPv [cm/s]0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.5

3.0

2.0

r = 0.838

10

20

30

40

50

0

COPv [cm/s]0.0 0.5 1.0 1.5 2.0

ACC

lv [c

m/s

3 ] E r = 0.606

COPv [cm/s]

CO

Mv

[cm

/s] B

0.0

0.1

0.2

0.3

0.5

0.6

0.4

0.0 0.5 1.0 1.5 2.0

r = 0.717

COP [cm]

CO

M+A

CC

f*I/m

gh [c

m]

A

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

2.0 r = 0.926

COP [cm]

CO

M+A

CC

l*I/m

gh [c

m]

B

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

2.0 r = 0.930

COPv [cm/s]CO

Mv+

dAC

Cf*I

/mgh

[cm

/s]

C

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0 r = 0.945

COPv [cm/s]CO

Mv+

dAC

Cl*I

/mgh

[cm

/s]

D

0.0 0.5 1.0 1.5 2.00.0

1.0

2.0

3.0

4.0 r = 0.501

YoungElderly

- COPv correlated with ACCf more than with COMv, not only in RMS but also in other parameters quantifying fluctuations.

ACCl was Erroneous4

Page 24: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURPOSEPURPOSE

CONCLUSIONCONCLUSION

Decomposing the Ankle Torque during Quiet Standing intoActive and Passive Components using EMG

Masani K 1, 2), Vette AH 1, 2), Abe MO 3), Nakazawa K 4), Popovic MR 1, 2)

1) Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, CANADA2) Lyndhurst Centre, Toronto Rehabilitation Institute, Toronto, CANADA 3) Department of Biology, Northeastern University, Boston, USA4) Department of Life Science, University of Tokyo, Tokyo, JAPAN

The purpose of this study was to validate the methodology that we recently proposed, via a systematic simulation study.

ISEK 2010Aalborg, Denmark, June 16-20, 2010

e-mail : [email protected]

- The decomposition method detected K and omega used in the simulations with a sufficiently small error, suggesting that the decomposition method is valid and practically feasible.

Partners:Rehabilitation Engineering Laboratory, Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto Rehabilitation InstituteContact: [email protected] page: http://www.toronto-fes.ca

Passive and Active Torque Decomposition Process (Vette et al. 2010)

BACKGROUNDBACKGROUND

References[1] Casadio et al. Gait Posture 21: 410-424, 2005.[2] Loram et al. J Physiol 545: 1041-1053, 2002.[3] Vette et al. IEEE TNSRE 18(1): 86-95, 2008.[4] Conforto et al. Gait Posture 14: 28-35, 2001.

In the control system of quiet standing, the ankle torque generation is critical. The controlled ankle torque can be divided into 2 components: a passive torque component and an active torque component. The passive torque component is generated by the stiffness of the activated muscles, ligaments, and joint structures. The active torque component is generated by the muscle contractile elements, and is neurally controlled moment-to-moment. The passive component during quiet standing has been investigated by applying a quick perturbation at the ankle joint when subjects kept a standing posture. The identified stiffness in such perturbation experiments is about 70 to 90% of the required stiffness (Loram et al. 2002; Casadio et al. 2005). However, it is not certain that the stiffness actually contributes this much to the exerted ankle torque during quiet standing. In our recent study, we introduced a methodology decomposing the ankle torque during quiet standing into active and passive torque components using a simple model (Vette et al. 2010). However, internal noise properties in the control system may affect the outcomes of this approach. In this study, we investigated the practical feasibility of this methodology using a systematic simulation study.

Model (Vette et al. 2010)

The views expressed in ths poster do not necessarily reflect those of any of the granting agencies.

Brain Delay Muscle Body

AnkleStiffness

++

τ θ

NeuralController

+-

θ0 = 0+

K

B

MechanicalController

+

NMS

Physiological Control Scheme: Model for Optimization:

EMG Torque AngleMeasurements

Modeling

τ θ

NeuralController

K

B

MechanicalController

NMS

0

0.35

30

0.08

0.095

30

0

1

Young Elderly

ActTQ/ModelTQp = 0.003

0

1

Young Elderly

PassTQ/ModelTQp = 0.003

Tuned Parametersin the optimization analysis : Natural frequency G : Gain for NMS K : Intrinsic stiffness

0

1

Young Elderly

K/mghp = 0.029

- EMG was used as an input to the muscle model, and active torque was obtained as the output.- Body angle was used as an input to the mechanical controller, and passive torque was obtained as the output.

- Active and passive torque were added, and the model torque was obtained.- The model torque was fitted with the measured torque using the optimization technique.

- Ankle stiffness agreed with the previous study using a perturbation. The ankle stiffness was significantly smaller in the elderly than in the young.

- The contribution of passive torque was dominant in the model torque, and lower in the elderly than in the young.

- The elderly tend to have lower stiffness, and as such rely on the active torque more, which makes the elderly less stable.cf. 91±23 %

(Loram et al. 2002)

NMS (Neuro-musculo-skeletal system): 2nd order filter

EMG

ActiveTorque

Angle

PassiveTorque+ = Model

Torque

MeasuredTorque

Fitting usingOptimization

Gaussiannoise

+

++

PID- Kp- Kd- Ki

τ

θ

NeuralController

+

-

θ0 = 0+

K

B

MechanicalController

+

NMS

EMG

Torque

Angle

CNS

CNS

Decomposition Results

Validation of Decomposition Method using Simulation Study

- The fitting exhibited good results. The errors of the identified parameters were quite small, especially when the mechanical noise was not present.

- The decomposition method detected K and omega used in the simulations with a sufficiently small error, suggesting that the decomposition method is valid and practically feasible.

Driving Noise

- Postural sway during quiet standing was simulated, and the decomposition method was applied to the simulated time series.

- Mechanical noise simulated and slightly larger than the noise effect of hemodynamics described by Conforto et al. 2001, i.e., 0.4 N of the horizontal force.

0.075

0.1

-55

-30

-20

20

0 5 10 15 20 25 30

Angle

Simulated Torque

Muscle Activity Level

Time [s]

[rad]

[Nm

][a

.u.]

-55

-50

-45

-40

-35

0 5 10 15 20 25 30

-10

-5

Torq

ue [N

m]

Simulated Torque & Fitted Torque

Passive Torque

Active Torque

Examples of Application

012345

012345

012345

012345

12345

012345

Mean Amplitude of COP

Mean Amplitude of COP derivative“COP Velocity”

0

.5

1

0

.5

1

Young Elderly

[cm]

P = 0.141 P < 0.0001

Young Elderly

Young Elderly

SD of Total Torque[Nm]

SD of Active Torque SD of Passive Torque[Nm][Nm]

0

[cm/s] SD of dTotal Torque[Nm]

SD of dActive Torque SD of dPassive Torque[Nm][Nm]

Young Elderly

Young Elderly Young Elderly

Young ElderlyYoung Elderly

P = 0.336

P = 0.014 P = 0.617

P = 0.005

P = 0.0003 P = 0.840

- The difference of SD of active torque between the groups was detected by the COP Velocity and the derivative of total torque (B), while COP amplitude nor SD of total torque failed to detect the difference (A).

- The results suggest that the COP Velocity is a sensitive measure in detecting changes of active torque fluctuation induced by aging, since the contribution of active torque is larger in the torque derivative than in the torque itself.

0

500

0 500

0

500

6

12

6 12 0.6

1.2

0.6 1.2

0 500 6 12 0.6 1.26

12

0.6

1.2

Korg [Nm] ωn org [rad/s] G org

Korg [Nm] ωn org [rad/s] G org

Kopt

[Nm

]

ωn

opt [

rad/

s]

G o

pt

Kopt

[Nm

]

ωn

opt [

rad/

s]

G o

pt

Simulated SignalsDecomposition Outputs

Time [s]

Simulation Parameters:Kp = 200Kd = 200Ki = 200K = 400B = 5ωn = 8.33G = 1Gn1 = 200, τn1 = 80Gn2 = 0.025, τn2 = 1Gn3 = 1, τn3 = 80

With Mechanical Noise(Gn3=1)

Without Mechanical Noise(Gn3=0)

%error -0.13±0.30 % %error 0.24±0.54 % %error 0.46±1.23 %

%error 1.3±2.1 % %error 0.4±3.2 % %error -3.2±3.5 %

Simulation Parameters:Kp = 0 - 500 w step 200Kd = 0 - 300 w step 200Ki = 0 - 800 w step 200K = 0 - 500 w step 200B = 5ωn = 6.25 - 10G = 1(Gn1, τn1) = (5, 1) (100, 40) (200, 80)(Gn2, τn2) = (0.025, 1) (0.25, 40) (0.5, 80)Gn3 = 0, 1

Gaussiannoise

+

1

1

2

2

B.S.F- S.B.=0.1-1.5Hz- 8th BW- gain Gn3

Gaussiannoise

+

1) Why do the elderly sway larger? (SfN 2008)

2) Why is COP velocity sensitive to aging? (ISEK 2008)

A B

Page 25: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURP

OSE

PURP

OSE

CO

NC

LUSI

ON

CO

NC

LUSI

ON

Cont

rolli

ng B

alanc

e dur

ing Q

uiet

Stan

ding

via C

o-Co

ntra

ction

in th

e Eld

erly

May

Not

Be A

dvan

tage

ous

To c

ompa

re p

ostu

ral s

way

dur

ing

the

perio

ds w

ith a

nd w

ithou

t the

co-

cont

ract

ion

betw

een

plan

tarfl

exor

s an

d do

rsifl

exor

, to

inve

stig

ate

the

role

of t

he c

o-co

ntra

ctio

n fre

quen

tly o

bser

ved

in th

e el

derly

dur

ing

quie

t sta

ndin

g

- Th

e co

-con

tract

ion

frequ

ently

obs

erve

d du

ring

quie

t st

andi

ng i

n th

e el

derly

doe

s no

t su

cces

sful

ly p

recl

ude

the

incr

ease

d po

stur

al s

way

. Rat

her,

the

co-c

ontra

ctio

n in

duce

s fu

rther

po

stur

al s

way

pro

babl

y du

e to

the

incr

emen

t of c

ontro

lling

para

met

ers.

- Th

e el

derly

sho

w th

e co

-con

tract

ion

as c

ompe

nsat

ing

reac

tions

rat

her

than

to r

educ

e th

e po

stur

al s

way

.

Partn

ers:

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y,

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

Toro

nto

Reh

abili

tatio

n In

stitu

teC

onta

ct: k

.mas

ani@

utor

onto

.ca

web

pag

e: h

ttp:

//ww

w.to

ront

o-fe

s.ca

Subj

ects

: - Y

oung

hea

lthy

subj

ects

: n =

27

(14

fem

ales

), 27

,2±4

.5 y

rs- E

lder

ly h

ealth

y su

bjec

ts: n

= 2

3 (1

2 fe

mal

es),

66.2

±5.0

yrs

Task

: - Q

uiet

sta

ndin

g w

ith e

yes

open

for 9

0 se

c on

a fo

rce

plat

e, 5

tria

ls- S

ittin

g re

st fo

r 30

sec

Mea

sure

men

ts:

- Cen

ter o

f pre

ssur

e (C

OP)

- AP

horiz

onta

l for

ce- E

MG

s fo

r sol

eus

(SO

L), m

edia

l hea

d of

gas

trocn

emiu

s (M

G) a

nd ti

bial

is a

nter

ior (

TA)

Ana

lysi

s:- T

he b

ody

cene

r of m

ass

(CO

M) a

nd it

s ve

loci

ty (C

OM

v) w

ere

estim

ated

usi

ng G

ravi

ty L

ine

Proj

ectio

n M

etho

d (Z

atsi

orsk

y et

al.

1998

).- T

he v

eloc

ity o

f CO

P (C

OPv

) was

als

o ca

lcul

ated

.- T

he b

ody

acce

lera

tion

(AC

C) w

as e

stim

ated

by

divi

ding

the

AP h

oriz

onta

l for

ce b

y th

e bo

dy m

ass.

- Afte

r low

-pas

s fil

terin

g EM

Gs

with

a c

utof

f fre

quen

cy o

f 1 H

z, p

erio

ds w

hen

TA w

as a

ctiv

e (T

A-on

) and

inac

tive

(TA-

off)

wer

e id

entif

ied.

- To

iden

fity

thes

e pe

riods

, we

used

sev

eral

thre

shol

ds b

ased

on

TA a

ctiv

ity d

urin

g si

tting

re

st. T

he th

resh

olds

wer

e th

e av

erag

e of

sitt

ing

rest

+ 3

, 5, 7

, 9, 1

1 ×

SD. I

n th

is p

oste

r, w

e sh

owed

the

resu

lts w

ith s

ittin

g re

st +

3 ×

SD

in m

ost c

ases

.- T

he a

mou

nt o

f pos

tura

l sw

ay a

nd m

uscl

e ac

tiviti

es w

ere

dete

rmin

ed fo

r TA-

on/o

ff us

ing

the

stan

dard

dev

iatio

n du

ring

each

per

iod.

Expe

rimen

t

BA

CK

GR

OU

ND

BA

CK

GR

OU

ND

The

view

s exp

ress

ed in

ths p

oste

r do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

The

auth

ors a

ckno

wle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Prog

ram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io.

Exam

ples

of R

ecor

ding

s1

Effe

ct o

f Non

stat

iona

rity

5

Ref

eren

ces

[1] L

augh

ton

CA,

et a

l. Ag

ing,

mus

cle

activ

ity, a

nd b

alan

ce c

ontro

l: ph

ysio

logi

c ch

ange

s as

soci

ated

with

bal

ance

impa

irmen

t. G

ait P

ostu

re 1

8(2)

: 101

–108

, 200

3.[2

] Pan

zer V

P, B

andi

nelli

S, H

alle

tt M

. Bio

mec

hani

cal a

sses

smen

t of q

uiet

sta

ndin

g an

d ch

ange

s as

soci

ated

with

agi

ng. A

rch

Phys

Med

Reh

abil

76: 1

51–1

57, 1

995.

[3] Z

atsi

orsk

y VM

, Kin

g D

L. A

n al

gorit

hm fo

r det

erm

inin

g gr

avity

line

loca

tion

from

pos

turo

grap

hic

reco

rdin

gs. J

Bio

mec

h 31

: 161

–164

, 199

8.

Mas

ani K

1,2)

, Say

enko

DG

1,2)

, Jon

es M

1), A

be M

O 3

) , Nak

azaw

a K

4) , P

opov

ic M

R1,

2)

1) In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eeri

ng, U

nive

rsity

of T

oron

to, T

oron

to, C

ANAD

A2)

Lyn

dhur

st C

entr

e, T

oron

to R

ehab

ilita

tion

Inst

itute

, Tor

onto

, CAN

ADA

3) R

esea

rch

Cent

er fo

r Adv

ance

d Sc

ienc

e an

d Te

chno

logy

, Uni

vers

ity o

f Tok

yo, T

okyo

, JAP

AN3)

Dep

artm

ent o

f Life

Sci

ence

s, U

nive

rsity

of T

okyo

, Tok

yo, J

APAN

Neur

osci

ence

201

1W

ashi

ngto

n DC

, Nov

12-

16, 2

011

e-m

ail :

k.m

asan

i@ut

oron

to.c

a

In

the

rese

arch

fiel

d of

hum

an b

iped

al s

tanc

e, m

any

stud

ies

have

focu

sed

on th

e co

ntro

l mec

hani

sm o

f the

ank

le

join

t tor

que

durin

g qu

iet s

tand

ing,

sin

ce th

e an

kle

join

t has

the

prim

ary

role

of m

aint

aini

ng c

ente

r of m

ass

(CO

M)

equi

libriu

m d

urin

g st

andi

ng. D

ue to

the

fact

that

the

CO

M is

in fr

ont o

f the

ank

le jo

int d

urin

g th

e na

tura

l sta

ndin

g po

stur

e, a

gra

vity

-indu

ced

torq

ue c

ontin

uous

ly a

ccel

erat

es th

e bo

dy fo

rwar

d fro

m th

e up

right

pos

ition

. The

refo

re, a

co

rrect

ive

ankl

e ex

tens

ion

torq

ue is

con

tinuo

usly

req

uire

d to

res

ist t

he g

ravi

ty e

ffect

and

to e

nsur

e th

at th

e C

OM

re

mai

ns c

lose

to th

e eq

uilib

rium

pos

ition

.

The

ankl

e ex

tens

ors

are

resp

onsi

ble

for

gene

ratin

g th

e co

rrect

ive

ankl

e ex

tens

ion

torq

ue,

sinc

e th

e an

kle

exte

nsor

s sh

ow c

ontin

uous

act

ivity

whe

reas

the

ankl

e fle

xors

are

sile

nt o

r onl

y in

term

itten

tly a

ctiv

e in

mos

t of c

ases

. H

owev

er, i

t has

bee

n re

porte

d th

at th

e el

derly

use

tibi

alis

ant

erio

r (TA

) for

long

er d

urat

ion

and

with

larg

er a

mou

nt

durin

g qu

iet s

tand

ing,

com

pare

d to

the

youn

g (L

augh

ton

et a

l., 2

003;

Pan

zer e

t al.,

199

5). A

s th

e pl

anta

rflex

ors

are

alw

ays

activ

e, th

e an

kle

join

t is

stab

ilized

by

co-c

ontra

ctin

g th

e pl

anta

rflex

ors

and

TA w

hen

TA is

act

ive.

It re

mai

ns

uncl

ear

if th

is c

o-co

ntra

ctio

n pr

eclu

des

grea

ter

post

ural

inst

abilit

y or

if it

is a

com

pens

ator

y re

spon

se t

o ot

her

fact

ors.

- The

re w

ere

sign

ifica

nt d

iffer

ence

s be

twee

n th

e gr

oups

and

bet

wee

n TA

-on

and

-off

as

wel

l as

the

inte

ract

ions

by

2-w

ay

RM

ANO

VA (p

< 0

.05)

, in

all m

easu

res

exce

pt fo

r the

diff

eren

ce b

etw

een

the

grou

ps fo

r CO

Mv

(p =

0.4

94).

- The

eld

erly

sho

wed

mor

e sw

ay o

n al

l po

stur

al s

way

mea

sure

s du

ring

TA-o

n,

whi

le th

e yo

ung

show

ed le

ss s

way

.

- For

mor

e st

atio

nary

mea

sure

s (C

OM

v, C

OPv

, and

AC

C),

ther

e is

a te

nden

cy th

at th

ey fl

uctu

ate

mor

e du

ring

TA-o

n in

bot

h gr

oups

, es

peci

ally,

for t

he s

ubje

cts

with

a la

rger

sw

ay.

- Thi

s re

sult

impl

ies

that

the

co-c

ontra

ctio

n of

the

ankl

e jo

int m

uscl

es in

crea

ses

the

post

ural

sw

ay m

ore

in c

ompa

rison

to th

e pl

anta

rflex

ors’

activ

ity a

lone

, whi

ch c

ould

be

a ca

use

of la

rger

pos

tura

l sw

ay in

the

elde

rly.

812.1

6

1 cm

10s

CO

M

2 cm

/s

ACC

CO

PV

CO

P

CO

Mv

1 cm

/s

1 cm

1 cm

/s2

2 μV

4 μV

2 μ

V

SOL

MG

TA

2 μV

1 μV

1 μV

Youn

gEl

derly

TA-o

nTA

-off

020406080100

%Period of TA-on

3SD

Youn

gEl

derly

5SD

7SD

9SD

11SD

- The

pos

tura

l sw

ay w

as la

rger

in th

e el

derly

com

pare

d to

the

youn

g.- T

he p

erio

ds fo

r TA-

on/o

ff w

ere

iden

tifie

d an

d th

e flu

ctua

tions

of t

he

post

ural

sw

ay a

nd m

uscl

e ac

tiviti

es w

ere

quan

tifie

d.

- The

eld

erly

sho

wed

long

er a

ctiv

ity in

TA

irres

pect

ive

of

the

type

of a

ctiv

ity id

entif

icat

ion

thre

shol

d us

ed.

- TA-

on p

erio

d w

as a

ppro

xim

atel

y 80

-90

% (M

edia

n) in

th

e el

derly

, and

app

roxi

mat

ely

10-2

0 %

in th

e yo

ung.

0.1

cm

1.0

s

TA o

nSD

= 0

.278

TA o

nSD

= 0

.380

CO

P

TA o

nSD

= 0

.808

ACC

TA o

nSD

= 0

.894

5.0

s

0.1

cm

Tim

e Sc

ale

I

ncre

ases

...

Varia

nce

D

ecre

ases

Tim

e Sc

ale

I

ncre

ases

...

Varia

nce

Eq

uiva

lent

!!0.

1 cm

1.0

s5.

0 s

0.1

cm

- The

CO

M a

nd C

OP

have

an

inhe

rent

cha

ract

eris

tic,

i.e.,

it sh

ows

larg

er v

aria

nce

with

long

er d

urat

ion

(not

sta

tiona

ry fo

r a s

hort

dura

tion)

.- T

here

fore

, thi

s re

sult

may

dep

end

on th

e di

ffere

nt

tota

l dur

atio

ns b

etw

een

TA-o

n an

d TA

-off.

- Unl

ike

CO

Mv,

CO

Pv a

nd A

CC

are

mor

e st

atio

nary

.

Dur

atio

ns o

f TA

-on/

-off

2

Post

ural

Sw

ay d

urin

g TA

-on/

off

3

Mus

cle

Act

ivity

dur

ing

TA-o

n/-o

ff4

- For

SO

L an

d M

G, t

here

wer

e si

gnifi

cant

inte

ract

ions

by

2-w

ay R

MAN

OVA

(p <

0.0

5) ,

whi

le th

ere

wer

e no

sig

nific

ant m

ain

effe

cts.

Fo

r TA,

ther

e w

as a

sig

nific

ant d

iffer

ence

bet

wee

n TA

-on

and

-off.

- Lar

ger f

luct

uatio

ns d

urin

g TA

-on

for t

he e

lder

ly s

ugge

st th

at th

e ad

ditio

nal a

ctiv

ity in

the

TA m

ay in

duce

incr

ease

d ac

tivity

in th

e pl

anta

rflex

ors

rela

ted

to p

ostu

ral c

orre

ctio

ns.

Com

paris

on o

f Pos

tura

l Sw

ay b

etw

een

TA-o

n an

d -o

ff6

00.2

0.4

0.6

CO

M[c

m]

Youn

gEl

derly

0

0.2

0.4

0.6

CO

P[c

m]

Youn

gEl

derly

0

0.1

0.2

0.3

CO

Mv

[cm

/s]

Youn

gEl

derly

0

0.5

1.0

1.5

CO

Pv[c

m/s

]

Youn

gEl

derly

0

0.2

0.4

0.6

0.8

1.0

ACC

[cm

/s2 ]

Youn

gEl

derly

0

0.00

05

0.00

1

0.00

15

0.00

2

0.00

25

0.00

3SO

L

0

0.00

1

0.00

2

0.00

3

0.00

4

0.00

5M

G

0

0.00

2

0.00

4

0.00

6TA* T

he b

ars

indi

cate

sta

tistic

al s

igni

fican

ces

by B

onfe

rroni

test

s.

0

0.7

[cm

] 00.

7[c

m]

CO

M

TA-off

TA-o

n0

0.4

[cm

/s] 0

0.4

[cm

/s]

CO

Mv

TA-off

TA-o

n

CO

P

0

0.7

[cm

] 00.

7[c

m]

TA-off

TA-o

n

CO

Pv

0

2.0

[cm

/s] 0

2.0

[cm

/s]

TA-off

TA-o

n

ACC

0

1.2

[cm

/s2 ] 0

1.2

[cm

/s2 ]

TA-off

TA-o

n

TA-o

nTA

-ff

Youn

gEl

derly

Res

ting

Thre

shol

d =

Aver

age+

3SD

TA d

urin

g st

andi

ng

TA-o

n Pe

riods

TA-o

ff Pe

riods

Youn

gEl

derly

Youn

gEl

derly

Youn

gEl

derly

[mV]

[mV]

[mV]

* The

bar

s in

dica

te s

tatis

tical

sig

nific

ance

s by

Bon

ferro

ni te

sts.

TA-o

nTA

-ff

Page 26: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Partners:

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

The views expressed in this poster do not necessarily reflect those of any of the granting agencies.

Rehabilitation Engineering Laboratory Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto Rehabilitation Institute Contact: [email protected] www.toronto-fes.ca

Canadian Institutes of Health Research Instituts de rechere en santé du Canada

Ministry of Health and Long Term Care

! " # $ % & ' ( ) !*

! "*

*

"*

$*+,- +

,-

+,-

+,- +

,

+,

+,-

+,-

+,-

+,.-

!+/

0120

345

5126789! " # $ % & ' ( ) !*

! "*

*

"*

$*+ , ,

+, +

,+,

,

!-./

0120

33+4

5126789! " # $ % & ' ( ) !*

! $*

! #*

! "*

! !*

*

!*

"*

+,-.

+,

+, +

, +, +

,+, +

,+,-

+,-

!,/0

1203

4

5126789

0 500 1000 1500 2000 2500

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

Decrease in Venous Return due to Postural Change is Mitigated by Functional Electrical Stimulation for People with Spinal Cord Injury

T. Yoshida1,2, K. Masani2, D. G. Sayenko1,2, M. Miyatani2, J. A. Fisher3,4, and M. R. Popovic1,2

1 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, CANADA 2 Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, Toronto, CANADA 3 Department of Anaesthesia, University of Toronto, Toronto, CANADA 4 Division of Clinical Investigation and Human Physiology, Toronto General Research Institute, Toronto, CANADA

INTRODUCTION 1) Orthostatic hypotension (OH) is caused by gravitational venous pooling and a

subsequent decrease of the circulating blood volume. 2) OH can induce symptoms of cerebral hypoperfusion (e.g., headache,

lightheadedness, and dizziness), which can disable people from withstanding sitting or standing.

3) People with spinal cord injury (SCI) are susceptible to OH because of their impaired sympathetic cardiovascular control.

4) Functional electrical stimulation (FES) generates dynamic muscle contractions that mimic the skeletal muscle pump.

5) Cyclic passive leg movements can increase stroke volume in people with SCI.

PURPOSE To examine the effects of FES and passive stepping on the cardiovascular response of people with SCI under orthostatic stress. HYPOTHESES 1) FES and passive stepping should independently

induce venous return and mitigate a decrease in arterial pressure.

2) FES with passive stepping should be more effective than FES or passive stepping alone.

Experimental Conditions:

Sustained 70-degree head-up tilt

Passive stepping at 40 steps per minute

Bilateral FES of tibialis anterior, hamstring, quadriceps femoris, and triceps surae muscle

* HUT

STEP

= Tilt

Tilt + Stepping

IFES Tilt FES

DFES

=

= +

Tilt + Stepping = FES +

MATERIALS AND METHODS

Measurements:

Ultrasonography of the inferior vena cava in the transverse plane

Continuous beat-to-beat cardiovascular response Electromyographic (EMG) signals of medial gastrocnemius, tibialis anterior, biceps femoris, and rectus femoris

Participants: •10 participants (6 males) •43.5±10.8 years old, 172±11 cm, and 87.0±20.6 kg

Task Rest HUT Rest STEP Rest IFES Rest DFES

Position Supine Tilted Supine Tilted Supine Tilted Supine Tilted

Duration [Minutes] 10 10 10 10 10 10 10 10

The order of these conditions was randomized for each participant. Protocol:

•SCI at or above T6 level (T6 to C4) •9.90±8.56 years post injury •AIS: 5 A, 3 B, 1 C, and 1 D

CONCLUSIONS 1) FES was more effective than passive stepping in maintaining

stroke volume (SV). 2) FES and passive stepping maintained SV probably by inducing

venous return, as indicated by SBP. 3) FES and passive stepping did not interact synergistically.

ACKNOWLEDGMENT Authors thank Diane Kostka for analyzing the ultrasound images. This study was funded by the Natural Sciences and Engineering Research Council of Canada (Grant #249669), the Toronto Rehabilitation Institute, Ontario Ministry of Health and Long-Term Care, and HOCOMA AG, which supported the EMG measurements and analysis pertinent to this study.

2 Change in Systolic Blood Pressure from Supine ( SBP) 1 Change in Stroke Volume from Supine

( SV)

Main Effects and Interactions 4

Cardiovascular Parameter

FES Passive Stepping

FES Passive Stepping

F(1,9) p F(1,9) p F(1,9) p SV 15.6 0.003* 2.35 0.159 1.31 0.282

SBP 14.3 0.004* 10.9 0.009* 0.542 0.480 HR 7.07 0.026* 0.089 0.772 2.34 0.161

RESULTS

STEP IFES DFES = = =

3 Change in Heart Rate from Supine ( HR)

The work presented in this poster is under review for publication as “Cardiovascular Response of Individuals with Spinal Cord Injury to Dynamic Functional Electrical Stimulation under Orthostatic Stress” in IEEE Transactions on Neural Systems and Rehabilitation Engineering (submitted Nov. 15, 2011).

* Tilt Stepping FES

HUT =

Page 27: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Dat

a C

olle

ctio

n:

Stan

dard

Mea

sure

s •

cfP

WV

(See

cfP

WV

mea

sure

men

ts s

ectio

n)

• A

erob

ic c

apac

ity: V

O2p

eak

(Arm

erg

omet

ry, W

ork

rate

: inc

reas

ed a

t 30

kpm

/min

or 6

0 kp

m/

min

at

one

min

ute

inte

rval

s)

• S

mok

ing

stat

us

• M

etab

olic

syn

drom

e:

Pre

sent

ing

any

thre

e of

the

follo

win

g fiv

e ris

k fa

ctor

s: 1

) ele

vate

d w

aist

circ

umfe

renc

e:

102c

m in

m

ales

, 88

cm in

fem

ales

; 2) e

leva

ted

trigl

ycer

ides

: 1.

70 m

mol

/L o

r dru

g tre

atm

ent f

or e

leva

ted

trig

lyce

rides

; 3) r

educ

ed H

DL-

C: <

1.03

mm

ol/L

in m

ales

, <1.

32 m

mol

/L

in fe

mal

es o

r dru

g t

reat

men

t for

redu

ced

HD

L-C

; 4) e

leva

ted

bloo

d pr

essu

re: S

BP

130m

mH

g or

DB

P 85

mm

Hg

or a

ntih

yper

tens

ive

drug

trea

tmen

t; 5)

ele

vate

d fa

stin

g gl

ucos

e 5.

6mm

ol/L

or d

rug

treat

men

t for

ele

vate

d gl

ucos

e (d

efin

ed in

acc

orda

nce

with

Nat

iona

l Hea

rt,

Lung

, and

Blo

od In

stitu

te/A

mer

ican

Hea

rt A

ssoc

iatio

n)

SCI S

peci

fic M

easu

res

• D

urat

ion

of in

jury

(yea

rs)

• A

ge a

t inj

ury

(yea

rs)

• N

euro

logi

c Le

vel o

f Inj

ury

(NLI

: abo

veT1

: Tet

rapl

egia

, bel

ow T

1: P

arap

legi

a)

• A

SIA

Impa

irmen

t Sca

le (A

IS)

The

Ass

ocia

tions

Bet

wee

n A

erob

ic C

apac

ity a

nd A

rter

ial S

tiffn

ess

in P

eopl

e w

ith C

hron

ic S

pina

l Cor

d In

jury

M

Miy

atan

i1 , C

Moo

re1,

2, K

. Mas

ani1 ,

PI O

h3,4

, MR

Pop

ovic

1,5 ,

and

BC

Cra

ven

1,4

1 Tor

onto

Reh

abili

tatio

n In

stitu

te, S

pina

l Cor

d R

ehab

Pro

gram

; 2D

epar

tmen

t of K

ines

iolo

gy, U

nive

rsity

of W

ater

loo;

3To

ront

o R

ehab

ilita

tion

Inst

itute

, Car

diac

Reh

abili

tatio

n an

d S

econ

dary

Pre

vent

ion

Pro

gram

, 4 D

epar

tmen

t of M

edic

ine,

Uni

vers

ity o

f Tor

onto

, 5In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eerin

g, U

nive

rsity

of T

oron

to;

Obj

ectiv

e To

exp

lore

the

asso

ciat

ions

bet

wee

n ae

robi

c ca

paci

ty (V

o 2pe

ak) a

nd th

e di

agno

stic

thre

shol

d fo

r su

bclin

ical

vas

cula

r end

-org

an d

amag

e (d

efin

ed b

y cf

PW

V v

alue

s 12

00 c

m/s

)[1] a

mon

g ad

ults

w

ith c

hron

ic S

CI.

Ack

now

ledg

emen

ts

Ont

ario

Neu

rotra

uma

Foun

datio

n (O

NF)

Gra

nt #

:200

8-S

CI-P

DF-

692

The

auth

ors

ackn

owle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he

Pro

vinc

ial R

ehab

ilita

tion

Res

earc

h P

rogr

am fr

om th

e M

inis

try o

f Hea

lth a

nd L

ong-

Term

Car

e in

Ont

ario

. R

esul

ts

Met

hods

A

bstr

act

Peo

ple

livin

g w

ith s

pina

l cor

d in

jury

(S

CI)

are

a vu

lner

able

pop

ulat

ion

pron

e to

cor

onar

y ar

tery

di

seas

e (C

AD

) re

sulti

ng i

n hi

gh m

orbi

dity

and

mor

talit

y. A

rteria

l st

iffne

ss a

sses

sed

by p

ulse

w

ave

velo

city

mea

sure

d be

twee

n th

e co

mm

on c

arot

id a

nd f

emor

al a

rterie

s (c

fPW

V)

is a

n es

tabl

ishe

d in

depe

nden

t pre

dict

or o

f CA

D m

orbi

dity

and

mor

talit

y in

the

able

-bod

ied

popu

latio

n.

The

Eur

opea

n S

ocie

ty o

f H

yper

tens

ion

and

the

Eur

opea

n S

ocie

ty o

f C

ardi

olog

y ha

ve d

efin

ed

cfP

WV

val

ues

1200

cm

/s a

s a

diag

nost

ic th

resh

old

for s

ubcl

inic

al v

ascu

lar e

nd-o

rgan

dam

age.

P

rior

stud

ies

have

dem

onst

rate

d th

at a

erob

ic c

apac

ity i

s in

vers

ely

asso

ciat

ed w

ith a

rteria

l st

iffne

ss in

abl

e-bo

died

peo

ple.

How

ever

, the

rel

atio

nshi

p be

twee

n ar

teria

l stif

fnes

s, p

artic

ular

ly

elev

ated

cfP

WV

val

ues

(12

00 c

m/s

), an

d ae

robi

c ca

paci

ty in

peo

ple

with

SC

I ha

s no

t be

en

desc

ribed

. O

bjec

tive:

To

expl

ore

the

asso

ciat

ions

bet

wee

n ae

robi

c ca

paci

ty (

Vo2p

eak)

and

ele

vate

d cf

PW

V v

alue

s (

1200

cm

/s) a

mon

g ad

ults

with

chr

onic

SC

I. M

etho

ds: F

orty

-one

men

and

wom

en w

ith c

hron

ic S

CI (

C2-

T12;

AIS

A-D

; 24

para

pleg

ics

and

17

tetra

pleg

ics;

tim

e po

st in

jury

: 14

.7±1

1.4

yrs;

Age

: 49

.4 ±

13.1

yrs

; H

eigh

t: 17

3.2

± 9.

8cm

; an

d W

eigh

t: 81

.7 ±

17.

6 kg

) pa

rtici

pate

d in

the

stu

dy.

cfP

WV

was

mea

sure

d us

ing

two

Dop

pler

flo

wm

eter

s an

d Vo

2pea

k w

as m

easu

red

by a

rm e

rgom

eter

y. S

ubje

cts

wer

e st

ratif

ied

into

tw

o gr

oups

acc

ordi

ng t

o cf

PW

V v

alue

s (<

1200

cm

/sec

: lo

w c

fPW

V,

1200

cm

/sec

: hi

gh c

fPW

V).

Logi

stic

reg

ress

ion

anal

ysis

was

use

d to

det

erm

ine

the

cont

ribut

ion

of a

erob

ic c

apac

ity a

fter

adju

stm

ent f

or c

onfo

unde

rs (

age,

gen

der,

met

abol

ic s

yndr

ome,

sm

okin

g st

atus

, Neu

rolo

gicl

evel

of

inju

ry (N

LI),

and

AS

IA Im

pairm

ent S

cale

(AIS

) to

Hig

h cf

PW

V. R

esul

ts: A

erob

ic c

apac

ity w

as

sign

ifica

ntly

and

neg

ativ

ely

asso

ciat

ed w

ith c

fPW

V a

fter

adju

stm

ents

with

oth

er r

isk

fact

ors

(r=-

0.38

5, p

<0.0

45).

Afte

r cor

rect

ion

for o

ther

con

foun

ding

par

amet

ers,

aer

obic

cap

acity

was

an

inde

pend

ent

pred

icto

r fo

r hi

gh c

fPW

V (

odds

rat

io =

2.2

0, 9

5% C

I=1.

06–

4.59

, p<

0.03

4).

Con

clus

ion:

Aer

obic

cap

acity

is a

n in

depe

nden

t pre

dict

or o

f hig

h cf

PW

V v

alue

s (

1200

cm

/sec

) am

ong

peop

le w

ith c

hron

ic S

CI.

Furth

er re

sear

ch is

nee

ded

to e

xplo

re w

heth

er im

prov

emen

ts in

ae

robi

c ca

paci

ty w

ill re

duce

arte

rial s

tiffn

ess

and

adve

rse

card

iac

outc

omes

am

ong

peop

le w

ith

chro

nic

SC

I.

r=-0

.515

(p<0

.05)

0

500

1000

1500

2000

2500

0 10

20

30

40

cfPWV (cm/sec)

Vo2p

eak

(ml/k

g/m

in)

Men

Wom

en

cfPW

V vs

. Vo 2

peak

cfP

WV

was

sig

nific

antly

cor

rela

ted

with

Vo 2

peak

. Thi

s re

mai

ned

sign

ifica

nt a

fter c

orre

ctin

g fo

r age

, gen

der,

NIL

(tet

rapl

egia

or p

arap

legi

a), A

IS (A

,B,C

or D

) and

met

abol

ic s

yndr

ome

(p

artia

l r=0

.385

, p<

0.05

).

Adj

uste

d R

elat

ive

Ris

k (R

R) f

or H

igh

cfPW

V by

Vo 2

peak

Acc

ordi

ng to

the

logi

stic

regr

essi

on a

naly

sis,

afte

r con

trolli

ng a

ge, g

ende

r, m

etab

olic

syn

drom

e,

smok

ing,

NLI

and

AIS

, Vo 2

peak

was

a s

igni

fican

t pre

dict

or o

f the

pre

senc

e of

hig

h cf

PW

V c

fPW

V

(RR

= 2

.20,

95%

CI=

1.06

– 4.

59, p

<0.0

34).

Con

clus

ions

A

erob

ic c

apac

ity is

an

inde

pend

ent p

redi

ctor

of h

igh

cfP

WV

val

ues

(12

00 c

m/s

ec)

amon

g pe

ople

w

ith c

hron

ic S

CI.

Furth

er re

sear

ch is

nee

ded

to e

xplo

re w

heth

er im

prov

emen

ts in

aer

obic

cap

acity

w

ill re

duce

arte

rial s

tiffn

ess

and

adve

rse

card

iac

outc

omes

am

ong

peop

le w

ith c

hron

ic S

CI.

Part

icip

ants

:

Ref

eren

ces

[1] M

anci

a G

, De

Bac

ker G

, Dom

inic

zak

A, C

ifkov

a R

, Fag

ard

R, G

erm

ano

G, G

rass

i G, H

eage

rty A

M,

Kje

ldse

n S

E, L

aure

nt S

et a

l: 20

07 G

uide

lines

for

the

man

agem

ent o

f arte

rial h

yper

tens

ion:

The

Tas

k Fo

rce

for

the

Man

agem

ent

of A

rteria

l Hyp

erte

nsio

n of

the

Eur

opea

n S

ocie

ty o

f H

yper

tens

ion

(ES

H)

and

of th

e E

urop

ean

Soc

iety

of C

ardi

olog

y (E

SC

). E

ur H

eart

J 20

07, 2

8(12

):146

2-15

36.

cfPW

V M

easu

rem

ents

:

1) P

ulse

wav

e la

tenc

y (

t) is

m

easu

red

sim

ulta

neou

sly

usin

g tw

o D

oppl

er fl

ow

met

ers

at c

omm

on c

arot

id

(CA

) and

fem

oral

arte

ry (F

A)

FA

Blo

od F

low

6 6.

5 7

7.5

8

Wav

e fo

rm la

tenc

y (

t)

Tim

e (s

ec)

CA

Blo

od F

low

FA D

Aor

tic

2) T

he d

ista

nce

(D) b

etw

een

the

land

mar

ks is

mea

sure

d ov

er th

e su

rface

of t

he b

ody.

CA

3) C

alcu

latio

n of

cfP

WV

:

cfP

WV

(m/s

ec) =

DA

ortic

/ t C

A–F

A

Inde

x of

sub

clin

ical

vas

cula

r end

-org

an d

amag

e (h

igh

cfP

WV

) (T

he E

urop

ean

Soc

iety

of H

yper

tens

ion

and

the

Eur

opea

n S

ocie

ty o

f Car

diol

ogy.

200

7)

cfP

WV

(m/s

ec)

1200

cm/s

ec

!"#"

$%&

'()*)

+",%

"-).-

%/0

"%/"

&%

*%/"

12.3

4%."

5-"'/

)-)/6

)7"5

."*8

)"-9

3/9(

"-):&

).*-"

;<=;

>+"

?"#"

;).-%

/0"@

.3%

&'()

*)+"

;).-%

/0"A

2*".

%*"

&%

*%/"

12.3

4%."

5-"'/

)-)/6

)7"A

)(%B"

*8)"

.)2/%

(%:5

39("

()6)("

9.7"

5.3(

27)-"

*8)"

-93/

9("-

):&).*-";

<=;>

"C(5

:8*"

*%23

8D"'5

."'/5

3E"9

*";<

=;>F

"%/"

7))'"

9.9(

"'/)--

2/)G

D"!,H

".%

"&%

*%/"

12.3

4%."

5-"'/

)-)/6

)7"&

%/)

"*89

."*8

/))"

()6)(-

"A)(%

B"*8

)"&

%*%

/"()6

)("%

.")5

*8)/

"-57

)"%

1"*8

)"A%

70+"

$"#"

I%*%

/"@

.3%

&'()

*)+"

I%*%

/"12

.34%

."5-

"'/)-)

/6)7

"A)(%

B"*8

)".)2

/%(%

:539

("()6

)(JJD

"9.7

"&%

/)"*

89."

89(1

"%1"

E)0"

&2-

3()"

12.3

4%.-"

A)(%

B"*8

)"-5

.:()"

,K@

"896

)"9"

&2-

3()"

:/97

)"()-

-"*8

9."L

"CM

/97)

-"N

=OG+

"H"

#"I%

*%/"

@.3

%&

'()*)

+"I%

*%/"

12.3

4%."

5-"'/

)-)/6

)7"A

)(%B"

*8)"

.)2/%

(%:5

39("

()6)(J

JD"9

.7"9

*"()9

-*"8

9(1"

C89(

1"%

/"&

%/)

G"%

1"E)

0"&

2-3(

)"12

.34%

.-"A)

(%B"

*8)"

,K@

"89

6)"9

"&2-

3()"

:/97

)"P"

L+"

Q"#

",%

/&9(

+"!

Page 28: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Partners:

Canadian Institutes of Health Research Instituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

The views expressed in this poster do not necessarily reflect those of any of the granting agencies.

Rehabilitation Engineering Laboratory Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto Rehabilitation Institute Contact: [email protected] www.toronto-fes.ca

EMG-onset Detection using Change-point Analysis Lev Vaismana,b, Jose Zariffaa,b,c, Kei Masania,b, Milos R. Popovica,b,c

a Institute of Biomaterials and Biomedical Engineering, University of Toronto, b Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, c Edward S. Rogers Sr., Department of

Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

Detecting onset of muscle contraction from an electromyography (EMG) signal recording is an important task for applications in neurology, psychophysiology and EMG-controlled neuroprosthetic devices development.

Introduction

Change-Point Detection Process

Change-point detection problem is to detect abrupt changes in statistical properties of a signal.

Results Sample successful EMG onset detection by change-point analysis for the wrist and trunk muscles are shown in Figure 1.

Figure 1: Sample results for onset detection in A) wrist muscle EMG, B) trunk muscle EMG. Circle marks detected onset

A B

Methods Overview

Conclusions and Future Work

Discussion

To evaluate the quality of the EMG onset estimates, the average absolute differences between the three visual estimates and each of the computer estimates were computed for all used EMG segments within datasets and compared using Kruskal–Wallis ANOVA with 5% significance level. Results in Figure 2.

The change-point detection algorithm can be applied directly to raw signal, automatically “denoises” the signal, and does not require a priori knowledge of signal properties.

The main drawback of change-point detection is that it cannot identify what all the detected changes are due to. For example, it cannot distinguish between the changes due to tremor and true muscle activation, or between multiple changes in the signal, which are not due to muscle activation (common in trunk EMG data), based on the magnitude of detection statistic only. Use of change duration in addition to detection statistic’s magnitude improves this ability.

The change-point analysis method can be used to detect muscle activation in EMG signals. An application to detection of bursts of intermittently active muscle within the recorded continuous activity of other muscles is currently investigated. Additional detection statistics processing to improve the performance is also investigated.

EMG onset is a change-point!

Muscle activation can represent such a change in EMG signal. We apply the change-point detection method [1] to EMG signals to investigate its usefulness for the detection of onset of muscle activity and compare its performance to other common onset detection approaches.

Three methods of onset detection used for comparison with change-point method were: (1) visual detection by three specialists in EMG processing, (2) Hodges and Bui threshold-based algorithm [2], and (3) Donoho’s wavelet-based denoising [3] followed by Hodges and Bui algorithm.

The EMG data was recorded from the extensor carpi radialis muscles, and from the muscles maintaining trunk stability when seating. Details in [4]

References

[1] Moskvina V, Zhigljavsky A. Commun Stat Simul Comput 2003;32(2):319–52. [2] Hodges PW, Bui BH. Electroen Clin Neurophysiol 1996;101:511–9. [3] Donoho DL. IEEE Trans Inform Theory 1995;41(3):613–27. [4] Vaisman L., Zariffa J., Popovic MR. Journal of Electromyography and Kinesiology 20 (2010) 750–760.

Figure 2: Median ranks of average absolute differences (smaller ranks -> better performance for 3 computer methods. Results shown for 9 wrist and 2 trunk EMG datasets .

Page 29: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health ResearchInstituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of CanadaConseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

Partners:

Proof-of-Concept StudyMaterials and Methods• 1 participant (male, able-bodied, age 24)• Measured typing speed and degree of control by asking the participant to type a sentence• Used WiViK on-screen keyboard (http://www.wivik.com/) with two different cursor control approaches:

(1) EGT-controlled cursor positioning and BCI-controlled mouse clicks (EGT-BCI system)

(2) EGT-controlled cursor positioning and “dwell time”- controlled mouse clicks (EGT system only)

Results• The EGT-BCI system resulted in a lower typing speed but allowed the participant a greater degree of control (assessed subjectively)

Rehabilitation Engineering LaboratoryInstitute of Biomaterials and Biomedical Engineering, University of TorontoToronto Rehabilitation InstituteContact: [email protected]

A Novel Assistive Device for Cursor ControlX. Zhao1, E.D. Guestrin2,3, C. Márquez-Chin2,3, S.C. McGie2,3, E. Sanin3,4, and M.R. Popovic2,3

A Combined Eye-Gaze Tracking and Brain-Computer Interface System

Fig. 1 – The input from the EGT and BCI are integrated to control a computer cursor.

1. Division of Engineering Science, University of Toronto; 2. Institute of Biomaterials & Biomedical Engineering, University of Toronto; 3. Toronto Rehabilitation Institute; 4. Department of Mechanical and Industrial Engineering,

University of Toronto

Fig. 2 – The participant controls the position of the cursor with his gaze and generates “click” commands by invoking motor imagery.

The EGT-BCI System• Eye-gaze tracking is the most efficient modality for cursor position control, but the use of “dwell time” to generate click commands can result in unintentional actions (this is known as the “Midas’ touch” problem)• A brain-computer interface may provide a solution to the “Midas’ touch” problem; it can also be used by severely disabled individuals

Eye-gaze tracker (EGT)• Captures images of the user’s eyes using a video camera and two near-infrared light sources• Uses a mathematical model and eye features extracted from the images to calculate the user’s point-of-gaze on a computer screen

Brain-computer interface (BCI)• Uses a surface electrode to receive EEG signals from the user’s left motor cortex• The user generates an “activation” event using motor imagery of the right hand

Eye-gaze tracker

Brain- computer interface

Data integration application

User display

TCP/IP

TCP/IP

Cursor position and click control

Fig. 3 – The participant typed a sentence using the EGT-BCI system, as well as the EGT system with 2 different dwell time settings.

Access modality Resolution Data transfer rate

Risk

Mechanical switch Low Low Low

EMG-based Medium Medium Low

Eye-gaze tracking High High Low

Non-invasive BCIs Low Low Low

Invasive BCIs High High High

BackgroundTarget Population• Severely motor impaired and nonverbal individuals with intact cognitive abilities (e.g., victims of severe spinal cord injury or advanced amyotrophic lateral sclerosis)

Table 1: Common Access Modalities

Page 30: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health Research

Instituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health

and Long Term Care

Partners: Rehabilitation Engineering Laboratory

Institute of Biomaterials and Biomedical Engineering, University of Toronto

Toronto Rehabilitation Institute

Contact: [email protected]

www.toronto-fes.ca

Estimation of Arm Kinematics Using ECoG Recording O.Talakoub1,2, C. Marquez Chin2,3, R. Chen4,5, M. R. Popovic2,3, W. Wong1,2

][][][ jnxnxnRx

Brain–Computer Interfaces (BCIs) interpret brain activities to

user’s intent in order to control an external actuator or

computing device. Because these systems do not depend on

peripheral nerves and muscle activity, they can be used by

individuals with severe motor disabilities caused by

amyotrophic lateral sclerosis, brainstem stroke or other

neuromuscular diseases that make it impossible to move or to

express themselves.

A BCI system identifies and decodes the brain activity related

to the behavioural outcome. While BCI systems can be

implemented using virtually any type of brain activity, most

often they are implemented with electrical signals from the

brain. Electrophysiological (ECoG) signals have already

proven to be suitable for classification and decoding of a

limited set of discrete arm movements. However, real-life

applications often should consider continuous movements.

From a rehabilitation perspective, the ultimate goal is to be

able to offer a technological solution whereby disabled

individuals without the ability to move voluntarily can control

external devices using brain activity. Such an interface must

not only allow for high accuracy of control and a high

communication rate between user and device, but be

relatively non-invasive in its implementation.

In our simple prediction model, we hypothesize that Upper

limb position and velocity are encoded into the brain activity

and the functional relationship between ECoG recordings from

primary motor cortex and upper limb velocity is linear. Thus,

the dynamical behaviour of the arm can be predicted solely

from ECoG recordings from primary motor cortex.

Two important physiological characteristics of the motor

system are taken into consideration. The first is the delay

between the cortical activity and the corresponding motor

output. The lag represents a transmission delay between

cortical motoneuron spike response and emergence of

EMG/kinematic activity. We incorporate the delay into the

linear model as a fitting parameter. The second physiological

characteristic relates to event-related synchronization and

desynchronization in the beta and gamma frequency bands.

These events are used as indicators of movement initiation

and termination.

To evaluate the accuracy of the model, we estimated the arm

velocity of a single trial by using the remaining trials as a

training set. Training and test data were then permuted. The

average Pearson correlation between the estimated velocity

and actual limb velocity was 84%. Examples of the predicted

velocity profiles are illustrated in Figure (1).

Introduction and Method

Fig1 – Arm velocity predicted by described multi-linear

regression model from four ECoG electrodes is shown by solid

line while actual arm velocity is shown by dashed-lines. The

graphs show velocities on x-axis, y-axis, and z-axis,

respectively.

1Department of Electrical and Computer Engineering, University of Toronto 2Institute of Biomaterials and Biomedical Engineering, University of Toronto

3Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute 4Toronto Western Research Institute, University Health Network

5Division of Neurology, Department of Medicine, University of Toronto

Page 31: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Usin

g El

ectr

ocor

ticog

raph

icR

ecor

ding

s to

Estim

ate

Upp

er L

imb

Kin

emat

ics

Om

id T

alak

oub1,

2 , C

esar

Mar

quez

Chi

n2,3 ,

Rob

ert C

hen4,

5 , M

ilos R

. Pop

ovic

2,3 ,

and

Will

y W

ong1,

2

1 Dep

artm

ent o

f Ele

ctric

al a

nd C

ompu

ter E

ngin

eerin

g, U

nive

rsity

of T

oron

to

2 Ins

titut

e of

Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eerin

g, U

nive

rsity

of T

oron

to

3 Reh

abili

tatio

n En

gine

erin

g La

bora

tory

, Tor

onto

Reh

abili

tatio

n In

stitu

te

4 Tor

onto

Wes

tern

Res

earc

h In

stitu

te, U

nive

rsity

Hea

lth N

etw

ork

5 Div

isio

n of

Neu

rolo

gy, D

epar

tmen

t of M

edic

ine,

Uni

vers

ity o

f Tor

onto

Met

hod

Mat

eria

lA

73ye

arol

dm

ale

withParkinson’sd

isea

sean

da

65ye

arol

dfe

mal

ew

ithes

sent

ial

trem

or,

parti

cipa

ted

inth

isst

udy.

The

subj

ects

wer

ere

crui

ted

from

the

Mov

emen

tD

isor

ders

Clin

icof

the

Toro

nto

Wes

tern

Hos

pita

l.Th

eyw

ere

med

icat

edat

the

time

ofte

stin

g.B

oth

parti

cipa

nts

rece

ived

asy

stem

for

dire

ctbr

ain

stim

ulat

ion

for

the

treat

men

tof

trem

or.

This

proc

edur

ebe

gan

with

the

impl

anta

tion

ofsu

bdur

alel

ectro

des.

The

uppe

rlim

bm

ovem

ent

was

reco

rded

bya

six

dim

ensi

onal

elec

trom

agne

tictra

cker

.A

sens

orw

aspl

aced

over

the

dors

alas

pect

ofth

eth

irdm

etac

arpa

lbo

ne.

The

posi

tion

ofth

ispo

int

inth

ree-

dim

ensi

ons

inad

ditio

nto

itsro

tatio

nw

asre

cord

edw

hile

the

parti

cipa

nts

wer

ere

achi

ngto

left,

reac

hing

torig

ht,o

rfle

xing

the

wris

t.

00.

51

1.5

22.

53

3.5

4-8

0

-60

-40

-200

00.

51

1.5

22.

53

3.5

4-0.0

5

00.05

0.1

0.15

aver

aged

EC

oG s

igna

lav

erag

ed v

eloc

ity p

rofil

e

00.

51

1.5

22.

53

3.5

4-5

0

-40

-30

-20

-100

00.

51

1.5

22.

53

3.5

4-0.3

-0.2

-0.1

00.1

0.2

aver

aged

EC

oG s

igna

lav

erag

ed v

eloc

ity p

rofil

e

Neu

ral a

ctiv

ity sp

ectr

al w

arpi

ngTh

esp

ectra

lco

nten

tof

neur

alac

tivity

has

been

show

nto

bein

dica

tive

ofch

ange

sinuser’s

men

tal

stat

ean

din

tent

ion.

The

time

trans

form

atio

nm

apob

tain

byw

arpi

ngth

eki

nem

atic

sis

appl

ied

toth

esp

ectra

ldis

tribu

tion

ofth

eE

CoG

sign

al.T

head

vant

age

isth

atw

arpi

ngpr

eser

ves

the

spec

tralc

onte

ntof

the

sign

al.

Con

clus

ion

Volu

ntar

ilyse

lf-pa

ced

mov

emen

tsar

ein

cons

iste

ntin

time

dura

tion

and

spee

d.Th

us,

the

neur

alev

ent

shou

ldbe

tem

pora

llyal

igne

dfo

rco

mpa

rison

and

stat

istic

alan

alys

ispu

rpos

es.C

onsi

sten

tpa

ttern

sam

ong

the

trial

sar

eid

entif

ied

todi

stin

guis

hth

em

ovem

ent

and

deco

deth

ear

mki

nem

atic

para

met

ers

from

the

corti

cala

ctiv

ities

.

Ele

ctro

phys

iolo

gica

l(E

CoG

)si

gnal

sha

veal

read

ypr

oven

tobe

suita

ble

forc

lass

ifica

tion

and

deco

ding

ofa

limite

dse

tofd

iscr

ete

arm

mov

emen

ts.

How

ever

,re

al-li

feap

plic

atio

nsof

ten

shou

ldco

nsid

erco

ntin

uous

mov

emen

ts.

An

impo

rtant

chal

leng

eto

impl

emen

ta

cont

inuo

usm

ovem

ent

clas

sifie

ris

that

volu

ntar

yar

mm

ovem

ents

are

self-

pace

d(i.

e.,t

hey

can

occu

rata

nym

omen

t)an

d

Tim

e (s

)Ti

me

(s)

We

disc

over

edce

rtain

func

tiona

lre

latio

nshi

pbe

twee

nth

eco

rtica

lre

cord

ings

and

mot

ion

para

met

ers;

e.g.

posi

tion

and

velo

city

.O

urre

sult

show

edth

atth

eup

perl

imb

kine

mat

icpa

ram

eter

sca

nbe

estim

ated

usin

gon

lyE

CoG

reco

rdin

gsfro

mfo

urel

ectro

des

impl

ante

dov

erth

epr

imar

yco

rtex.

This

isw

hile

othe

rsys

tem

sus

ually

cons

ider

agr

idof

mor

eth

an64

elec

trode

sto

map

the

brai

nan

des

timat

eth

em

ovem

ent

kine

mat

icpa

ram

eter

s.U

sing

four

Back

grou

nd a

nd M

otiv

atio

n:U

nder

stan

ding

and

deco

ding

hum

anbe

havi

our

thro

ugh

elec

troph

ysio

logi

cal

mea

nsis

one

ofth

egr

eatc

halle

nges

ofm

oder

nsc

ienc

e.B

rain‒C

ompu

ter

Inte

rface

s(B

CIs

)in

terp

ret

brai

nac

tiviti

estouser’s

inte

ntin

orde

rto

cont

rol

anex

tern

alac

tuat

oror

com

putin

gde

vice

.B

ecau

seth

ese

syst

ems

d ono

tdep

end

onpe

riphe

raln

erve

san

dm

uscl

eac

tivity

,the

yca

nbe

used

byin

divi

dual

sw

ithse

vere

mot

ordi

sabi

litie

sca

used

byam

yotro

phic

late

ral

scle

rosi

s,br

ains

tem

stro

keor

othe

rne

urom

uscu

lar

dise

ases

that

mak

eit

impo

ssib

leto

mov

eor

toex

pres

sth

emse

lves

.

Acl

ass

ofB

CIs

yste

min

volv

esde

codi

ngm

otio

nki

nem

atic

sfro

mbr

ain

sign

als.

The

syst

emid

entif

ies

and

deco

des

the

brai

nac

tivity

rela

ted

toth

ebe

havi

oura

lou

tcom

e.

Neu

ral a

ctiv

ity te

mpo

ral a

lignm

ent

Ifth

em

ovem

ent

kine

mat

icis

lock

edto

the

neur

alac

tiviti

es,

reco

rded

brai

nac

tivity

can

bead

just

edfo

rtem

pora

lvar

iatio

nsin

trodu

ced

byho

wth

eta

skw

aspe

rform

ed.T

hetim

e-al

ignm

enti

sac

hiev

edby

elas

ticde

form

atio

nof

time.

The

Dyn

amic

Tim

eW

arpi

ng(D

TW)

algo

rithm

isex

trem

ely

effic

ient

asa

time-

serie

ssi

mila

rity

mea

sure

whi

chm

inim

izes

the

effe

cts

ofsh

iftin

gan

ddi

stor

tion

intim

eby

allo

win

gel

astic

trans

form

atio

nof

time

serie

s.

Reco

rdin

g ne

ural

acti

vity

an

d ki

nem

atic

Dyna

mic

Tim

e w

arpi

ng

Kine

mati

csFe

atur

e ex

trac

tion

Kine

mati

c es

timati

on

Neu

ron

firin

g pa

ttern

Spec

tral

fe

atur

e ex

trac

tion

Kine

mati

c es

timati

on

Low

-pas

s filte

rKi

nem

atic

estim

ation

Aver

aged

spe

ctro

gram

(lef

t) a

nd a

vera

ged

spec

trogr

am a

fter w

arpi

ng (r

ight

).

Ada

pted

from

Sch

war

tz e

t al.,

200

6

are

pron

eto

trail-

by-tr

ail

varia

bilit

yin

term

sof

initi

atio

ntim

e,du

ratio

n,an

dsp

eed.

We

pres

ent

four

met

hods

toad

just

the

mov

emen

tva

riabi

lity

and

alig

nth

ene

ural

even

tsin

time

orin

time

and

frequ

ency

.Onc

e,th

ene

ural

even

tsar

etim

eal

igne

d,w

eca

nid

entif

yth

ene

ural

proc

esse

sat

tribu

ted

toth

em

ovem

ent

and

unco

vert

here

latio

nshi

pbe

twee

nth

eman

dup

perl

imb

kine

mat

ics.

Tim

e(s)

Frequency(Hz)

0.5

11.

52

2.5

33.

50102030405060708090100

Tim

e(s)

Frequency(Hz)

0.5

11.

52

2.5

33.

50102030405060708090100

Mov

emen

t pha

se

Estim

atio

n of

mov

emen

t kin

emat

ic p

aram

eter

sFr

oma

reha

bilit

atio

npe

rspe

ctiv

e,th

eul

timat

ego

alis

tobe

able

toof

fer

ate

chno

logi

cal

solu

tion

whe

reby

disa

bled

indi

vidu

als

with

out

the

abilit

yto

mov

evo

lunt

arily

can

cont

rol

exte

rnal

devi

ces

usin

gbr

ain

activ

ity.

Inou

rsi

mpl

epr

edic

tion

mod

el,

we

hypo

thes

ize

that

Upp

erlim

bpo

sitio

nan

dve

loci

tyar

een

code

din

toth

ebr

ain

activ

ityan

dth

efu

nctio

nal

rela

tions

hip

betw

een

EC

oGre

cord

ings

from

M1

and

uppe

rlim

bve

loci

tyis

linea

r.Th

us,

the

dyna

mic

albe

havi

our

ofth

ear

mca

nbe

pred

icte

dso

lely

from

EC

oGre

cord

ings

from

prim

ary

mot

orco

rtex

(M1)

.

reco

rdin

gsi

tes

dram

atic

ally

sim

plifi

esth

eB

CIs

yste

mde

sign

and

mak

esth

esy

stem

mor

efe

asib

lefro

men

gine

erin

gan

dcl

inic

alpe

rspe

ctiv

es.

Itis

antic

ipat

edth

atth

esy

stem

will

bein

tegr

ated

with

non-

inva

sive

reco

rdin

gm

etho

dslik

eE

EG

.Ifs

uch

para

digm

can

bede

ploy

edan

dst

anda

rdiz

ed,i

tope

nsa

path

toa

new

gene

ratio

nof

reha

bilit

atio

nan

dm

ovem

entr

esto

ratio

nde

vice

s.

Page 32: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Miy

atan

i M1 ,

Toto

sy d

e Ze

petn

ek J

O2 ,

Mas

ani M

1 , D

elpa

rte J

J1, P

opov

ic M

R1,

3 , C

rave

n B

C1,

4

1 Lyn

dhur

st c

ente

r, To

ront

o R

ehab

ilita

tion

Inst

itute

; 2D

epar

tmen

t of K

ines

iolo

gy, M

cMas

ter U

nive

rsity

; 3In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eerin

g,

Uni

vers

ity o

f Tor

onto

; 4D

epar

tmen

t of M

edic

ine,

Uni

vers

ity o

f Tor

onto

Acu

te E

ffect

s of

Pas

sive

Sta

ndin

g an

d W

hole

Bod

y Vi

brat

ion

on A

rter

ial S

tiffn

ess

AB

STR

AC

T Th

e pu

rpos

e of

this

stu

dy w

as to

inve

stig

ate

the

acut

e ef

fect

s of

Who

le b

ody

vibr

atio

n (W

BV

) with

pa

ssiv

e st

andi

ng (

PS

) on

arte

rial

stiff

ness

in

able

-bod

ied

indi

vidu

als.

Thi

rteen

abl

e-bo

died

in

divi

dual

s (2

wom

en, a

ge: 2

4.6±

7.2

yrs)

per

form

ed W

BV

with

PS

(WB

V-tri

al) a

nd P

S a

lone

(PS

-tri

al)

on s

epar

ate

days

. The

WB

V-tri

al c

onsi

sted

of 5

-set

of 4

-min

vib

ratio

n w

ith in

ter-

set r

estin

g pe

riods

of 1

min

eac

h. In

the

PS

-tria

l, su

bjec

ts p

assi

vely

sto

od fo

r 25m

in. A

rteria

l stif

fnes

s (A

ortic

P

ulse

Wav

e Ve

loci

ty, a

PW

V)

was

mea

sure

d at

the

base

line,

20m

in a

nd 6

0min

afte

r bo

th tr

ials

. aP

WV

sig

nific

antly

dec

reas

ed a

t 20

-min

and

rec

over

ed t

o th

e ba

selin

e at

60-

min

in

both

the

W

BV-

trial

, and

PS

-tria

l (P

=0.0

1, 2

way

repe

ated

mea

sure

AN

CO

VA w

ith c

ovar

iate

s of

hea

rt ra

te).

Ther

e w

as n

o tri

al b

y tim

e in

tera

ctio

n. T

he r

esul

ts s

ugge

st t

hat

PS

itse

lf m

ay b

e fe

asib

le a

s a

ther

apy

to i

mpr

ove

arte

rial

stiff

ness

. M

ore

rese

arch

with

oth

er W

BV

pro

toco

ls a

re n

eede

d to

ex

amin

e th

e ef

fect

of W

BV

on

arte

rial s

tiffn

ess.

Con

tact

: miy

atan

i.mas

ae@

toro

ntor

ehab

.on.

ca

INTR

OD

UC

TIO

N

• In

crea

sed

arte

rial s

tiffn

ess

is a

n es

tabl

ishe

d co

rona

ry a

rtery

dis

ease

(C

AD

) ris

k am

ong

able

-bod

ied

peop

le. E

xerc

ise

redu

ces

arte

rial s

tiffn

ess

and

CA

D re

late

d m

orta

lity

• W

BV

exe

rcis

e de

crea

ses

arte

rial s

tiffn

ess

(Ots

uki e

t al.

2008

) in

able

-bod

ied

peop

le.

• A

mon

g in

divi

dual

s w

ith s

pina

l co

rd i

njur

y (S

CI)

pass

ive

stan

ding

(P

S)

with

an

aid

of

stan

ding

fra

me

has

tradi

tiona

lly b

een

reco

mm

ende

d as

par

t of

the

rape

utic

exe

rcis

e pr

ogra

ms

to m

aint

ain

the

heal

th.

• W

BV

with

PS

usi

ng a

sta

ndin

g fra

me

may

be

bene

ficia

l as

an

alte

rnat

e ex

erci

se t

o de

crea

se a

rteria

l stif

fnes

s in

dis

able

d pe

ople

suc

h as

peo

ple

with

SC

I.

• Th

e pu

rpos

e of

this

stu

dy w

as to

inve

stig

ate

the

effe

cts

of W

BV

with

PS

on

arte

rial s

tiffn

ess

in h

ealth

y yo

ung

men

and

wom

en o

n ao

rtic

PW

V.

RES

ULT

S (a

PWV)

• 

A tw

o-w

ay r

epea

ted

mea

sure

s A

NO

VA d

id n

ot r

evea

l an

y si

gnifi

cant

mai

n ef

fect

s or

in

tera

ctio

n fo

r aP

WV

(Fig

ure

4). A

mai

n ef

fect

for t

ime

appr

oach

ed s

igni

fican

ce ( p

=0.0

65).

• W

hen

cont

rolli

ng f

or H

R, A

NV

OC

A re

veal

ed t

hat

ther

e w

as a

sig

nific

ant

mai

n ef

fect

for

tim

e (p

=0.0

06).

Pos

t ho

c an

alys

es r

evea

led

that

the

sou

rce

of t

he e

ffect

was

due

to

subj

ects

hav

ing

a si

gnifi

cant

dec

reas

e in

PW

V 2

0 m

inut

es fo

llow

ing

stan

ding

whe

ther

or

not t

hey

rece

ived

vib

ratio

n (F

igur

e 5)

. aP

WV

no

long

er d

iffer

ed fr

om b

asel

ine

60m

inut

es

post

sta

ndin

g.

CO

NC

LUSI

ON

• 

WB

V +

PS

and

PS

alo

ne i

mpr

oved

arte

rial

stiff

ness

. Th

e st

udy

resu

lts s

ugge

st t

hat

pass

ive

stan

ding

may

be

used

as

a th

erap

y to

redu

ce a

rteria

l stif

fnes

s.

MET

HO

DS

Subj

ects

• 

Ele

ven

mal

es a

nd tw

o fe

mal

es (A

ge: 2

4.6

± 7.

2 yr

s; H

eigh

t: 17

1.6

± 7.

9 cm

; Wei

ght:

64.5

±

12.2

kg)

Prot

ocol

(Fig

ure

1)

• S

ubje

cts

parti

cipa

ted

in tw

o se

ssio

ns (

one

WB

V a

nd 1

PS

) fo

r 25

min

utes

follo

win

g a

30

min

ute

rest

per

iod

• O

utco

me

mea

sure

s w

ere

mea

sure

d at

bas

elin

e, 2

0 m

inut

es p

ost-v

ibra

tion,

and

60

min

utes

pos

t vib

ratio

n

Out

com

e M

easu

res

• H

eart

rate

(H

R),

syst

olic

blo

od p

ress

ure

(SB

P),

dias

tolic

blo

od p

ress

ure

(DB

P)

wer

e m

easu

red.

Mea

n bl

ood

pres

sure

(MB

P) w

as c

alcu

late

d as

[DB

P+

1/3(

SB

P-D

BP

)].

• A

ortic

pul

se w

ave

velo

city

(aP

WV

) was

mea

sure

d as

an

inde

x of

arte

rial s

tiffn

ess

(Tan

aka

et a

l. 19

98)

WB

V • 

Mod

ified

W

AVE

P

ro

plat

form

(W

hole

-bod

y A

dvan

ced

Vibr

atio

n E

xerc

ise,

W

inds

or,

Can

ada)

with

Eas

ySta

nd 5

000

(Fig

ure

2). S

ubje

cts

wer

e ex

pose

d to

5 s

ets

of 4

min

25H

z,

1.2m

m p

eak-

to-p

eak

disp

lace

men

t vib

ratio

n w

ith k

nees

ext

ende

d.

Sup

ine

Res

t (3

0min

) W

BV

or P

S

(25m

in: 4

min

ON

1m

in O

FF x

5se

ts)

Sup

ine

Res

t (6

0min

)

MET

HO

DS

Mea

sure

men

t of a

PWV

• Ti

me

(∆t)

was

mea

sure

d us

ing

two

iden

tical

non

-inva

sive

tran

scut

aneo

us D

oppl

er

flow

met

ers

(Sm

artd

op50

, Had

eco,

Inc.

, Jap

an)

(Fig

ure

3a).

The

aver

age

of a

t lea

st

20 w

avef

orm

s w

ere

used

to c

alcu

late

∆t.

• D

ista

nce

(D)

was

mea

sure

d ov

er t

he s

urfa

ce o

f th

e bo

dy u

sing

a m

etal

tap

e m

easu

re (F

igur

e 3b

) • 

aPW

V (c

m/s

ec) =

D / ∆t

Ana

lysi

s • 

Two-

way

repe

ated

mea

sure

s an

alys

es o

f var

ianc

e (A

NO

VA) w

ith tw

o w

ithin

-sub

ject

va

riabl

es (C

ondi

tion:

PS

, WB

V;

time:

0, 2

0, 6

0) w

ere

cond

ucte

d to

ana

lyze

aP

WV

• 

Ana

lyse

s of

cov

aria

nce

(AN

CO

VA)

adju

stin

g fo

r ef

fect

s of

HR

and

MB

P w

ere

also

co

nduc

ted

Figu

re 1

. Out

com

e m

easu

res

wer

e ta

ken

at b

asel

ine,

20m

in p

ost-v

ibra

tion,

and

60m

in p

ost-v

ibra

tion.

Figu

re 2

. S

ubje

cts

wer

e ex

pose

d to

WB

V

with

a m

odifi

ed W

AVE

Pro

pla

tform

fitt

ed

with

an

Eas

ySta

nd 5

000.

Figu

re 3

. (a)

mea

sure

men

t of w

ave

form

late

ncy

(∆t);

(b)

mea

sure

men

t of

dis

tanc

e (D

) be

twee

n ca

rotid

arte

ry (C

A) a

nd fe

mor

al a

rtery

(FA

)

The

auth

ors

ackn

owle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der

the

Pro

vinc

ial R

ehab

ilita

tion

Res

earc

h P

rogr

am fr

om th

e M

inis

try o

f Hea

lth a

nd L

ong-

Term

Car

e in

Ont

ario

. The

vie

ws

expr

esse

d do

not

nec

essa

rily

refle

ct th

ose

of th

e M

inis

try.”

Tabl

e 1.

Blo

od p

ress

ure

and

hear

t rat

e be

fore

and

afte

r tria

ls (M

ean±

SD).

* p<0

.05

vs b

asel

ine.

-60

-40

-20020406080

Bas

elin

eP

ost 2

0min

Pos

t 60m

in

aPWV (residuals of HR)

Figu

re 5

. W

hen

cont

rolli

ng H

R,

aPW

V w

as s

how

n to

sig

nific

antly

dec

reas

e 20

min

pos

t st

andi

ng

rega

rdle

ss o

f PS

or W

BV

con

ditio

n. T

he e

ffect

s w

as n

o lo

nger

pre

sent

60m

in p

ost s

tand

ing.

RES

ULT

S (B

P an

d H

R)

REF

EREN

CES

• 

Ots

uki e

t al.

Act

a P

hysi

ol 1

94(3

):189

-94,

200

8

• Ta

naka

et a

l. A

rterio

scle

r Thr

omb

Vasc

Bio

l. 18

(1):1

27-3

2, 1

998

DIS

CU

SSIO

N

• W

BV

+ P

S a

nd P

S a

lone

red

uced

arte

rial

stiff

ness

, al

thou

gh t

he m

echa

nism

s re

mai

ns

uncl

ear.

We

spec

ulat

e th

at t

he a

cute

red

uctio

ns o

f ar

teria

l st

iffne

ss a

fter

PS

may

be

asso

ciat

ed w

ith t

he a

rteria

l fun

ctio

nal c

hang

es (

i.e.

endo

thel

ial f

unct

ion)

due

to

incr

ease

d bl

ood

volu

me

in lo

wer

bod

y.

• M

ore

rese

arch

with

oth

er W

BV

pro

toco

l (i.

e. D

urat

ion,

fre

quen

cy a

nd a

mpl

itude

) is

de

finite

ly n

eede

d to

exa

min

e th

e ef

fect

of W

BV

on

arte

rial s

tiffn

ess.

D (c

m) C

A FA

6 6.

5 7

7.5

8

FA

∆t (s

ec)

Tim

e (s

ec)

CA

(a)

(b)

Bas

elin

ePo

st 2

0 m

inPo

st 6

0 m

inPS

119

± 8

115

± 8

116

± 11

WB

V11

9 ±

1311

7 ±

1011

4 ±

7

PS88

± 9

85 ±

888

± 1

0W

BV

87 ±

12

88 ±

10

83 ±

12

PS73

± 1

171

± 9

75 ±

12

WB

V72

± 1

274

± 1

168

± 1

5

PS63

± 1

060

± 1

058

± 7

*W

BV

61 ±

858

± 8

58 ±

7

SBP

(mm

Hg)

MB

P (m

mH

g)

DB

P (m

mH

g)

HR

(bea

ts/m

in)

500

600

700

800

900

1000

1100

Bas

elin

eP

ost 2

0min

Pos

t 60m

in

aPWV (cm/sec)

500

600

700

800

900

1000

1100

Bas

elin

eP

ost 2

0min

Pos

t 60m

in

aPWV (cm/sec)

Indi

vidu

als

valu

esM

ean

PS

WBV

Figu

re 4

. Raw

aP

WV

sco

res

for s

ubje

cts

durin

g th

e P

S (l

eft)

and

WB

V c

ondi

tions

(rig

ht).

Bas

elin

e 2

0min

pos

t 6

0min

pos

t

*

Page 33: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Backg

rou

nd

To

in

ves

tig

ate

the

rela

tio

nsh

ip

bet

wee

n

seru

m

25

(OH

)D

lev

els

and

b

on

e

healt

h

ou

tco

mes

(vB

MD

, co

rtic

al

thic

kn

ess

, an

d

trab

ecu

lar

stru

ctu

re

par

amet

ers)

fro

m p

QC

T s

can

s o

f th

e ti

bia

in

in

div

idu

als

wit

h c

hro

nic

SC

I.

Pu

rpo

se

Meth

od

s

Stu

dy

Des

ign

& S

etti

ng

: C

ross

-sec

tio

nal

; T

oro

nto

Reh

ab,

Ly

nd

hu

rst

Cen

tre

and

Mc M

aste

r U

niv

ersi

ty

Pa

rtic

ipa

nts

: 4

0 a

du

lts

wit

h c

hro

nic

SC

I (

C2

-T1

2 A

IS A

-D)

Ass

essm

ent

Tec

hn

iqu

es &

Ou

tco

mes

:

1.

Ser

um

25

(OH

)D (

nm

ol/

L);

Dia

So

rin

LIA

ISO

CL

IA

Vit

amin

D s

tatu

s w

as c

lass

ifie

d a

s:

• 

Su

ffic

ien

t (≥

75

nm

ol/

L)

• 

Insu

ffic

ien

t 2

(5

0-7

4 n

mo

l/L

)

• 

Def

icie

nt

(<5

0 n

mo

l/L

)

2.

Bo

ne

qu

alit

y o

utc

om

es;

Str

aTec

XC

T 2

00

0 p

QC

T

• 

4%

ti

bia

tr

abec

ula

r v

BM

D

(mg

/cm

3),

co

nn

ecti

vit

y

(no

des

),

mea

n h

ole

siz

e (m

m2),

max

imu

m h

ole

siz

e (m

m2)

• 

66

% t

ibia

vB

MD

(m

g/c

m3),

co

rtic

al t

hic

kn

ess

(mm

) A

na

lysi

s:

Sp

earm

an

corr

elat

ion

s w

ere

use

d

to

asse

ss

the

asso

ciat

ion

s

bet

wee

n 2

5(O

H)D

an

d b

on

e q

ual

ity

ou

tco

mes

. C

orr

elat

ion

s w

ere

des

crib

ed

as:

no

(r

=0

.0-0

.19

),

wea

k

(r=

0.2

-0.3

9),

m

od

erat

e

(r=

0.4

-0.6

9),

st

ron

g

(r=

0.7

-1.0

) as

soci

atio

ns

and

p

<0

.05

was

co

nsi

der

ed s

ign

ific

ant.

Ta

ble

1. P

arti

cip

ant

Ch

arac

teri

stic

s

SC

I-1

SC

I-4

SC

I-3

SC

I-2

1. 

Ese

r P,

Sch

iess

l H

, W

illn

ecker

J.

Bone

loss

and s

tead

y s

tate

aft

er s

pin

al c

ord

inju

ry:

a cr

oss

sect

ional

stu

dy u

sing p

QC

T. J

Musc

ulo

skel

et N

euro

nal

Inte

ract

. 2004 J

un;

4(2

): 1

97-8

.

2. 

Ese

r P,

Fro

tzle

r A

, Z

ehnder

Y,

Den

oth

J.

Fra

cture

thre

shold

in t

he

fem

ur

and t

ibia

of

peo

ple

wit

h s

pin

al c

ord

inju

ry a

s det

erm

ined

by p

erip

her

al q

uan

tita

tive

com

pute

d t

om

ogra

phy.

Arc

h P

hys

Med

Reh

abil

. 2005 M

ar;

86(3

): 4

98-5

04.

3. 

Laz

o M

G,

Shir

azi

P, S

am M

, G

iobb

ie-H

urd

er A

, B

lacc

onie

re M

J, M

upp

idi

M.

Ost

eop

oro

sis

and r

isk o

f fr

actu

re i

n m

en w

ith s

pin

al c

ord

inju

ry. Spin

al

Cord

. 2001 A

pr;

39(4

): 2

08-1

4.

4. 

Bau

man

WA

, Z

hong Y

-G,

Sch

war

tz E

. V

itam

in D

def

icie

ncy

in

vet

eran

s w

ith ch

ronic

spin

al c

ord

inju

ry. M

etaboli

sm. 1995;

44(1

2):

1612-1

616.

5. 

Lau

reta

ni

F,

Ban

din

elli

S,

Russ

o C

R,

Mag

gio

M,

Di

lori

o A

, C

her

ub

ini A

, M

aggio

D,

Ced

a

GP,

Val

enti

G,

Gura

lnik

JM

, F

erru

cci

L.

Corr

elat

es o

f b

one

qual

ity i

n o

lder

per

sons.

Bone.

2006;

39(4

): 9

15-9

12.

SC

I-B

CO

N-1

C

ON

-2

Ex

ten

siv

e su

ble

sio

nal

bo

ne

loss

occ

urs

fo

llo

win

g S

CI1

, re

sult

ing

in

a

hig

h

frag

ilit

y

frac

ture

su

scep

tib

ilit

y2.

Cu

rren

t g

uid

elin

es

for

det

erm

inin

g

frac

ture

ris

k a

re u

nsu

itab

le f

or

the

SC

I p

op

ula

tio

n3.

Iden

tifi

cati

on

of

risk

fact

ors

ass

oci

ated

wit

h b

on

e lo

ss m

ay h

elp

dis

tin

gu

ish

bet

wee

n i

nd

ivid

ual

s

wit

h S

CI

wh

o f

ract

ure

an

d t

ho

se w

ho

do

no

t fr

actu

re.

Vit

amin

D i

nta

ke

is a

mo

dif

iab

le f

acto

r th

at c

ou

ld c

han

ge

frac

ture

ris

k

afte

r S

CI4

. P

erip

her

al q

uan

tita

tiv

e co

mp

ute

d t

om

og

rap

hy

(p

QC

T)

allo

ws

for

char

acte

riza

tio

n o

f ch

ang

es i

n v

BM

D a

nd

bo

ne

stru

ctu

re;

ho

wev

er n

o p

rio

r

wo

rk h

as e

xp

lore

d t

he

rela

tio

nsh

ips

bet

wee

n s

eru

m v

itam

in D

sta

tus

and

low

er e

xtr

emit

y t

ibia

vB

MD

or

stru

ctu

re v

aria

ble

s in

th

e S

CI

pop

ula

tio

n.

• 

Th

ere

wer

e n

o s

ign

ific

ant

asso

ciat

ion

s b

etw

een

ser

um

25

(OH

)D l

evel

wit

h

trab

ecu

lar

vB

MD

an

d

trab

ecu

lar

stru

ctu

re

ou

tco

mes

in

in

div

idu

als

wit

h

chro

nic

SC

I, c

on

trar

y t

o f

ind

ing

s in

th

e n

on

-SC

I p

op

ula

tio

n5.

• 

Th

ere

was

a w

eak

neg

ativ

e co

rrel

atio

n (

r=-0

.22

7,

p=

0.1

89

) b

etw

een

ser

um

25

(OH

)D a

nd

6

6%

tib

ia c

ort

ical

th

ick

nes

s,

wh

ich

was

no

t si

gn

ific

ant.

• 

Lim

itat

ion

s o

f th

is s

tud

y i

ncl

ud

e: s

mal

l sa

mp

le s

ize,

rel

ativ

e im

pai

rmen

t

ho

mo

gen

eity

, d

ura

tio

n o

f in

jury

bia

s an

d s

ing

le t

ime

po

int

of

dat

a co

llec

tio

n.

•  P

rosp

ecti

ve

stu

dy

of

the

asso

ciat

ion

s b

etw

een

bo

ne

qu

alit

y a

nd

25

(OH

)D

stat

us

ov

er t

ime

in a

lar

ger

co

ho

rt o

f in

div

idu

als

may

fac

ilit

ate

iden

tify

ing

tho

se f

or

wh

om

:

• 

Th

erap

euti

c ra

ng

e v

itam

in D

en

han

ces

bo

ne

arch

itec

ture

th

ereb

y

pro

vid

ing

fra

ctu

re p

rote

ctio

n

• 

In

suff

icie

nt

lev

els

enab

le f

ract

ure

ris

k p

red

icti

on

.

Ser

um

25(O

H)D

Lev

els

an

d T

ibia

Volu

met

ric

Bon

e M

iner

al

Den

sity

(vB

MD

) in

Ch

ron

ic S

pin

al

Cord

In

jury

(S

CI)

K H

um

mel

1,2, B

C C

raven

2,3, L

Th

ab

an

e4, JD

Ad

ach

i4, A

Pap

aio

an

nou

4, N

McC

art

ney

4, M

R P

op

ovic

2,3, L

M G

ian

gre

gori

o1

,2,4

1U

niv

ersi

ty o

f W

ater

loo,

2T

oro

nto

Reh

abil

itat

ion I

nst

itute

, 3U

niv

ersi

ty o

f T

oro

nto

, 4M

cMas

ter

Univ

ersi

ty

Resu

lts

Dis

cu

ssio

n

Refe

ren

ces

Ackn

ow

led

gem

en

ts

Ma

le!

Fem

ale

!T

ota

l!

To

tal

n!

32

!8

!4

0!

Ag

e (y

ears

) !

52

11

.8)!

50

14

.1)!

51

12

.0)!

Mo

tor

Co

mp

lete

Pa

rap

leg

ia (

n)!

16

!4

!2

0!

Mo

tor

Inco

mp

lete

Pa

rap

leg

ia (

n)!

3!

2!

5!

Mo

tor

Co

mp

lete

Tet

rap

leg

ia (

n)!

6!

0!

6!

Mo

tor

Inco

mp

lete

Tet

rap

leg

ia (

n)!

7!

2!

9!

Tim

e p

ost

in

jury

(y

ears

) !

15

10

.8)!

15

9.3

)!1

5 (

±1

0.0

)!

Sp

earm

an

Co

rrel

ati

on

wit

h S

eru

m 2

5(O

H)D

!

Mea

n (

± S

D)

N!

r!p

va

lue!

4%

Tib

ia S

ite

Tra

bec

ula

r v

BM

D (

mg

/cm

3)!

14

2.6

51

.4)

36

!-0

.10

9!

0.5

35

!

Co

nn

ecti

vit

y I

nd

ex (

no

des

/un

it o

f co

nn

ecte

d n

etw

ork

)!0

.18

9 (

±0

.07

5)

15

!0

.03

6!

0.9

00

!

Mea

n H

ole

Siz

e B

etw

een

Tra

bec

ula

e (m

m2)!

7.8

5 (

±1

0.6

2)

15

!0

.03

2!

0.9

10

!

Max

imu

m H

ole

Siz

e B

etw

een

Tra

bec

ula

e (m

m2)!

62

8.2

7 (

±3

27

.41

) 1

5!

0.0

14

!0

.96

0!

66

% T

ibia

Sit

e

Sh

aft

vB

MD

(m

g/c

m3)!

10

80

.3 (

±5

6.8

) 3

4!

-0.1

76

!0

.311

!

Sh

aft

Co

rtic

al T

hic

kn

ess

(mm

)!3

.18

1.0

8)

34

!-0

.22

7!

0.1

89

!

Ta

ble

2.

(lef

t) S

um

mar

y o

f

trab

ecu

lar

an

d

co

rtic

al

bo

ne

hea

lth

o

utc

om

es an

d

Sp

earm

an c

orr

elat

ion

s w

ith

seru

m 2

5(O

H)D

lev

el

Fig

ure

2

. (a

bo

ve)

L

inea

r

rela

tio

nsh

ip

bet

wee

n

66

%

tib

ia c

ort

ical

th

ick

nes

s an

d

se

rum

2

5(O

H)D

le

ve

l

(r=

-0.2

27

, p

=0

.18

9)

0.0

10

.0

20

.0

30

.0

40

.0

50

.0

60

.0

70

.0

80

.0

90

.0

10

0.0

Vit

am

in D

Sta

tus

Su

ffic

ien

t (≥

75

nm

ol/

L)

Insu

ffic

ien

t (5

0-7

4 n

mo

l/L

)D

efi

cie

nt

(<5

0 n

mo

l/L

)% Population ±95% Confidence

Fig

ure

1.

(ab

ov

e) P

erce

nt

of

coh

ort

(N

=4

0)

± 9

5%

CI

gro

up

ed b

y v

itam

in

D s

tatu

s.

62

.5 ±

15

%

25

.0 ±

13

%

12

.5 ±

10

%

0.0

1.0

2.0

3.0

4.0

5.0

6.0

050

100

150

200

250

66% Tibia Cotical Thickness (mm)

Ser

um

25

(OH

)D (

nm

ol/

L)r

= -

0.2

27

p =

0.1

89

This

re

sear

ch

was

fu

nded

b

y

the

Onta

rio

Neu

rotr

aum

a F

oundat

ion

(Gra

nt

#:

2009-S

CI-

PH

D-6

84),

the

Can

adia

n I

nst

itute

s fo

r H

ealt

h R

esea

rch (

Gra

nt

#:

177254),

and t

he

Sp

inal

Cord

Inju

ry S

olu

tions

Net

work

.

Page 34: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

• W

hole

-bod

y vi

brat

ion

(WBV)

is a

new

the

rapy

use

d fo

r im

prov

ing

mus

cle

stre

ngth

, en

dura

nce,

po

wer

an

d bon

e m

iner

al

den

sity

(B

MD

) in

an

imal

s,

pos

t m

enop

ausa

l w

omen

, ba

riat

ric

pers

ons,

elit

e at

hlet

es

and

child

ren

with

neu

rolo

gica

l im

pairm

ents

.

• Alth

ough

pop

ular

in

man

y re

habi

litat

ion

sett

ings

, th

e us

abili

ty

of

WBV

amon

g pa

tient

s w

ith

spin

al

cord

in

jury

(SCI)

is u

nkno

wn.

• Age

: 20

–50y

rs;W

eigh

t:68

–115

kg;

Hei

ght;

168–

188c

m

• SCI:

n=

8 (C

4-L2

AIS

A-D

); N

on-S

CI:

n=

10

B.  Catharin

e  Craven

   MD,  2,

3     Step

hanie  C.  Hadi,1  Ju

de  J.  Delparte  MSc,2  Milad  Aliza

deh-­‐Meghrazi    MAS

c,2,3  Lora  M.  G

iangregorio

 PhD

1 ,  Alan  R.  M

orris  PhD

,  4  Sande

r  L.  H

itzig  PhD

,2    M

ilos  R

.  Pop

ovic    PhD

,2  ,3  

                                                          1  University

 of  W

aterloo,  2  To

ronto  Re

habilitaL

on  InsLtute,  3  University

 of  T

oron

to  4  Arcon  Engine

ering  

• Th

ere

wer

e no

ove

rall

differ

ence

in

the

num

ber

of

posi

tive

(115

) or

neg

ativ

e (1

04)

com

men

ts r

epor

ted

• SC

I su

bjec

ts

repo

rted

si

gnifi

cant

ly

mor

e po

sitive

st

atem

ents

(81

) th

an n

egat

ive

stat

emen

ts (

34

• N

on-S

CI

subj

ects

rep

orte

d si

gnifi

cant

ly m

ore

nega

tive

stat

emen

ts (

74)

than

pos

itive

sta

tem

ents

(30

)

• Th

e pa

ram

eter

co

mbi

natio

ns

gene

ratin

g th

e m

ost

nega

tive

com

men

ts

wer

e W

AVE

high

, 14

0°,

25H

z,

and

WAV

E hi

gh,

160°

, 25

Hz

and

35H

z

• Th

e pa

ram

eter

co

mbi

natio

ns

gene

ratin

g th

e m

ost

posi

tive

repo

rts

wer

e: W

AVE

low

, 14

0°,

35H

z/45

Hz,

an

d W

AVE

low

, 16

0°,

25H

z

The

view

s ex

pres

sed

in

this

po

ster

do

no

t ne

cess

arily

ref

lect

tho

se o

f an

y of

the

gra

ntin

g ag

enci

es.

SU

BJE

CTS

BA

CK

GR

OU

ND

Usability  of  th

e  Juvent™  and

 WAV

E®  W

hole  Bod

y  Vibra;

on    

Plates  fo

r  Men

 with

 and

 with

out  S

pina

l  Cord  Injury  

Gra

nt

#:

ON

F-S

CI-

20

06

-WA

VE

-44

5

CO

DIN

G F

RA

MEW

OR

K

• S

ub

ject

s w

ere

e

xp

ose

d

to apriori

se

lect

ed

com

bina

tions

of

vibr

atio

n pa

ram

eter

s on

the

mod

ified

W

AVE®

and

Juv

ent™

WBV de

vice

s (S

ee F

igur

e 1)

.

• Vib

ratio

n Pa

ram

eter

Com

bina

tions

Kne

e an

gle:

140

o , 1

60o

Freq

uenc

y: 2

5, 3

5 &

45

Hz

Dev

ice/

Am

plitu

de:

WAV

E H

igh

(1.1

mm

)

WAV

E Lo

w (

0.7m

m)

J

uven

t (

0.05

mm

)

wer

e pr

esen

ted

syst

emat

ical

ly for

tw

o m

inut

es w

ith

a on

e m

inut

e re

st p

erio

d

WH

OLE

BO

DY

VIB

RA

TIO

N

Typ

e

Vib

rati

on D

escr

ipto

rs

Posi

tive

Euph

oria

M

assa

ge

Plea

sant

ness

Re

duce

d sp

astic

ity

Easy

to

see

Th

erap

eutic

In

crea

sed

sens

itivi

ty W

arm

th

Opt

imal

En

joym

ent

Fun

Rela

xing

Sm

ooth

Neg

ativ

e

Blu

rred

vis

ion

N

umbn

ess

Dis

com

fort

Sha

king

hea

d In

duce

d sp

asm

s U

ritic

aria

N

ause

a Ve

rtig

o W

orse

ning

pai

n

Ann

oyan

ce

Bot

hers

ome

Irrita

ting

Pres

sure

fro

m a

ngle

D

isco

mfo

rt

• S

ubje

ct’s

ex

peri

ence

s du

ring

an

d af

ter

vibr

atio

n ex

posu

re

wer

e so

licit

ed

thro

ugh

sem

i-st

ruct

ured

in

terv

iew

s

• Re

port

s w

ere

code

d as

neu

tral

, po

sitiv

e, o

r ne

gativ

e (C

odin

g Fr

amew

ork;

neu

tral

not

sho

wn)

• To

ass

ess

SCI

and

non-

SCI

subj

ects

’ fe

edba

ck o

n th

e us

abili

ty

of

the

Juve

nt™

an

d W

AVE®

W

BV

devi

ces

usin

g sp

ecifi

ed

knee

an

gles

, pl

ate

ampl

itude

s an

d fr

eque

ncie

s.

PU

RP

OS

E

OU

TCO

ME

AS

SES

SM

ENT

CO

ND

ITIO

N-S

PEC

IFIC

RES

ULT

S

♦ =  sig

nificant  d

ifferen

ces  b

etween  vibraL

on  param

eters  

● =  sig

nificant  d

ifferen

ces  b

etween  SCI  and

   non

-­‐SCI  

• W

here

as

non-

SCI

subj

ects

fo

und

high

er

freq

uenc

y vi

brat

ions

unp

leas

ant,

SCI

subj

ects

pre

ferr

ed t

hese

vi

brat

ion

para

met

er

com

binat

ions.

S

CI

rela

ted

impa

irm

ents

al

ter

WB

V

perc

epti

on;

pote

nti

ally

m

aski

ng a

dver

se e

ffec

ts.

• A i

nter

vent

ion

stud

y us

ing

WBV p

aram

eter

s of

WAV

E lo

w,

140o

, 45

Hz

is u

nder

way

bas

ed o

n th

is u

sabi

lity

data

sug

gest

ing

likel

y ad

here

nce

in S

CI

subj

ects

.

CO

NC

LUS

ION

OV

ERA

LL R

ESU

LTS

Cont

act: c

rave

n.ca

thy@

toro

ntor

ehab

.on.

ca

Figure  1.  Mod

ified

 WAV

E®  (leJ)  an

d  Juvent

™  

(right)  W

BV  devices  

Page 35: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Ob

ject

ives

§ 

To a

sses

s th

e ef

fect

s of

spe

cific

vib

ratio

n pa

ram

eter

s on

low

er

extr

emity

EM

G a

ctiv

atio

n in

ind

ivid

uals

with

SCI

during

exp

osur

e to

pas

sive

sta

ndin

g an

d W

BV.

§ 

To d

escr

ibe

the

effe

cts

of k

nee

angl

e on

EM

G a

ctiv

atio

n an

d de

term

ine

the

optim

al a

ngle

to

elic

it EM

G a

ctiv

atio

n.

§ To

co

mpar

e th

e W

ave®

an

d Ju

vent™

W

BV

pla

tform

s’

effe

ctiv

enes

s in

el

icit

ing

low

er

extr

emit

y EM

G

acti

vity

in

in

divi

dual

s w

ith S

CI.

Dis

cuss

ion

Ef

fect

of

Freq

uenc

y on

EM

G:

§ Fr

eque

ncy

variat

ions

had

a s

igni

fican

t ef

fect

with

the

WAV

plat

form

for

bot

h AB a

nd S

CI

subj

ects

for

all

mus

cles

(ex

cept

VL

in S

CI)

. § 

45

Hz

vibr

atio

n ge

nera

ted

the

grea

test

ac

tiva

tion

of

EM

G

com

pare

d to

the

res

ting

cond

ition

. Ef

fect

of

Am

plitu

de o

n EM

G:

§ Am

plitu

de v

aria

tions

had

a s

igni

fican

t ef

fect

with

the

WAV

plat

form

fo

r al

l m

uscl

es

in

AB

subj

ects

an

d fo

r G

M

and

RF

mus

cles

in S

CI

subj

ects

. § 

1.2

mm

vib

ratio

n el

icite

d gr

eate

r EM

G a

ctiv

atio

n th

an 0

.6 m

m

with

the

WAV

E® p

latf

orm

. Ef

fect

of

Post

ure

on E

MG

: § 

Post

ure

variat

ions

di

d no

t ha

ve

a si

gnifi

cant

ef

fect

on

EM

G

activ

atio

n.

§ G

reat

er E

MG

act

ivat

ion

with

140

o &

160

o kn

ee a

ngle

s fo

r bo

th

plat

form

s.

Com

paring

Wav

e® a

nd J

uven

t™:

§ Th

e W

AVE®

pla

tfor

m a

ugm

ente

d EM

G a

ctiv

ity t

o a

muc

h gr

eate

r de

gree

th

an

the

Juve

nt™

pl

atfo

rm

(no

activ

atio

n w

ith

SCI

subj

ects

on

the

Juve

nt™

).

Su

pp

ort:

The

aut

hors

ack

now

ledg

e th

e su

ppor

t of

the

Ont

ario

Neu

rotr

aum

a Fo

unda

tion

(#20

07-S

CIS

O-5

84)

and

the

Toro

nto

Reha

bilit

atio

n In

stitu

te w

ho r

ecei

ves

fund

ing

unde

r th

e Pr

ovin

cial

Reh

abili

tatio

n Re

sear

ch

Prog

ram

fro

m t

he M

inis

try

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io.

The

view

s ex

pres

sed

do n

ot n

eces

sarily

re

flect

tho

se o

f th

e M

inis

try.

Equ

ipm

ent

and

spac

e ha

ve b

een

fund

ed w

ith g

rant

s fr

om t

he C

anad

a Fo

unda

tion

for

Inno

vatio

n, O

ntar

io I

nnov

atio

n Tr

ust

and

the

Min

istr

y of

Res

earc

h an

d In

nova

tion.

Wh

ole

Bod

y V

ibra

tion

an

d E

MG

Act

ivat

ion

: Ef

fect

s of

V

ibra

tion

Fre

qu

ency

, A

mp

litu

de

and

Pos

ture

M

Aliz

adeh

-Meg

hraz

i1,2,

K M

asan

i1,

D S

ayen

ko1 ,

MR P

opov

ic1,

2 , B

C C

rave

n1,3

1 T

oron

to R

ehab

; 2 I

BBM

E, U

nive

rsity

of

Toro

nto;

3D

epar

tmen

t of

Med

icin

e U

nive

rsity

of

Toro

nto

Toro

nto

Reh

ab is

a t

each

ing

and

rese

arch

hos

pita

l ful

ly a

ffili

ated

with

the

Uni

vers

ity o

f To

ront

o.

Bac

kgro

un

d

§ In

divi

dual

s w

ho su

stai

n a

spin

al co

rd in

jury

(S

CI)

ex

perien

ce

mus

cle

atro

phy

in

thei

r lo

wer

ex

trem

itie

s as

a

resu

lt

of

dene

rvat

ion

and

lack

of

mec

hani

cal

stim

ulus

bel

ow t

he l

evel

of

inju

ry.

Ther

e is

a 1

8-46

% r

educ

tion

in l

ower

ext

rem

ity m

uscl

e cr

oss

sect

iona

l are

a si

x w

eeks

aft

er S

CI

com

pare

d to

con

trol

.

§ Cur

rent

low

er e

xtre

mity

reh

abili

tatio

n m

etho

ds inc

lude

fun

ctio

nal

elec

tric

al s

imul

atio

n, b

ody-

wei

ght

supp

ort

trea

dmill

tra

inin

g, g

ait

trai

ning

, a

nd p

assi

ve s

tand

ing.

§ 

Who

le-B

ody

Vib

rati

on

(WB

V)

is

a no

vel

ther

apy

used

fo

r au

gmen

ting

mus

cle

activ

ity a

nd im

prov

ing

mus

cle

stre

ngth

in t

he

able

-bod

ied

popu

latio

n.

Met

hod

s Sub

ject

s § 

Abl

e-bo

died

sub

ject

s (n

=7)

§ 

SCI

subj

ects

(n=

5)

Qua

ntita

tive

anal

ysis

: § 

Cal

cula

te E

MG

act

ivity

dur

ing

WBV f

or d

iffer

ent

cond

ition

s.

§ Com

pare

mag

nitu

de o

f EM

G d

urin

g W

BV a

nd r

estin

g co

nditi

ons.

§ 

EMG

act

ivity

rec

orde

d us

ing

bipo

lar

silv

er-s

ilver

chl

orid

e su

rfac

e el

ectr

odes

on

the

follo

win

g m

uscl

es (

Gai

n =

200

0, p

re a

mpl

ified

, 60

Hz

reje

ctio

n ra

tio,

Fs =

200

0 H

z):

Con

trol

led

Para

met

ers

§ Vib

ratio

n Fr

eque

ncy:

25,

35,

45H

z § 

Vib

ratio

n Am

plitu

de:

0.6

& 1

.2m

m

§ Kne

e Ang

les:

140

o , 1

60o ,

180

o

Con

clu

sion

s § 

The

pass

ive

stan

ding

an

d W

BV pl

atfo

rm co

nfig

urat

ion

elic

ited

elic

iting

EM

G a

ctiv

ity in

the

low

er e

xtre

mity

mus

cles

in in

divi

dual

s w

ith S

CI

and

able

-bod

ied

subj

ects

.

§ Th

e su

gges

ted

optim

al p

aram

eter

s fo

r gr

eate

st E

MG

act

ivat

ion

in

the

low

er e

xtre

miti

es a

re 4

5 H

z, 0

.6m

m,

140o

or

160o

, du

ring

pa

ssiv

e st

andi

ng w

ith t

he W

ave®

pla

tfor

m.

§ D

ue t

o th

e hi

gher

am

plitu

de o

f vi

brat

ion

prov

ided

by

the

Wav

plat

form

, it

crea

ted

grea

ter

EMG

ac

tivat

ion

com

pare

d to

th

e Ju

vent

™ p

latf

orm

, su

gges

ting

its g

reat

er p

oten

tial

for

elic

iting

EM

G a

ctiv

ity.

The

view

s ex

pres

sed

in

this

po

ster

do

no

t ne

cess

arily

ref

lect

tho

se o

f an

y of

the

gra

ntin

g ag

enci

es.

Con

tact

: M

ilad

Aliz

adeh

-Meg

hraz

i To

ront

o R

ehab

ilita

tion

Inst

itute

E

mai

l: m

ilad.

aliz

adeh

.m@

utor

onto

.ca

Pho

ne: (

416)

597

-342

2 ex

t. 62

13

Sig

nal

Filt

erin

g

§ Cus

tom

filt

ers

wer

e ap

plie

d to

the

raw

EM

G s

igna

l to

el

imin

ate

mot

ion

arti

fact

s an

d el

ectr

o-m

agnet

ic

inte

rfer

ence

s fr

om t

he v

ibra

tion

plat

form

s.

§ Th

e EM

G s

igna

l w

as n

otch

filt

ered

(po

wer

= 0

) at

the

vi

brat

ion

freq

uenc

y an

d its

har

mon

ics.

§ 

The

EMG

sig

nal w

as n

orm

aliz

ed b

y th

e #

of

FFT

poin

ts

afte

r no

tch

filte

ring

.

§ Ti

bial

is A

nter

ior

§ Sol

eus

§ G

astr

ocne

miu

s M

edia

lis

§ Re

ctus

Fem

oris

§ 

Vast

us L

ater

alis

Page 36: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

This

pro

ject

was

sup

porte

d by

the

Tor

onto

Reh

abili

tatio

n In

stitu

te,

whi

ch r

ecei

ves

fund

ing

unde

r th

e P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Pro

gram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io.

The

view

s ex

pres

sed

do n

ot n

eces

saril

y re

flect

thos

e of

the

Min

istry

.

Dev

elop

men

t of a

Sha

m C

ondi

tion

for

Futu

re W

hole

Bod

y Vi

brat

ion

Inte

rven

tion

Tria

ls

Ras

hidi

, Abd

olaz

im1,

2 ; A

lizad

eh- M

eghr

azi,

Mila

d1,2; M

asan

i, K

ei1 ;

Pop

ovic

, R. M

ilos1

,2; G

iang

rego

rio, L

ora1

,4 ; C

rave

n, C

athy

1,3

1 Tor

onto

Reh

abili

tatio

n In

stitu

te;

2 Uni

vers

ity o

f To

ront

o, IB

BM

E; 3

Uni

vers

ity o

f Tor

onto

, Dep

artm

ent o

f Med

icin

e 4 U

nive

rsity

of W

ater

loo,

Dep

artm

ent o

f Kin

esio

logy

Toro

nto

Reh

ab is

a te

achi

ng a

nd re

sear

ch h

ospi

tal f

ully

affi

liate

d w

ith th

e U

nive

rsity

of T

oron

to.

Bac

kgro

und

• P

lace

bo

effe

cts

are

be

defin

ed

as

the

posi

tive

phys

iolo

gica

l or

ps

ycho

logi

cal c

hang

es a

ssoc

iate

d w

ith t

he u

se o

f in

ert

med

icat

ions

, sh

am

proc

edur

es,

or

ther

apeu

tic

sym

bols

w

ithin

a

heal

thca

re

enco

unte

r. P

lace

bos

can

also

be

activ

e su

bsta

nces

or r

eal p

roce

dure

s th

at p

rodu

ce u

nexp

ecte

d be

nefic

ial e

ffect

s.

• In

ran

dom

ized

con

trol t

rials

usi

ng d

evic

e in

terv

entio

ns, i

t is

diffi

cult

to

crea

te

a co

mpa

rato

r or

co

ntro

l co

nditi

on

sim

ilar

enou

gh

to

the

inte

rven

tion

to b

e co

nsid

ered

an

appr

opria

te o

r va

lid c

ontro

l. Th

is is

th

ough

t by

man

y to

be

the

only

way

to m

inim

ize

the

effe

cts

of b

ias

on

reha

bilit

atio

n tri

al o

utco

mes

. • 

Non

-dru

g in

terv

entio

ns

in

spin

al

cord

in

jury

(S

CI)

reha

bilit

atio

n re

sear

ch s

uch

as a

cupu

nctu

re,

mag

netic

fie

ld t

hera

py,

and

spec

ific

exer

cise

ther

apie

s le

nd th

emse

lves

bet

ter t

o th

e us

age

of a

pla

cebo

or

sham

con

ditio

n.

• W

hole

bod

y vi

brat

ion

(WB

V)

is a

new

and

nov

el

inte

rven

tion

whi

ch

has

rece

ived

atte

ntio

n in

SC

I res

earc

h fo

r the

trea

tmen

t of s

uble

sion

al

oste

opor

osis

, sa

rcop

enia

, ob

esity

, m

etab

olic

sy

ndro

me

and

card

iova

scul

ar d

isea

se.

• O

ur a

bilit

y to

det

erm

ine

the

effe

ctiv

enes

s of

reha

bilit

atio

n in

terv

entio

ns

in p

hase

III

& I

V t

rials

is

depe

nden

t up

on c

reat

ion

of v

alid

sha

ms/

cont

rol c

ondi

tions

.

Obj

ectiv

es

• Th

e pu

rpos

e of

this

stu

dy w

as to

dev

elop

a s

ham

WB

V c

ondi

tion.

• 

We

soug

ht to

pro

duce

a d

evic

e w

hich

is id

entic

al in

app

eara

nce,

whi

le

repl

icat

ing

two

com

pone

nts

of t

he r

eal

devi

ce i

nclu

ding

mec

hani

cal

vibr

atio

n vi

a th

e ap

plic

atio

n of

vib

ratio

n to

the

par

ticip

ant's

upp

er

extre

miti

es, a

nd s

imila

r aud

itory

stim

uli d

urin

g op

erat

ion.

• 

Our

a p

riori

aim

was

to fo

ol n

aïve

par

ticip

ants

50%

of t

he ti

me.

Prea

mbl

e • 

A cu

stom

ized

WAV

E P

ro v

ibra

tion

plat

form

fitt

ed t

o an

Eas

ySta

nd

5000

sta

ndin

g fra

me

was

use

d. Q

ualit

ativ

e in

vest

igat

ion

of th

e de

vice

pr

evio

usly

con

duct

ed a

t ou

r ce

ntre

iden

tifie

d th

e m

ost

salie

nt s

timul

i re

sulti

ng fr

om e

xpos

ure:

• 

Vest

ibul

ar

• A

udito

ry

• P

ropr

ioce

ptiv

e • 

The

stud

y te

am a

ttem

pted

to

repl

icat

e th

ese

stim

uli

with

the

sha

m

devi

ce

Met

hods

1)

Sha

m D

evel

opm

ent

Vibr

atio

n R

eplic

atio

n • 

Thre

e vi

brat

ion

setu

ps w

ere

test

ed to

repl

icat

e vi

brat

ion:

1) 

Thre

e ga

min

g jo

y-st

ick

mot

ors

atta

ched

to th

e st

andi

ng fr

ame.

2) 

Two

smal

l 3V

/1A

DC

mot

ors

conn

ecte

d un

der t

he p

latfo

rm.

3) 

Five

sm

all

3V/1

A D

C m

otor

s w

ith 1

0g a

nd 1

5g o

ffset

wei

ghts

co

nnec

ted

unde

r pla

tform

and

to th

e st

andi

ng fr

ame.

So

und

Rep

licat

ion

• C

ompa

rison

s be

twee

n di

ffere

nt

soun

d re

cord

ers

&

smal

l si

ze

spea

kers

wer

e do

ne.

• W

e re

cord

ed t

he s

ound

of

the

vibr

atin

g pl

atfo

rm f

or r

epla

ying

and

“co

ntro

lling” th

e sh

am m

otor

s.

• A

soun

d sp

eake

r w

as p

lace

d un

der

the

vibr

atin

g pl

atfo

rm t

o m

imic

th

e lo

catio

n of

the

soun

d so

urce

. 2)

Eva

luat

ion

• Th

e sh

am d

evic

e w

ill b

e ev

alua

ted

by p

eopl

e w

ith S

CI

and

with

out

SC

I to

dete

rmin

e w

heth

er it

is a

con

vinc

ing

sham

. • 

Par

ticip

ants

w

ill

be

expo

sed

to

two

min

utes

vi

brat

ion

or

sham

vi

brat

ion

sequ

entia

lly in

a c

ount

erba

lanc

ed d

esig

n.

• Q

uest

ionn

aire

s ga

ugin

g ce

rtain

ty o

f re

al v

ersu

s sh

am v

ibra

tion

will

be

adm

inis

tere

d. T

he ra

te o

f sha

m s

uffic

ienc

y w

ill b

e re

porte

d.

• A

n ad

ditio

nal q

uest

ionn

aire

will

inqu

ire a

bout

loud

ness

and

per

ceiv

ed

vibr

atio

n ge

nera

ted

acro

ss th

e tw

o co

nditi

ons.

• 

Sta

ff ad

min

iste

ring

ques

tionn

aire

s &

par

ticip

ants

will

be

blin

ded

to

grou

p al

loca

tion

(sha

m o

r reg

ular

dev

ice)

dur

ing

data

col

lect

ion.

Figu

re

2.

Sch

emat

ic

of

the

mod

ified

vi

brat

ion

devi

ce t

o ge

nera

te t

he S

ham

co

nditi

on.

Res

ults

1)

Dev

ice

Dev

elop

men

t (Fi

gure

2)

• Th

e pr

ojec

t tea

m a

gree

d th

at th

e op

timal

sha

m s

etup

was

the

use

of

five

smal

l 3V

/1A

DC

mot

ors

incl

udin

g th

ree

on t

he f

ram

e w

ith 1

0g

wei

ghts

and

two

unde

r the

pla

tform

with

15g

offs

et w

eigh

ts (F

igur

e 1)

. • 

A hi

gh d

efin

ition

rec

ordi

ng c

ondu

cted

in a

sou

nd d

ampe

ning

cha

mbe

r w

as u

sed

to g

ener

ate

a so

und

file

whi

ch w

as p

laye

d ba

ck u

sing

a

Bos

e S

ound

Doc

k P

orta

ble

Dig

ital M

usic

Sys

tem

. • 

A ci

rcui

t w

as c

reat

ed t

o al

low

for

the

ind

epen

dent

adj

ustm

ent

and

initi

atio

n of

five

mot

ors

sim

ulta

neou

sly.

The

circ

uit w

as p

ower

ed a

5V

an

d 12

V D

C o

utpu

ts fr

om a

n AT

X c

ompu

ter p

ower

sup

ply

(Fig

ure

1).

2) E

valu

atio

n • 

Qua

litat

ive

eval

uatio

n of

the

devi

ce is

pla

nned

Dis

cuss

ion

• A

prel

imin

ary

sham

pr

otot

ype

has

been

de

velo

ped.

P

lans

ar

e un

derw

ay to

pro

spec

tivel

y ev

alua

te th

e sh

am c

ondi

tion.

• 

Lim

itatio

ns o

f the

cur

rent

pro

toty

pe in

clud

e:

Ø 

Effe

cts

of th

e su

rrou

ndin

g en

viro

nmen

t on

the

soun

d re

cord

ing

Ø 

The

audi

ble

diffe

renc

e be

twee

n th

e “re

cord

ed s

ound” a

nd t

he

“ac

tual

sou

nd” fr

om th

e ru

nnin

g vi

brat

ing

plat

form

Ø 

The

soun

d th

at t

he s

mal

l vib

ratin

g m

otor

add

ed t

o th

e de

vice

is

audi

ble.

Ø 

Sep

arat

e co

ntro

l in

terfa

ces

for

the

real

vib

ratio

n (o

rigin

al W

AVE

in

terfa

ce) a

nd s

ham

vib

ratio

n (c

usto

m c

ircui

t).

Ø 

Furth

er r

efin

emen

ts t

o th

e sh

am d

evic

e ar

e pe

ndin

g qu

alita

tive

feed

back

.

Ack

now

ledg

emen

ts

• W

e ac

know

ledg

e fu

ndin

g fro

m th

e O

ntar

io N

euro

traum

a Fo

unda

tion

&

the

Min

istry

of H

ealth

and

Lon

g Te

rm C

are.

We

grat

eful

ly a

ckno

wle

dge

the

tech

nica

l ass

ista

nce

of E

gor S

anin

and

Elia

s G

uest

rin in

cre

atio

n of

th

e S

ham

Dev

ice.

Ref

eren

ces

Lind

e K

, et a

l. A

re th

e cl

inic

al e

ffect

s of

hom

eopa

thy

plac

ebo

effe

cts?

A m

eta-

anal

ysis

of p

lace

bo-

cont

rolle

d tri

als.

Lan

cet.

1997

Sep

20;

350(

9081

):834

-43.

D

iede

rich

NJ,

Goe

tz C

G. T

he p

lace

bo tr

eatm

ents

in N

euro

scie

nces

: new

insi

ghts

from

clin

ical

and

ne

uroi

mag

ing

stud

ies.

Neu

rolo

gy 2

008;

71:6

77–6

84.

1 To

ront

o R

ehab

2

Uni

vers

ity o

f Tor

onto

3

Wat

erlo

o U

nive

rsity

Figu

re 1

. Circ

uit b

oard

con

trolli

ng th

e fiv

e sh

am m

otor

s si

mul

tane

ousl

y (le

ft).

Mot

or

with

offs

et w

eigh

t to

gen

erat

e th

e sh

am

vibr

atio

n (r

ight

).

Page 37: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Reh

ab

ilit

ati

on

En

gin

ee

rin

g L

ab

ora

tory

Inst

itu

te o

f B

iom

ate

ria

ls a

nd

Bio

me

dic

al

En

gin

ee

rin

g, U

niv

ers

ity

of

To

ron

toT

oro

nto

Reh

ab

ilit

ati

on

In

stit

ute

Co

nta

ct:

dim

itry

.sayenko@

uto

ronto

.ca

ww

w.t

oro

nto

-fes.

ca

Pa

rtn

ers

:

Ca

na

dia

n I

nsti

tute

s o

f H

ea

lth

Re

se

arc

h

Inst

itu

tsd

e re

che

ree

n s

an

téd

u C

an

ad

a

Ca

na

dia

n I

nsti

tute

s o

f H

ea

lth

Re

se

arc

h

Inst

itu

tsd

e re

che

ree

n s

an

téd

u C

an

ad

a

Na

tura

l S

cie

nces a

nd

En

gin

ee

rin

g R

ese

arc

h C

ou

ncil

of

Ca

na

da

Co

nseil

de

rech

erc

he

se

n s

cie

nce

s n

atu

rell

ese

t e

n gén

ied

u C

an

ad

a

Na

tura

l S

cie

nces a

nd

En

gin

ee

rin

g R

ese

arc

h C

ou

ncil

of

Ca

na

da

Co

nseil

de

rech

erc

he

se

n s

cie

nce

s n

atu

rell

ese

t e

n gén

ied

u C

an

ad

a

Min

istr

y o

f H

ea

lth

an

d L

on

g T

erm

Care

Min

istr

y o

f H

ea

lth

an

d L

on

g T

erm

Care The v

iew

s exp

ress

ed in t

his

post

er

do n

ot

nece

ssarily

reflect

th

ose

of

any o

f th

e g

ranting a

genci

es.

BIL

AT

ER

AL S

OLE

US

HB

ILA

TE

RA

L S

OLE

US

H-- R

EFLE

XE

S I

N H

UM

AN

S D

UR

ING

SIT

TIN

G

RE

FLE

XE

S I

N H

UM

AN

S D

UR

ING

SIT

TIN

G

AN

D P

AS

SIV

E S

TA

ND

ING

: V

AR

IAB

ILIT

Y A

ND

CO

RR

ELA

TIO

N

AN

D P

AS

SIV

E S

TA

ND

ING

: V

AR

IAB

ILIT

Y A

ND

CO

RR

ELA

TIO

N

DG

Sa

ye

nk

o1,

K M

asa

ni1

, M

R P

op

ovic

1,2

1–

Toro

nto

Rehabili

tation I

nst

itute

; 2

–U

niv

ers

ity

of

Toro

nto

INT

RO

DU

CT

ION

Th

e ra

nd

om

flu

ctu

atio

n in

H

-re

flex am

plit

ud

e h

as b

ee

n

stu

die

d p

revio

usly

to u

nd

ers

tan

d its

ch

ara

cte

ristics a

nd o

rigin

s

[Nozaki

et

al.,

19

95

]. I

t h

as b

ee

n s

ug

geste

d t

ha

t su

pra

spin

al

ce

nte

rs

co

ntr

ibu

te

to

the

co

rre

latio

n

in

bila

tera

l H

-re

fle

x

thro

ug

h

pre

- a

nd

/or

posts

yn

ap

tic

inhib

itio

n

[No

zaki

et

al.,

19

96

]. To

in

ve

stig

ate

th

e

co

ntr

ibu

tio

n

of

pre

syn

ap

tic

an

d

po

sts

yn

ap

tic m

ech

an

ism

s i

n t

he

va

ria

bili

ty a

nd

co

rre

latio

n o

f

bila

tera

l H

-refle

xes,

we e

xam

ine

d t

he H

-re

fle

xes i

n b

oth

le

gs

duri

ng d

iffe

ren

t co

nditio

ns:

sittin

g a

nd

passiv

e s

tan

din

g.

Be

ca

use

th

e H

-re

fle

x i

s i

nh

ibite

d i

n s

tan

din

g p

ostu

re d

ue

to s

upra

spin

al

inp

ut

via

pre

syn

ap

tic i

nhib

itio

n [

Koseja

et

al.,

19

93

], w

e h

yp

oth

esiz

ed t

ha

t th

e r

eflex m

ag

nitu

de w

ill v

ary

in

sittin

g

an

d

sta

nd

ing

, w

he

rea

s

its

va

ria

bili

ty

will

n

ot

sh

ow

sig

nific

an

t d

iffe

ren

ce

in

d

iffe

ren

t p

ostu

res.

Fu

rth

er,

if

the

su

pra

sp

inal

ce

nte

rs a

re i

nvolv

ed

in

co

rre

latio

n o

f b

ilate

ral

H-

refle

x r

esp

onses t

hro

ug

h p

resyn

ap

tic m

ech

anis

ms,

the

n th

is

corr

ela

tio

n m

ay d

ep

en

d o

n t

he p

ostu

re.

ME

TH

OD

S

PA

RT

ICIP

AN

TS

: Eig

ht

able

-bodie

d volu

nte

ers

(2

fe

male

s, 6 m

ale

s),

20-4

0 y

ears

old

PO

SIT

ION

S:

Sitting

and

Pass

ive

standin

g

in

“Easy

Sta

nd

5000”

(Altim

ate

Medic

al, I

nc.

, U

SA)

H-R

EFLE

X:

60 s

ole

us

H-r

eflexes

were

evoked in

right

and le

ft le

gs

sim

ultaneousl

y

with inte

rstim

uli

inte

rval of

5 s

.

RE

SU

LT

S

1.

The m

agnitude o

f th

e H

-reflex w

as

smalle

r during p

ass

ive

standin

g in c

om

pariso

n w

ith s

itting:

19.0

±9.8

% v

s. 3

6.3

±4.6

%

of

the

sole

us

maxim

al

M-w

ave

(Mm

ax) ,

resp

ect

ively

(p =

0.0

04).

2.

There

w

as

no si

gnific

ant

diffe

rence

in

th

e co

eff

icie

nt

of

variation d

uring s

itting a

nd p

ass

ive s

tandin

g:

11.7

±5.3

vs.

15.4

±9.2

%, re

spect

ively

.

3.

There

w

as

no

signific

ant

diffe

rence

in

th

e

corr

ela

tion

coeff

icie

nt

during s

itting a

nd p

ass

ive s

tandin

g:

0.6

2 ±

0.1

6

vs.

0.5

9 ±

0.2

0, re

spect

ively

.

1.

Th

ese

re

su

lts

co

ncu

r w

ith

p

rio

r re

po

rts

tha

t

sig

nif

ica

nt

inh

ibit

ion

of

the

so

leu

s H

-re

fle

x o

ccu

rs

wh

en

ch

an

gin

g p

ostu

re f

rom

sit

tin

g t

o s

tan

din

g.

2.

Ou

r re

su

lts s

up

po

rt t

he

fin

din

gs t

ha

t p

osts

yn

ap

tic

bu

t n

ot

pre

syn

ap

tic m

ech

an

ism

s a

re p

red

om

ina

nt

in t

he

va

ria

bil

ity o

f th

e m

on

osyn

ap

tic r

efl

ex

.

3.

Th

e l

eve

l o

f co

rre

lati

on

of

bil

ate

ral

H-r

efl

ex

did

no

t

de

pe

nd

on

th

e p

ostu

re s

ug

ge

sti

ng

th

at

pre

syn

ap

tic

me

ch

an

ism

s

are

n

ot

the

le

ad

ing

fa

cto

r in

th

is

ph

en

om

en

on

.

CO

NC

LU

SIO

N

1.

Nozaki D

, N

akazaw

a K

, Y

am

am

oto

Y.

Fra

cta

l corr

ela

tion in h

um

an

H-r

efle

x.

Exp

Bra

in R

es 1

99

5;1

05

:402

-10

.

2.

Nozaki

D,

Nakazaw

a K

, Y

am

am

oto

Y.

Supra

spin

al

eff

ects

on t

he

fracta

l corr

ela

tion in h

um

an H

-reflex.

Exp B

rain

Res 1

996;1

12:1

12-

8.

3.

Koceja

D

M,

Trim

ble

M

H,

Ea

rles D

R.

Inh

ibitio

n o

f th

e sole

us H

-

refle

x in

sta

ndin

g m

an

. B

rain

Res 1

99

3;6

29

:155

-8.

RE

FE

RE

NC

ES

68

7.2

5

Pa

rtic

ipa

nt

F:

So

leu

s H

- re

fle

x d

uri

ng

sit

tin

g

Pa

rtic

ipa

nt

F:

So

leu

s H

- re

fle

x d

uri

ng

pa

ssiv

est

an

din

g

Tri

al

H-reflex amplitude, mV

Tri

al

Correlation coefficient

Pa

rtic

ipa

nt

Coefficient of variance

Pa

rtic

ipa

nt

Pa

rtic

ipa

nt

Coefficient of variance

Pa

rtic

ipa

nt

Pa

rtic

ipa

nt

Pa

rtic

ipa

nt

Le

ftR

igh

t

refl

ex

du

rin

g s

itti

ng

Tri

al

sta

nd

ing

Tri

al

Page 38: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Reh

ab

ilit

ati

on

En

gin

eeri

ng

Lab

ora

tory

Inst

itu

te o

f B

iom

ate

ria

ls a

nd

Bio

med

ica

l E

ng

inee

rin

g, U

niv

ers

ity

of

To

ron

toT

oro

nto

Re

ha

bil

ita

tio

n I

nst

itu

teC

on

tact

:dim

itry

.sayenko@

uto

ronto

.ca

ww

w.t

oro

nto

-fe

s.ca

Pa

rtn

ers

:

Ca

na

dia

n I

nsti

tute

s o

f H

ea

lth

Re

se

arc

hIn

sti

tuts

de

re

ch

ere

en

sa

nté

du

Ca

nad

aC

an

ad

ian

In

sti

tute

s o

f H

ea

lth

Re

se

arc

hIn

sti

tuts

de

re

ch

ere

en

sa

nté

du

Ca

nad

aN

atu

ral

Scie

nce

s a

nd

En

gin

ee

rin

g R

ese

arc

h C

ou

ncil

of

Ca

nad

aC

on

se

ild

e r

ech

erc

he

se

n s

cie

nces n

atu

rell

es

et

en

gén

ied

u C

an

ad

aN

atu

ral

Scie

nce

s a

nd

En

Na

tura

l S

cie

nce

s a

nd

En

Na

tura

l S

cie

nce

s a

nd

En

Na

tura

l S

cie

nce

s a

nd

Eng

ine

eri

ng

Re

se

arc

h C

ou

ng

ine

eri

ng

Re

se

arc

h C

ou

nN

atu

ral

Scie

nce

s a

nd

En

gin

ee

rin

g R

ese

arc

h C

ou

ncil

of

Ca

nad

aC

on

se

ild

e r

ech

erc

he

se

n s

cie

nces n

atu

rell

es

et

en

gén

ied

u C

an

ad

a

Min

istr

y o

f H

ea

lth

a

nd

Lo

ng

Te

rm C

are

Min

istr

y o

f H

ea

lth

a

nd

Lo

ng

Te

rm C

are T

he v

iew

s expre

ssed in t

his

post

er

do n

ot

nece

ssarily

reflect

th

ose

of

any

of

the g

ranting a

genci

es.

EFFE

CT

S O

F V

OLU

NT

AR

Y E

XE

RC

ISE

, FU

NC

TIO

NA

L E

LE

CT

RIC

AL S

TIM

ULA

TIO

NE

FFE

CT

S O

F V

OLU

NT

AR

Y E

XE

RC

ISE

, FU

NC

TIO

NA

L E

LE

CT

RIC

AL S

TIM

ULA

TIO

N

AN

D V

IBR

AT

ION

ON

CO

RT

ICO

MU

SC

ULA

R C

OH

ER

EN

CE

A

ND

VIB

RA

TIO

N O

N C

OR

TIC

OM

US

CU

LA

R C

OH

ER

EN

CE

S

aye

nk

o D

G1,

Ma

sa

ni

K1,

Gri

go

rovsk

y V

2,

Po

po

vic

MR

1,2

1–

Toro

nto

Rehabili

tation I

nst

itute

;2

–U

niv

ers

ity

of

Toro

nto

INT

RO

DU

CT

ION

Ne

w f

indin

gs i

n t

he f

ield

of

adaptive n

euro

pla

sticity h

ave d

em

onstr

ate

d

that

goal-oriente

d

exerc

ises

couple

d

with

neuro

muscula

r ele

ctr

ical

stim

ula

tion o

r vib

ration m

ay p

rom

ote

im

pro

ve

me

nt

of

vo

lun

tary

mu

scle

contr

ol

and fu

nctional

abili

ties [1

, 2

, 3

]. H

ow

eve

r, th

e p

hysio

log

ical

me

ch

an

ism

s u

nd

erlyin

g t

he

ob

se

rve

d b

en

efits

of

the

su

pp

lem

en

tary

se

nso

rim

oto

r stim

ula

tio

n h

ave

no

t b

een investigate

d in d

eta

il.

In t

he c

urr

ent

stu

dy,

we a

imed t

o i

nvestigate

the c

entr

al

effects

of

the

sensorim

oto

r stim

ula

tion o

n t

he i

nte

raction b

etw

een

cort

icospin

al

drive

and s

pin

al

moto

neuro

nes.

It i

s b

elie

ved t

hat

incre

ased c

ort

icom

uscula

r

cohere

nce can re

flect

a tighte

r cort

ical

contr

ol

of

the m

uscle

activity

during t

he a

cquis

itio

n o

f th

e m

oto

r ta

sk [

4].

1.

Popo

vic

MR

et

al. F

unctiona

l e

lectr

ica

l stim

ula

tion

fo

r gra

sp

ing a

nd

wa

lkin

g:

ind

ica

tion

s a

nd

limita

tion

s. S

pin

al C

ord

. 2001

;39:4

03

-12

.

2.

Ru

sh

ton D

N.

Fun

ctiona

l e

lectr

ica

l stim

ula

tion

and

re

hab

ilita

tion

--an

hypoth

esis

. M

ed

Eng

Ph

ys. 200

3;2

5:7

5-8

.

3.

Ca

rdin

ale

M,

Bo

sco

C.

The

use

of

vib

ration

as a

n e

xe

rcis

e i

nte

rven

tion

. E

xe

rc S

po

rt S

ci

Re

v.

2003

;31

:3-7

.

4.

Pe

rez M

A e

t a

l. C

hange

s in

co

rtic

osp

ina

l d

rive

to

sp

ina

l m

oto

neuro

ne

s f

ollo

win

g vis

uo

-

mo

tor

skill

lea

rnin

g in h

um

ans. J P

hysio

l. 2

006

;57

3:8

43

-55

RE

FE

RE

NC

ES

74

.19

RE

SU

LT

S

2.

EE

G-E

MG

co

he

ren

ce

sig

nif

ica

ntl

y

incre

ase

d

aft

er

FE

S

an

d

VO

L+

FE

S.

The v

alu

es

are

pre

sente

d a

s perc

enta

ges

of

the

cohere

nce

are

a

obta

ined

prior

to

each

experim

enta

l co

nditio

n.

EEG-EMG coherenceafter experimental conditions

(% of initial values)

PU

RP

OS

ET

o

investigate

w

he

ther

the

som

ato

sensory

stim

ula

tio

n

caused

by

neuro

muscula

r ele

ctr

ical

stim

ula

tion

or

vib

ration

can

pote

ntiate

cort

icom

uscula

r couplin

g d

uring v

olu

nta

ry m

ovem

ent.

ME

TH

OD

SParticipants

: F

ive a

ble

-bodie

d v

olu

nte

ers

(2 fem

ale

s,

3 m

ale

s).

Conditions:

inte

rmedia

te 1

s d

ors

ifle

xio

n a

nd r

est periods d

uring 1

0 m

in:

- vo

lun

tary

mo

vem

ents

at th

e le

ve

l of 1

5%

of

MV

C (

VO

L15

);

- vo

lun

tary

mo

vem

ents

at th

e le

ve

l of 7

% o

f M

VC

(V

OL

7);

- F

ES

driven

mo

vem

ents

at

the

le

ve

l of

7%

of

MV

C (

FE

S);

- vo

lun

tary

mo

vem

ents

at th

e le

ve

l of 7

% o

f M

VC

supp

lem

en

ted

with

FE

S a

t th

e le

ve

l of

7%

of

MV

C (

VO

L+

FE

S);

- vo

lun

tary

mo

vem

ents

at th

e le

ve

l of 1

5%

of

MV

C s

upp

lem

en

ted

with

con

sta

nt

vib

ration

(V

OL

+V

ibro

).

Tests

: w

ere

perf

orm

ed b

efo

re a

nd a

fter

the e

xperim

enta

l conditio

ns,

during 1

min

isom

etr

ic d

ors

ifle

xio

n a

t th

e level of

15%

of M

VC

.

EEG

: C

z a

nd 5

cm

late

ral to

Cz.

EMG

: m

. tibia

lis a

nte

rior.

FES

: fr

equency 4

0 H

z,

puls

e 2

50

s.

Vibration

: fr

equency 6

0 H

z,

am

plit

ude 1

mm

.

s. m

m.

EE

G e

lectr

od

es

Vis

ua

l fe

ed

ba

ck

FE

S e

lectr

od

es

EM

G e

lectr

od

es

[V] [V] [Nm]

Red d

ash

ed l

ine i

ndic

ate

s th

e r

equest

ed

level of

dors

ifle

xio

n d

uring t

he t

est

“Ste

ady t

orq

ue m

ain

tenance

”fo

r th

e a

naly

sis

(5 s

aft

er

initia

tion o

f th

e d

ors

ifle

xio

n)

1.

Mo

tor

task

pe

rfo

rma

nce

incre

ase

d a

fte

r V

OL7

, FE

S,

VO

L+

FE

S.

The

valu

es

are

pre

sente

d as

perc

enta

ges

of

the s

tandard

devia

tion v

alu

es

obta

ined

prior

to

each

experim

enta

l co

nditio

n.

Test performanceafter experimental conditions

(% of initial values)

CO

NC

LU

SIO

N1.

Supple

menta

ry se

nso

ry st

imula

tion during goal-oriente

d exerc

ise ca

n re

sult in

cort

ical

reorg

aniz

ation and m

axim

ize tr

ansm

issi

on eff

ect

iveness

of

desc

endin

g

moto

r co

mm

ands.

2.

Contr

ibution

of

the

mech

anis

ms

underlin

ing

th

e

obse

rved

eff

ect

sw

ill

be

dete

rmin

ed in futu

re r

esearc

h.

PO

SS

IBLE

ME

CH

AN

ISM

I

Repetitive a

ntidro

mic

activation o

f th

e m

oto

rneuro

ns

enhanced r

ecru

itm

ent

of th

e m

oto

rneuro

ns (

thro

ugh

Hebb s

ynpses)

[2].

PO

SS

IBLE

ME

CH

AN

ISM

II

Repetitive p

eriphera

l nerv

e s

tim

ula

tion e

nhanced th

e e

xcitabili

ty o

f th

e

cort

ical pro

jections o

f corr

espondin

g m

uscle

s a

nd im

pro

ve m

oto

r

perf

orm

ance [3].

DIS

CU

SS

ION

Page 39: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURP

OSE

PURP

OSE

CO

NC

LUSI

ON

CO

NC

LUSI

ON

Resp

onse

of In

divid

ual M

uscle

s to N

euro

mus

cular

Elec

trica

l Stim

ulat

ion T

rain

ig of

Kne

e Ext

enso

rs

1) T

o id

entif

y th

e un

ique

forc

e ve

ctor

pro

duce

d by

indi

vidu

al k

nee

exte

nsor

s2)

To

inve

stig

ate

the

cont

ribut

ion

of in

divi

dual

kne

e ex

tens

ors

to th

e fo

rce

vect

ors

prod

uced

by

the

glob

al s

timul

atio

n in

neu

rom

uscu

lar s

timul

atio

n tra

inin

g.

- Eac

h kn

ee e

xten

sor h

as a

uni

que

forc

e ve

ctor

.- D

istin

ct c

ontri

butio

ns fr

om in

divi

dual

mus

cles

wer

e fo

und,

sug

gest

ing

that

NM

S tra

inin

g m

ay

unev

enly

affe

ct k

nee

exte

nsor

s.

Partn

ers:

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y,

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

Toro

nto

Reh

abili

tatio

n In

stitu

teC

onta

ct: k

.mas

ani@

utor

onto

.ca

web

pag

e: h

ttp:

//ww

w.to

ront

o-fe

s.ca

Subj

ects

: - Y

oung

hea

lthy

subj

ects

: n =

6 (a

ll m

ales

), 30

,0±8

.9 y

rsSt

imul

atio

n Lo

catio

ns:

- Vas

tus

med

ialis

(VM

), Va

stus

late

ralis

(VL)

, Rec

tus

fem

oris

(RF)

- Thr

ee g

loba

l loc

atio

ns o

n kn

ee e

xten

sors

; GS1

, GS2

, and

GS3

Mea

sure

men

ts:

- 3D

forc

e ex

ertio

n at

the

ankl

e jo

int u

sing

a fo

rce

sens

or (K

istle

r 906

7) m

ount

ed o

n a

cust

om m

ade

devi

ce (N

ozak

i et a

l. 20

05)

Prot

ocol

:- T

he s

ubje

ct s

at o

n th

e ch

air w

ith k

nee

and

hip

flexe

d at

90

degr

ee.

- A m

otor

poi

nt fo

r eac

h m

uscl

e w

as in

divi

dual

ly s

timul

ated

with

the

max

imal

, com

forta

bly

tole

rabl

e ite

nsity

, in

the

isom

etric

con

ditio

n.- G

S1-3

wer

e al

so s

timul

ated

.A

naly

sis:

- The

uni

t for

ce v

ecto

rs w

ere

calc

ulat

ed fo

r ind

ivid

ual m

uscl

es a

nd fo

r GS1

-3, u

sing

pr

inci

ple

com

pone

nt a

naly

sis.

- The

rela

tive

cont

ribut

ion

of in

divi

dual

mus

cles

to G

S1-3

was

est

imat

ed b

ased

on

an

assu

mpt

ion

that

the

forc

e ve

ctor

mea

sure

d du

ring

each

GS

was

a li

near

vec

tor s

umm

atio

n of

forc

e ve

ctor

s of

the

thre

e in

divi

dual

mus

cles

.

Met

hods

AB

STR

AC

TA

BST

RA

CT

Exam

ples

of r

ecor

ding

s1

Uni

t vec

tor f

or e

ach

mus

cle

stim

ulat

ion

and

GS

4

Ref

eren

ces

[1] B

otte

r A, e

t al.

Atla

s of

the

mus

cle

mot

or p

oint

s fo

r the

low

er li

mb:

impl

icat

ions

for e

lect

rical

st

imul

atio

n pr

oced

ures

and

ele

ctro

de p

ositi

onin

g. E

ur J

App

l Phy

siol

, 111

: 246

1–24

71, 2

011.

[2] N

ozak

i D

, et a

l.. U

ncer

tain

ty o

f kne

e jo

int m

uscl

e ac

tivity

dur

ing

knee

join

t tor

que

exer

tion:

the

sign

ifica

nce

of c

ontro

lling

adja

cent

join

t tor

que.

J A

ppl P

hysi

ol 9

9: 1

093–

1103

, 200

5.

Mas

ani K

1,2)

, Ali

S. H

assa

n 1,2)

, Say

enko

DG

1,2)

, Dai

chi N

ozak

i 3) , P

opov

ic M

R1,

2), s

pons

ored

by

Shin

ohar

a M

FAC

SM1)

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

, Tor

onto

, CAN

ADA

2) L

yndh

urst

Cen

tre,

Tor

onto

Reh

abili

tatio

n In

stitu

te, T

oron

to, C

ANAD

A 3)

Gra

duat

e Sc

hool

of E

duca

tion,

Uni

vers

ity o

f Tok

yo, T

okyo

, JAP

AN

AC

SM 2

012

San

Fran

cisc

o, C

A, M

ay 1

2 - J

une

2, 2

012

e-m

ail :

k.m

asan

i@ut

oron

to.c

a

N

euro

mus

cula

r ele

ctric

al s

timul

atio

n (N

MS)

is o

ne o

f the

mos

t pop

ular

adv

ance

d m

etho

dolo

gies

for a

thle

tes

to

gain

mus

cle

stre

ngth

. U

sual

ly, N

MS

uses

a p

air

of l

arge

ele

ctro

des

to s

timul

ate

one

mus

cle

grou

p (G

roup

St

imul

atio

n, G

S) in

stea

d of

stim

ulat

ing

indi

vidu

al m

uscl

es. T

o de

sign

effe

ctiv

e tra

inin

g pr

otoc

ols,

the

cont

ribut

ion

of

indi

vidu

al m

uscl

e to

GS

mus

t be

exam

ined

. Pur

pose

: 1) T

o id

entif

y th

e un

ique

forc

e ve

ctor

pro

duce

d by

indi

vidu

al

knee

ext

enso

rs, a

nd 2

) to

inve

stig

ate

the

cont

ribut

ion

of in

divi

dual

kne

e ex

tens

ors

to th

e fo

rce

vect

ors

prod

uced

by

GS

in N

MS

train

ing.

Met

hods

: Six

sub

ject

s (3

0.0±

8.9

yrs)

sat

on

a ch

air a

nd th

ree

knee

ext

enso

rs (v

astu

s m

edia

lis,

vast

us l

ater

alis

, an

d re

ctus

fem

oris

) w

ere

indi

vidu

ally

stim

ulat

ed. A

dditi

onal

ly, k

nee

exte

nsor

s w

ere

stim

ulat

ed

sim

ulta

neou

sly

as a

gro

up u

sing

con

vent

iona

l NM

S el

ectro

des

at th

ree

diffe

rent

loca

tions

(GS1

-3).

The

unit

forc

e ve

ctor

s in

the

isom

etric

con

ditio

n w

ere

calc

ulat

ed fo

r ind

ivid

ual m

uscl

es a

nd fo

r GS1

-3. T

he re

lativ

e co

ntrib

utio

n of

in

divi

dual

mus

cles

to G

S1-3

was

est

imat

ed b

ased

on

an a

ssum

ptio

n th

at th

e fo

rce

vect

or m

easu

red

durin

g ea

ch G

S w

as a

line

ar v

ecto

r sum

mat

ion

of fo

rce

vect

ors

of th

e th

ree

indi

vidu

al m

uscl

es. R

esul

ts: T

he u

nit f

orce

vec

tor w

as

stat

istic

ally

diff

eren

t am

ong

the

thre

e kn

ee e

xten

sors

(M

ANO

VA,

p <

0.00

1). T

he c

ontri

butio

n of

the

thr

ee k

nee

exte

nsor

s to

the

GS

was

sta

tistic

ally

diff

eren

t am

ong

the

thre

e kn

ee e

xten

sors

(MAN

OVA

, p =

0.0

4). C

oncl

usio

n:

Each

kne

e ex

tens

or h

as a

uni

que

forc

e ve

ctor

. Dis

tinct

con

tribu

tions

from

indi

vidu

al m

uscl

es w

ere

foun

d, s

ugge

stin

g th

at N

MS

train

ing

may

une

venl

y af

fect

kne

e ex

tens

ors.

- The

forc

e ve

ctor

s w

ere

diffe

rent

am

ong

the

mea

sure

d th

ree

mus

cles

.- T

he fo

rce

vect

or o

f GS

was

with

in th

e 3D

sp

ace

shap

ed b

y th

e m

easu

red

thre

e m

uscl

es.

Inde

pend

ency

of f

orce

vec

tor t

o fo

rce

leve

l2

- Exa

mpl

es o

f thr

ee fo

rce

leve

ls fo

r VL

stim

ulat

ion

(left)

, and

forc

e di

rect

ions

for e

ach

mea

sure

d m

uscl

e in

clud

ing

thre

e fo

rce

leve

ls

resp

ectiv

ely.

- The

forc

e ve

ctor

for e

ach

mus

cle

appe

ars

sim

ilar a

mon

g di

ffere

nt fo

rce

leve

ls.

Con

trib

utio

n of

eac

h m

uscl

e on

GS

5

4.8

6

-30

190.

5 0

0.5 -1

VMVL

RF

0.5 0

0.5 -1

GS1

GS2

GS3

1

0.8

0.6

0.4

0.2 0

VMVL

RF

Con

tribu

tion

of e

ach

mus

cle

to G

S

Uni

t Vec

tor f

orea

ch m

uscl

e st

imul

atio

nU

nit V

ecto

rfo

r GS

A

200m

m

70m

m

120m

m

40m

m

Foot

Pla

te

Foot

Pla

teFo

ot P

late

Forc

e Se

nsor

Bear

ing

B

DC

Forc

e m

easu

rem

ent s

yste

m. A

: sub

ject

se

ated

on

a ch

air w

ith th

e rig

ht fo

ot

plac

ed o

n a

forc

e m

easu

rem

ent d

evic

e.

The

low

er le

g w

as s

et to

be

verti

cal.

The

right

foot

was

firm

ly fi

xed

to th

e de

vice

by

a st

rap.

Top

(B),

side

(C),

and

front

(D)

view

s of

the

forc

e m

easu

rem

ent

devi

ce.T

he tr

iaxi

al fo

rce

sens

or m

ount

ed

just

bel

ow th

e ro

tatio

n ax

is c

an m

easu

re

the

forc

e th

at th

e su

bjec

t exe

rts a

t the

an

kle

join

t pos

ition

.

VMVL

RF

100

ms

GS1

15 -15 2.4

-14

-1.2

3

15 -15 2.

4

-14

-1.2

3

15 -15 2.4

-14

-1.2

3

VM M

otor

Poi

ntVL

Mot

or P

oint

RF

Mot

or P

oint

GS G

S1: 3

cm

Med

ial

GS2

: Mid

dle

GS3

: 3 c

m L

ater

al

M-L

A-P

Verti

cal

Forc

eD

irect

ion

M-L

A-P

Verti

cal

Forc

eD

irect

ion

VLFo

rce

Leve

l 1VL

Forc

e Le

vel 2

VLFo

rce

Leve

l 3<

<

M-L

A-P

Verti

cal

Forc

e D

irect

ion

M-L

A-P

Verti

cal

Forc

e D

irect

ion

- The

con

tribu

tion

of th

e th

ree

knee

ext

enso

rs w

as s

tatis

tical

ly d

iffer

ent a

mon

g th

e th

ree

knee

ext

enso

rs (M

ANO

VA, p

= 0

.04)

.- W

hen

the

glob

al s

timul

atio

n w

as a

pplie

d, e

ach

mus

cle

was

stim

ulat

ed w

ith a

diff

eren

t lev

el.

The

view

s ex

pres

sed

in th

s po

ster

do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

The

auth

ors

appr

ecia

te M

s. T

omoy

o H

iraba

yash

i for

hel

ping

the

expe

rimen

t and

ana

lysi

s.

The

auth

ors

ackn

owle

dge

the

supp

ort o

f Tor

onto

Reh

abilit

atio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he

Prov

inci

al R

ehab

ilitat

ion

Res

earc

h Pr

ogra

m fr

om th

e M

inis

try o

f Hea

lth a

nd L

ong-

Term

Car

e in

Ont

ario

.M-L

A-P

Verti

cal

3D fo

rce

mea

sure

men

tve

ctor

calc

ulat

ion

10 N

-1.2

-30

Anod

e El

ectro

de

100

ms

GS1

GS2

GS3

Diff

eren

ce o

f for

ce v

ecto

r am

ong

GS1

- 3

3

3

-18 6

-24

-0.6

4.8

M-L

A-P

Verti

cal

Forc

eD

irect

ion

10 N

- The

forc

e ve

ctor

s of

thre

e G

Ss (G

S1-G

S3) w

ere

sim

ilar b

ut s

light

ly d

iffer

ent.

- The

uni

t for

ce v

ecto

r was

sta

tistic

ally

diff

eren

t am

ong

the

thre

e kn

ee e

xten

sors

(MAN

OVA

, p

< 0.

001)

.- T

he m

easu

red

thre

e m

uscl

es e

xerte

d fo

rce

in

diffe

rent

dire

ctio

ns.

- The

uni

t for

ce v

ecto

r was

not

sta

tistic

ally

di

ffere

nt a

mon

g th

e th

ree

GSs

(MAN

OVA

, p

= 0.

840)

.- C

onsi

dera

bly

diffe

rent

pat

tern

s am

ong

the

subj

ects

mig

ht c

ause

this

insi

gnifi

cant

resu

lt.

Uni

t Vec

tor 1

(UV1

)

Uni

t Vec

tor 2

(UV2

)

αU

V1

βUV2

GS

Vect

or (G

S)

Con

tribu

tion

of U

V1=

|α|

|α| +

|β|

Con

tribu

tion

of U

V2=

|β|

|α| +

|β|

GS1

GS2

GS3

100

ms

2 N

Page 40: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURP

OSE

PURP

OSE

CO

NC

LUSI

ON

CO

NC

LUSI

ON

To i

nves

tigat

e th

e fe

asib

ility

of r

educ

ing

mus

cle

fatig

ue b

y di

strib

utin

g th

e el

ectri

c fie

ld o

ver

a w

ider

are

a us

ing

mul

tiple

su

rface

ele

ctro

des

plac

ed o

ver t

he m

uscl

e

- The

effe

ctiv

enes

s of

usi

ng S

DSS

in p

lant

er fl

exor

s to

redu

ce m

uscl

e fa

tigue

was

sho

wn

in o

ne

indi

vidu

al w

ith S

CI a

nd a

ble-

bodi

ed in

divi

dual

s.- T

he re

sults

war

rant

the

pote

ntia

l of S

DSS

to p

rolo

ng tr

aini

ng s

essi

ons

of F

ES th

erap

y.

Partn

ers:

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y,

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

Toro

nto

Reh

abili

tatio

n In

stitu

teC

onta

ct: k

.mas

ani@

utor

onto

.ca

web

pag

e: h

ttp:

//ww

w.to

ront

o-fe

s.ca

Subj

ects

: - A

n in

divi

dual

with

com

plet

e SC

I, T3

/T4,

ASI

A A,

4 y

ears

pos

t inj

ury

Task

: - I

som

etric

, con

tinuo

us p

lant

ar fl

exio

n in

a s

ittin

g po

stur

e fo

r 2 m

in- C

ompa

rison

bet

wee

n SE

S an

d SD

SS (s

ee th

e rig

ht c

olum

n)- 1

2 tri

als

in s

epar

ated

day

s (6

SES

and

6 S

DSS

)- F

ES: P

ulse

freq

uenc

y, 40

Hz;

Pul

se w

idth

, 250

us;

Pul

se in

tens

ity, 6

4±5

mA

(SES

) and

51±

4 m

A (S

DSS

)M

easu

rem

ents

:- P

lant

er fl

exio

n to

rque

Ana

lysi

s:- F

atig

ue In

dex

(FI):

Tor

que

at th

e en

d of

the

2 m

in s

timul

atio

n no

rmal

ized

to th

e m

axim

um

torq

ue- F

atig

ue T

ime

(FT)

: Diff

eren

ce in

tim

e fro

m w

hen

the

max

imum

torq

ue w

as a

chie

ved

to

whe

n th

e th

e to

rque

dro

pped

by

3 dB

- Tor

que-

Tim

e In

tegr

al (T

TI):

Inte

gral

of t

orqu

e ov

er th

e en

tire

2 m

in fa

tigui

ng s

timul

atio

n

Expe

rimen

t 1

BA

CK

GR

OU

ND

BA

CK

GR

OU

ND

Pa

tient

s w

ith n

euro

logi

cal d

isor

ders

suc

h as

spi

nal c

ord

inju

ry (S

CI),

stro

ke, a

nd tr

aum

atic

bra

in in

jury

, fre

quen

tly

suffe

r fro

m m

otor

dis

abilit

y. M

otor

dis

abilit

y de

tract

s fro

m p

atie

nts’

inde

pend

ence

and

the

refo

re q

ualit

y of

life

. Ad

ditio

nally

, mot

or d

isab

ility

caus

es d

isus

e of

mus

cles

, and

indu

ces

mus

cle

atro

phy.

Man

y se

cond

ary

impa

irmen

ts

in th

ose

patie

nts,

suc

h as

pre

ssur

e so

res,

low

impa

ct fr

actu

res,

and

dee

p ve

in th

rom

bosi

s ar

e th

ough

t to

be a

t lea

st

parti

ally

rela

ted

to m

uscl

e at

roph

y. Fu

nctio

nal e

lect

rical

stim

ulat

ion

(FES

) has

bee

n us

ed fo

r neu

rore

habi

litat

ion

of

indi

vidu

als

with

suc

h ne

urol

ogic

al d

isor

ders

. FES

has

bee

n us

ed a

s an

ass

istiv

e te

chno

logy

to h

elp

patie

nts

carry

ou

t tas

ks in

dai

ly li

fe, a

s a

ther

apeu

tic to

ol h

elpi

ng m

otor

rele

arni

ng k

now

n as

FES

ther

apy,

and

as a

tool

for m

uscl

e tra

inin

g kn

own

also

as

elec

trica

l mus

cula

r st

imul

atio

n. H

owev

er, o

ne c

omm

on a

spec

t tha

t lim

its it

s us

age

is th

e ra

pid

onse

t of m

uscl

e fa

tigue

, whi

ch s

ever

ely

rest

ricts

the

dura

tion

FES

can

be u

sed.

It is

bel

ieve

d th

at th

e re

vers

e re

crui

tmen

t of m

otor

uni

ts d

urin

g el

ectri

cal s

timul

atio

n is

the

mai

n ca

use

of ra

pid

fatig

ue. A

noth

er re

ason

is th

at a

lo

caliz

ed e

lect

ric f

ield

rep

eate

dly

exci

tes

only

som

e ne

rve

bund

les

that

are

inne

rvat

ing

mus

cles

of

inte

rest

(i.e

., m

uscl

es to

be

stim

ulat

ed).

It

is h

ypot

hesi

zed

that

the

seco

nd re

ason

, loc

aliz

ed e

lect

ric fi

eld,

can

be

addr

esse

d by

stim

ulat

ing

a w

ider

are

a of

the

nerv

e bu

ndle

, whi

ch a

ctiv

ates

mor

e m

otor

uni

ts. T

his

can

be r

ealiz

ed b

y us

ing

mul

tiple

stim

ulat

ion

site

s to

de

liver

ele

ctric

al s

timul

atio

n. I

ndee

d, s

tudi

es h

ave

show

n th

e ef

fect

iven

ess

of s

eque

ntia

l ac

tivat

ion

of m

ultip

le

porti

ons

of n

erve

s in

redu

cing

fatig

ue u

sing

mul

tiple

ele

ctro

des

[1, 2

, 3, 4

]. H

owev

er, a

ll of

thes

e st

udie

s in

vest

igat

ed

stim

ulat

ion

that

req

uire

d in

vasi

ve i

mpl

antin

g of

mul

tiple

ele

ctro

des,

whi

ch i

s no

t su

itabl

e fo

r cl

inic

al u

se.

The

purp

ose

of th

is s

tudy

is to

inve

stig

ate

the

feas

ibilit

y of

redu

cing

mus

cle

fatig

ue b

y di

strib

utin

g th

e el

ectri

c fie

ld o

ver a

w

ider

are

a us

ing

mul

tiple

sur

face

ele

ctro

des

plac

ed o

ver t

he m

uscl

e. If

suc

cess

ful,

such

a te

chni

que

wou

ld a

llow

lo

nger

FES

ses

sion

s du

e to

redu

ced

mus

cle

fatig

ue, l

eadi

ng to

bet

ter r

ehab

ilitat

ion

outc

omes

.

The

view

s exp

ress

ed in

ths p

oste

r do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

The

auth

ors a

ckno

wle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Prog

ram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io.

Spat

ially

Dis

trib

uted

Seq

uent

ial S

timul

atio

n (S

DSS

)&

Sin

gle

Elec

trod

e St

imul

atio

n (S

ES)

1C

ompa

rison

bet

wee

n SD

SS a

nd S

ES2

- FES

stim

ulat

es th

e m

otor

ner

ve b

undl

e th

at is

co

nnec

ted

mus

cle

fiber

s at

the

neur

omus

cula

r ju

nctio

n.- W

ith a

regu

lar e

lect

rode

set

up (S

ES),

FES

stim

ulat

es a

lim

ited

area

of t

he m

otor

ner

ve,

resu

lting

in a

ctiv

atin

g a

limite

d m

uscl

e fib

ers.

- With

SD

SS, b

y ch

angi

ng th

e so

urce

of t

he

elec

trica

l fie

ld, F

ES s

timul

ates

a la

rger

are

a of

th

e m

otor

ner

ve, r

esul

ting

in a

ctiv

atin

g m

ore

mus

cle

fiber

s, a

ltern

atel

y.

Ref

eren

ces

[1] L

au H

K, e

t al.

Clin

Orth

op R

elat

Res

251

-258

, 199

5.[2

] Pet

rofs

ky J

. Med

ical

and

Bio

logi

cal E

ngin

eerin

g an

d C

ompu

ting

16:

302-

-308

, 197

8.[3

] Pet

rofs

ky J

. Med

ical

& B

iolo

gica

l Eng

inee

ring

& C

ompu

ting

17: 8

7-93

, 197

9.[4

] Zon

nevi

jlle E

D, e

t al.

Plas

t Rec

onst

r Sur

g 10

5: 6

67-6

73, 2

000.

Brai

n

Spin

al C

ord

Mot

or N

erve

Stim

ulat

ion

Elec

trode

Neu

rom

uscu

lar

Junc

tion

FES

Dev

ice

SES

SDSS

Ner

ve

Mus

cle

SES

SDSS

Elec

trode

Arra

ngem

ents

SES

SDSS 1

34

Tim

e [m

s]0

2550

7510

012

515

017

5

SES

SDSS

1 2 3 4Phas

e Sh

ift o

f Stim

ulat

ion

40 H

z

10 H

z

10 H

z

10 H

z

10 H

z

02468101214

020

4060

8010

012

0

Ankle Torque [Nm]

Tim

e [s

]

SDSS

02468101214

020

4060

8010

012

0

Ankle Torque [Nm]

Tim

e [s

]

SES

00.511.5

SES

SDSS

0

1000

2000

3000

SES

SDSS

FI

TTI [Nms]

p <

0.00

1p

< 0.

0001

030

6090

120

0246810 Ankle torque [Nm]

Tim

e [s

]

SDSS

SES

Expe

rimen

t 1

- For

bot

h m

odes

, the

max

imum

torq

ues

quic

kly

deve

lope

d af

ter o

nset

of s

timul

atio

n an

d fa

tigue

ens

ured

imm

edia

tely

afte

r tha

t. H

owev

er, S

DSS

re

sulte

d in

cle

arly

less

fatig

ue th

an S

ES a

s ev

iden

ced

by a

low

er ra

te o

f tor

que

decl

ine

durin

g th

e fir

st q

uate

r of s

timul

atio

n an

d a

high

er to

rque

pr

oduc

ed a

t the

end

of s

timul

atio

n.- A

ll m

easu

res

of F

I, FT

, and

TTI

qua

ntita

teve

ly a

nd s

tatis

tical

ly s

uppo

rts th

e ab

ovem

entio

ned

obse

rvat

ion,

i.e.

, SD

SS le

ss fa

tigue

.

Expe

rimen

t 2

SES

SDSS

0.00

0.25

0.50

0.75

1.00

FI

SES

SDSS

015304560 FT [s]

SES

SDSS

0

240

480

720

960

TTI [Nm·s]

- In

SES,

a s

et o

f 9 c

m -

5 cm

ele

ctro

des

was

us

ed fo

r the

act

ive

elec

trode

and

the

refe

renc

e el

ectro

de.

- In

SDSS

, an

arra

y el

ectro

de o

f fou

r 4.5

cm

- 2.

5 cm

ele

ctro

des

was

use

d fo

r the

act

ive

elec

trode

, an

d a

9 cm

- 5

cm e

lect

rode

was

for t

he re

fere

nce

elec

trode

.- E

ach

elec

trode

in th

e ar

ray

elec

trode

was

st

imul

ated

with

10

Hz,

with

90

deg

phas

e sh

ift

amon

g th

e ar

ray

elec

trode

s.

Expe

rimen

t 2Su

bjec

ts:

- You

ng h

ealth

y su

bjec

ts: n

= 1

3 (fe

mal

e 5)

, Age

25.

7±7.

0 yr

s, W

eigh

t 64.

8±6.

9 kg

, Hei

ght 1

69±7

cm

Task

: - I

som

etric

, rep

etet

ive

plan

tar f

lexi

on in

a s

ittin

g po

stur

e fo

r 2 m

in, 3

00 m

s-on

and

700

ms-

off

- Com

paris

on b

etw

een

SES

and

SDSS

(see

righ

t col

umn)

- 1 tr

ial f

or e

ach

cond

ition

per

sub

ject

, 2 tr

ials

in s

epar

ated

day

s- F

ES: P

ulse

freq

uenc

y, 40

Hz;

Pul

se w

idth

, 250

us;

Pul

se in

tens

ity, 4

2±6

mA

(SES

) and

39±

6 m

A (S

DSS

)M

easu

rem

ents

:- P

lant

er fl

exio

n to

rque

Ana

lysi

s:- F

I and

TTI

p <

0.00

1

p <

0.00

1p

< 0.

001

- With

the

able

-bod

ied

indi

vidu

als

and

repe

titiv

e co

ntra

ctio

ns, t

he s

imila

r obs

erva

tion

was

obt

aine

d.- F

or b

oth

mea

sure

s of

FI a

nd T

TI, S

DSS

sho

wed

less

fatig

ue c

ompa

red

to S

ES.

Nove

l Meth

odolo

gy to

Red

uce M

uscle

Fat

igue d

urin

g Fun

ction

al El

ectri

cal S

timul

ation

usin

g Spa

tially

Dist

ribut

ed Se

quen

tial S

timul

ation

Mas

ani K

1) ,

Ngu

yen

R 2

) , Po

povi

c M

R 1

, 3)

Toro

nto

Reh

ab is

a te

achi

ng a

nd re

sear

ch h

ospi

tal f

ully

affi

liate

d w

ith th

e U

nive

rsity

of T

oron

to.

1) L

yndh

urst

Cen

tre, T

oron

to R

ehab

ilita

tion

Inst

itute

, Tor

onto

, CA

NA

DA

2) A

utom

atic

Con

trol L

abor

ator

y, E

TH Z

uric

h, S

WIT

ZER

LAN

D3)

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring,

Uni

vers

ity o

f Tor

onto

, Tor

onto

, CA

NA

DA

FIC

CD

ATTo

ront

o, J

une

5-8,

201

1e-

mai

l : k

.mas

ani@

utor

onto

.ca

Page 41: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Can

adia

n In

stitu

tes

of H

ealth

Res

earc

h In

stitu

ts d

e re

cher

e en

san

té d

u C

anad

a N

atur

al S

cien

ces

and

Engi

neer

ing

Res

earc

h C

ounc

il of

Can

ada

Con

seil

de re

cher

ches

en

scie

nces

nat

urel

les

et e

n gé

nie

du C

anad

a

Min

istr

y of

Hea

lth

and

Long

Ter

m C

are

The

view

s ex

pres

sed

in th

is p

oste

r do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

Part

ners

: R

ehab

ilita

tion

Eng

inee

ring

Lab

orat

ory

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

To

ront

o R

ehab

ilita

tion

Inst

itute

C

onta

ct: m

ilos.p

opov

ic@

utor

onto

.ca

ww

w.to

ront

o-fe

s.ca

Puls

e ri

se ti

me

(t ris

e): is

the

time

it ta

kes f

or a

pul

se to

reac

h th

e de

sire

d in

tens

ity. M

inim

izin

g t ri

se a

llow

s gen

erat

ion

of a

ctio

n po

tent

ials

with

less

ele

ctric

cha

rge

(red

uced

PI)

. C

urre

nt v

s. vo

ltage

con

trol:

curr

ent r

egul

ated

pul

ses a

re

pref

eren

tially

use

d be

caus

e th

ey p

rovi

de b

ette

r con

trol o

f the

cha

rge

bein

g ap

plie

d w

hen

tissu

e im

peda

nce

chan

ges (

durin

g th

erap

y or

be

twee

n se

ssio

ns),

prov

idin

g m

ore

cons

iste

nt st

imul

atio

n.

Bas

ed o

n th

e ab

ovem

entio

ned

puls

e re

quire

men

ts, p

ast F

ES

solu

tions

, and

the

need

s of F

ES p

ract

ition

ers a

nd re

sear

cher

s, th

e sp

ecifi

catio

ns o

f the

new

syst

em w

ere

esta

blis

hed

in T

able

1.

i (A)

t (s)

A1

A2PI 4·PI

PD4·

PD

A1=

A2A1

=A2

A1

A2

PI

PI

f puls

ePD

PD

A M

ULT

I-C

HA

NN

EL

CU

RR

EN

T-R

EG

UL

ATE

D O

UT

PUT

STA

GE

FO

R A

N E

LE

CT

RIC

AL

STIM

UL

ATO

R

M. T

arul

li1,3 ,

S. H

uert

a1,3 ,

A. P

rodi

c1 , P.

W. L

ehn1 a

nd M

. R. P

opov

ic2,

3 1.

Dep

artm

ent o

f Ele

ctri

cal a

nd C

ompu

ter

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

, Can

ada

2. In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eeri

ng, U

nive

rsity

of T

oron

to, C

anad

a 3.

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y, T

oron

to R

ehab

ilita

tion

Inst

itute

, Can

ada

Elec

trica

l stim

ulat

ion

(ES)

ther

apy

deliv

ers c

harg

e pu

lses

to

exci

tabl

e tis

sue

to im

prov

e, m

odul

ate

or re

stor

e lo

st o

r da

mag

ed n

euro

nal a

nd/o

r mus

cula

r fun

ctio

n. S

peci

fic E

S sy

stem

s tha

t hav

e be

en d

evel

oped

for d

iffer

ent a

pplic

atio

ns

are

limite

d fo

r tw

o m

ain

reas

ons:

1. T

hey

ofte

n do

not

pro

vide

con

sist

ent c

harg

e de

liver

y ov

er th

e fu

ll ra

nge

of ti

ssue

impe

danc

es.

2. T

hey

cann

ot b

e ea

sily

app

lied

to d

iffer

ent a

reas

of t

he

body

with

out m

ajor

adj

ustm

ent o

r red

esig

n.

This

pap

er e

luci

date

s a n

ovel

ele

ctric

al st

imul

ator

pla

tform

th

at so

lves

the

prob

lem

s abo

ve b

y:

1. A

chie

ving

the

sam

e m

uscl

e co

ntra

ctio

n as

stat

e of

the

art s

olut

ions

with

sign

ifica

ntly

low

er c

harg

e us

ing

shar

per,

bette

r con

trolle

d pu

lses

. 2. E

mpl

oyin

g a

flexi

ble

digi

tal p

latfo

rm to

acc

omm

odat

e vi

rtual

ly a

ll FE

S ap

plic

atio

ns.

Bac

kgro

und

and

Mot

ivat

ion

Fig1

– K

ey p

ulse

cha

ract

eris

tics.

1. F

irst

stag

e: th

e ba

ttery

(inp

ut) v

olta

ge is

step

ped

up to

seve

ral

hund

red

volts

with

bui

lt in

isol

atio

n fr

om th

e pa

tient

. 2. S

econ

d pu

lse

shap

ing

circ

uitr

y st

age:

cre

ates

the

desi

red

stim

ulat

ion

puls

es w

ith ti

ght a

nd fa

st re

gula

tion

of c

urre

nt

ampl

itude

leve

l.

This

nov

el se

tup

has m

any

adva

ntag

es:

1. 

Bui

lt in

cha

rge

bala

ncin

g en

sure

s no

exce

ss c

harg

e is

pre

sent

in

the

tissu

e of

the

patie

nt fo

llow

ing

a si

ngle

pul

se d

eliv

ery.

2. 

A d

igita

l con

trolle

r for

dyn

amic

cur

rent

regu

latio

n, p

rovi

ding

ex

quis

ite p

ulse

shap

es a

nd in

here

nt c

urre

nt o

verlo

ad p

rote

ctio

n.

3. 

A p

rogr

amm

able

dig

ital p

latfo

rm th

at g

ener

ates

man

y di

ffere

nt

type

s of p

ulse

s, va

ryin

g in

dur

atio

n, a

mpl

itude

and

freq

uenc

y.

4. 

The

abili

ty fo

r clo

sed

loop

func

tiona

lity

usin

g in

puts

from

va

rious

sens

ory

mod

aliti

es.

In d

evel

opin

g th

e ne

w fl

exib

le o

utpu

t sta

ge, s

ever

al k

ey

stim

ulat

ion

char

acte

ristic

s had

to b

e bo

th ti

ghtly

con

trolle

d an

d re

adily

adj

usta

ble:

Pu

lse

shap

e: F

ig1

show

s bip

hasi

c as

ymm

etric

(lef

t) an

d bi

phas

ic sy

mm

etric

pul

ses (

right

). Fo

r bal

ance

d pu

lses

, the

ch

arge

del

iver

ed a

nd re

mov

ed m

ust b

e m

aint

aine

d ov

er ti

me,

to

avo

id d

amag

ing

char

ge re

tent

ion

in ti

ssue

. Pu

lse

dura

tion

(PD

): sh

ould

be

long

eno

ugh

so th

e la

tent

pe

riod,

act

ion

pote

ntia

l and

reco

very

take

pla

ce. T

he la

rger

th

e m

uscl

e gr

oups

, the

gre

ater

PD

nee

ded(

up to

seve

ral m

s).

Puls

e fre

quen

cy (f

puls

e): sh

ould

gen

erat

e co

ntin

uous

mus

cle

(teta

nic)

con

tract

ions

(>40

Hz)

and

dis

cont

inuo

us m

uscl

e (n

on-te

tani

c) c

ontra

ctio

n (b

etw

een

16 H

z an

d 40

Hz)

. Pu

lse

inte

nsity

(PI)

: sho

uld

be h

igh

enou

gh to

pro

duce

an

actio

n po

tent

ial.

The

deep

er a

nd/o

r lar

ger m

uscl

es, t

he

grea

ter t

he P

I nee

ded

(up

to o

ver 1

00m

A).

Stim

ulat

ion

Puls

es a

nd S

peci

ficat

ions

Feature

Specification

Varia

ble

puls

e in

tens

ity

0.5m

A –

125

mA

(res

olut

ion

0.5m

A)

Varia

ble

puls

e fr

eque

ncy

1Hz

– 15

kHz,

(res

olut

ion

of 1

Hz)

Va

riabl

e pu

lse

dura

tion

10µs

– 1

0ms (

reso

lutio

n of

1µs

) U

ltraf

ast p

ulse

rise

tim

e 10

ns

Varia

ble

puls

e sh

ape

Bip

hasi

c (S

ymm

etric

/Asy

mm

etric

) M

onop

hasi

c (P

ositi

ve/N

egat

ive)

B

alan

ced

puls

es

No

resi

dual

cha

rge

left

in ti

ssue

Vo

ltage

and

cur

rent

pr

otec

tion

Imm

edia

te sh

utdo

wn

if vo

ltage

or

curr

ent e

xcee

ds a

llow

able

lim

it M

ultip

le st

imul

atio

n ch

anne

ls

4 in

depe

nden

tly re

gula

ted

stim

ulat

ion

chan

nels

Tabl

e 1

– N

ew st

imul

ator

spec

ifica

tions

Figs

2 a

and

b sh

ow e

xam

ples

of p

ulse

s gen

erat

ed w

ith th

e ne

w

outp

ut st

age

of th

e st

imul

ator

. Fig

3 hi

ghlig

hts t

he u

ltraf

ast r

ise

time.

Th

e ne

w st

imul

ator

has

seve

ral i

mpr

ovem

ents

ove

r cur

rent

syst

em:

•  Tw

o or

ders

of m

agni

tude

fast

er ri

se ti

me,

redu

cing

am

plitu

de

•  Ti

ghte

r and

safe

r reg

ulat

ion

of c

urre

nt d

eliv

ered

to th

e pa

tient

• 

Bro

ad p

erfo

rman

ce e

nvel

ope

enco

mpa

ssin

g al

l ES

appl

icat

ions

. R

esul

ts a

nd C

oncl

usio

n t rise

= 1

0 ns -10

mA

, -22

V

0 m

A, 0

V

Fig2

a –

Ass

ymet

ric

Bip

hasi

c Pu

lse

Fig3

– U

ltraf

ast r

ise

time

The

four

-cha

nnel

stim

ulat

or c

onsi

sts o

f tw

o st

ages

of s

witc

hed

mod

e po

wer

supp

lies a

rran

ged

in se

ries.

Thes

e su

pplie

s ser

ve tw

o im

porta

nt fu

nctio

ns:

Met

hods

i load

1 m

s

0 A

12.5

mA

-50

mA

R l

oad ≈

1 kΩ

250 µs

-50

mA

50 m

A

i load

R loa

d ≈

1 kΩ

250 µs

250 µs

Fig2

b –

Sym

etri

c B

ipha

sic

Puls

e

Page 42: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health Research Instituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

Partners: Rehabilitation Engineering Laboratory Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto Rehabilitation Institute Contact: [email protected] www.toronto-fes.ca

INCLUDING NON-IDEAL BEHAVIOUR IN FES SIMULATIONS C.L. Lynch1,2, G.M. Graham, and M.R. Popovic1,2

( ) ( ) ( ) ( )( ) ( )tfattmtstt ⋅++= τν

•  Functional electrical stimulation (FES) can be used to restore or replace motor function in individuals with spinal cord injuries (SCI). •  New SCI applications must be thoroughly tested with SCI subjects – time-consuming and expensive, so simulations are used to refine design of FES applications prior to testing with subjects. •  FES simulations are often based on ideal stimulated muscle response, which may result in an overly optimistic assessment of FES system’s likely real-world performance. •  We created a “non-idealities” block in Simulink with data from complete SCI subjects.

•  Modifies nominal stimulated muscle response to reflect undesirable behaviour seen in real world. •  Represents the range of spasm, tremor, and fatigue behaviour exhibited by stimulated muscles. •  Can be incorporated into existing simulations to analyze potential real-world performance of FES systems.

Introduction

References [1] Graham GM, Thrasher TA, Popovic MR. IEEE Trans Neural Syst Rehabil Eng, 14:38-45, 2006. [2] Ferrarin M, Pedotti A. IEEE Trans Rehabil Eng, 8:342-352, 2000.

1.   IBBME, University of Toronto, Toronto, Canada 2.   Rehabilitation Engineering Laboratory, Toronto Rehab, Toronto, Canada

•  Modified torque produced by non-idealities block differs from nominal torque. •  Fatigue, tremors had a large effect on control performance. •  Real-world control performance may be modestly better than simulated results due to unmodeled muscle recovery. •  Isotonic contractions in trained muscles may have different fatigue profiles than those used in non-idealities block. •  Non-idealities block does not reflect all possible undesirable behaviour that can occur with real-world FES use.

Discussion

•  Fig 2 shows effect of non-idealities block. Dotted line is nominal knee torque at maximum stimulation. Solid line is modified torque for mild spasms, fatigue, and tremor. •  Fig 3 shows unit step tracking performance for PID controller. Dotted line is without non-idealities block, and solid line is with block (mild spasms, fatigue, and tremor).

Results

•  Spasm, tremor, and fatigue waveforms were extracted from stimulated knee movements of complete SCI subjects.

•  Fatigue waveforms were scaled between 0 and 1 [1]. •  Each non-ideality waveform was classified as mild, moderate, or severe.

•  Non-idealities block is implemented in Simulink, and allows user to choose severity of non-idealities included in particular instance of block.

•  Actual waveform that is used for each non-ideality is chosen randomly from group of waveforms having desired classification.

•  Eqn 1 gives output of block, where \tau(t) is nominal stimulated muscle torque, \nu(t) is modified torque, and s(t), m(t), and fat(t) are instances of spasm, tremor, and fatigue waveforms. •  Fig 1 shows example of implementation of non-idealities block in FES simulation.

•  PID controller is used to track desired knee angle. •  Based on Ferrarin & Pedotti’s model of seated, stimulated knee extension against gravity [2].

Methods

•  Non-idealities block allows researchers to assess likely real-world performance of FES systems prior to subject testing. •  MatLab code for block will be freely available on our website (targeted release date – early 2011).

Conclusions PID

Controller

StimulatedQuadricepsResponse

Knee Dynamics

Non-Idealities

BlockΣ

θREF

θ

e u τ θυ_+

Fig 1 – Diagram of knee control simulation (θ is knee angle)

Fig 2 – Nominal torque at maximum stimulation, and modified torque from non-idealities block (mild spasms, fatigue, and tremor)

Fig 3 – Sample implementation – unit step tracking with PID control (dotted line is nominal case, solid line is with non-idealities block).

Equation 1 – Output of non-idealities block

Page 43: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

Canadian Institutes of Health Research Instituts de rechere en santé du Canada

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Ministry of Health and Long Term Care

Partners: Rehabilitation Engineering Laboratory Institute of Biomaterials and Biomedical Engineering, University of Toronto Toronto Rehabilitation Institute Contact: [email protected] www.toronto-fes.ca

INCLUDING NON-IDEAL BEHAVIOUR IN SIMULATIONS OF FES C.L. Lynch1,2, G.M. Graham2, and M.R. Popovic1,2

•  Functional electrical stimulation (FES) can be used to restore or replace motor function in individuals with spinal cord injuries (SCI). •  New SCI applications must be thoroughly tested with SCI subjects – time-consuming and expensive, so simulations are used to refine design of FES applications prior to testing. •  FES simulations are often based on ideal stimulated muscle response, which may result in an overly optimistic assessment of FES system’s likely real-world performance. •  We created a “non-idealities” block in Simulink with data from complete SCI subjects (injury levels C6 through T10).

•  Block modifies nominal stimulated muscle response to reflect undesirable behaviour seen in real world. •  Represents the range of spasm, tremor, and fatigue behaviour exhibited by stimulated muscles. •  Can be incorporated into existing simulations to analyze potential real-world performance of FES systems.

Introduction

References [1] Graham GM, Thrasher TA, Popovic MR. IEEE Trans Neural Syst Rehabil Eng, 14:38-45, 2006. [2] Ferrarin M, Pedotti A. IEEE Trans Rehabil Eng, 8:342-352, 2000.

1.   IBBME, University of Toronto, Toronto, Canada 2.   Rehabilitation Engineering Laboratory, Toronto Rehab, Toronto, Canada

•  Performance of SMC is good for nominal case and poor for cases that include non-idealities, as shown in Figs 2 and 3. •  Inclusion of non-idealities block shows that controller is not ready for testing with human subjects. •  Spasticity improved controller performance, possibly due to increased damping of the knee joint. •  Real-world control performance may be modestly better than simulated results due to unmodeled muscle recovery. •  Isotonic contractions in trained muscles may have different fatigue profiles than those used in non-idealities block.

Discussion

•  Fig 2 shows the step response for the nominal case and the case with mild fatigue, mild spasms, and mild tremors. •  Fig 3 shows the response for a walking-like trajectory for the same cases shown in Fig 2.

Results

•  Spasm, tremor, and fatigue waveforms were extracted from stimulated knee movements of complete SCI subjects.

•  Fatigue waveforms were scaled between 0 and 1 [1]. •  Each non-ideality waveform was classified as mild, moderate, or severe.

•  Non-idealities block was implemented in Simulink, and allows user to choose severity of non-idealities included in particular instance of block.

•  Actual waveform that is used for each non-ideality is chosen randomly from group of waveforms having desired class.

•  Eqn 1 gives output of block, where is nominal stimulated muscle torque, is modified torque, and s(t), m(t), and fat(t) are instances of spasm, tremor, and fatigue waveforms •  Fig 1 shows implementation of non-idealities block in simulation.

•  Boundary-layer sliding mode controller (SMC) is used to track desired knee angle. •  Based on Ferrarin & Pedotti’s model of seated, stimulated knee extension against gravity [2].

Methods

•  Non-idealities block illustrates that real-world performance of controller may be vastly different from nominal performance. •  Non-idealities block provides a convenient method of comprehensively testing FES systems in simulation. •  MatLab code for block will be freely available in early 2011 at www.toronto-fes.ca under Products.

Conclusions

Sliding Mode Controller

StimulatedQuadricepsResponse

Knee Dynamics

Non-Idealities

BlockΣ

θREF

θ

e u τ θυ_+

Fig 1 – Diagram of knee control simulation (θ is knee angle)

Fig 2 – Step response. Thin line is reference trajectory, dashed line is response for nominal knee model, and thick solid line is response for model with mild non-idealities included.

Fig 3 – Response for walking-like trajectory. Thin line is reference trajectory, dashed line is response for nominal knee model, and thick solid line is response for model with mild non-idealities.

( ) ( ) ( ) ( )( ) ( )tfattmtstt quad ⋅++= τν

Equation 1 – Output of non-idealities block

)(tquadτ)(tν

Page 44: ring Laboratorytoronto-fes.ca/brochures/REL_Brochure2013.pdf · We develop advanced technologies for spinal cord injury (SCI) and stroke rehabilitation. These include brain/machine

PURP

OSE

PURP

OSE

CO

NC

LUSI

ON

CO

NC

LUSI

ON

To e

xplo

re t

he f

atig

ue-re

duci

ng a

bilit

y of

spa

tially

dis

tribu

ted

sequ

entia

l stim

ulat

ion

(SD

SS) f

or m

ajor

low

er li

mb

mus

cle

grou

ps

- The

effe

ctiv

enes

s of

usi

ng S

DSS

to r

educ

e m

uscl

e fa

tigue

was

sho

wn

in o

ne in

divi

dual

with

SC

I for

pla

ntar

flexo

rs a

nd a

ble-

bodi

ed in

divi

dual

s fo

r kne

e ex

tens

ors/

flex

ors

and

plan

tarfl

exor

s .

- The

resu

lts w

arra

nt th

e po

tent

ial o

f SD

SS to

pro

long

trai

ning

ses

sion

s of

var

ious

FES

ther

apy.

Partn

ers:

Reh

abili

tatio

n E

ngin

eeri

ng L

abor

ator

y,

Inst

itute

of B

iom

ater

ials

and

Bio

med

ical

Eng

inee

ring

, Uni

vers

ity o

f Tor

onto

Toro

nto

Reh

abili

tatio

n In

stitu

teC

onta

ct: k

.mas

ani@

utor

onto

.ca

web

pag

e: h

ttp:

//ww

w.to

ront

o-fe

s.ca

Subj

ects

: - A

n in

divi

dual

with

com

plet

e SC

I, T3

/T4,

ASI

A A,

4 y

ears

pos

t inj

ury

Task

: - I

som

etric

, con

tinuo

us p

lant

ar fl

exio

n in

a s

ittin

g po

stur

e fo

r 2 m

in- C

ompa

rison

bet

wee

n SE

S an

d SD

SS (s

ee th

e rig

ht c

olum

n)- 1

2 tri

als

in s

epar

ated

day

s (6

SES

and

6 S

DSS

)- F

ES: P

ulse

freq

uenc

y, 40

Hz;

Pul

se w

idth

, 250

us;

Pul

se in

tens

ity, 6

4±5

mA

(SES

) and

51±

4 m

A (S

DSS

)M

easu

rem

ents

:- P

lant

er fl

exio

n to

rque

Ana

lysi

s:- F

atig

ue In

dex

(FI):

Tor

que

at th

e en

d of

the

2 m

in s

timul

atio

n no

rmal

ized

to th

e m

axim

um

torq

ue- F

atig

ue T

ime

(FT)

: Diff

eren

ce in

tim

e fro

m w

hen

the

max

imum

torq

ue w

as a

chie

ved

to

whe

n th

e th

e to

rque

dro

pped

by

3 dB

- Tor

que-

Tim

e In

tegr

al (T

TI):

Inte

gral

of t

orqu

e ov

er th

e en

tire

2 m

in fa

tigui

ng s

timul

atio

n

Expe

rimen

t 1 [1

3]

BA

CK

GR

OU

ND

BA

CK

GR

OU

ND

Neu

rom

uscu

lar

elec

trica

l st

imul

atio

n (N

MES

) is

use

d to

pro

mot

e ph

ysio

logi

cal

and

func

tiona

l im

prov

emen

t in

pa

raly

sed

limbs

[1, 2

] and

cou

nter

act m

uscu

losk

elet

al a

troph

y [3

, 4].

How

ever

, whi

le it

has

suc

ceed

ed in

ass

istin

g in

divi

dual

s w

ith n

euro

mus

cula

r di

sord

ers,

a c

ritic

al li

mita

tion

with

this

reh

abilit

ativ

e ap

proa

ch is

the

rapi

d on

set o

f m

uscl

e fa

tigue

dur

ing

repe

ated

con

tract

ions

[5],

whi

ch r

esul

ts in

the

mus

cle

forc

e de

cay

and

slow

ing

of m

uscl

e co

ntra

ctile

pro

perti

es [6

].Th

e in

crea

sed

fatig

abilit

y w

ith N

MES

is th

ough

t by

som

e re

sear

cher

s to

ref

lect

a r

ever

sal o

f the

siz

e pr

inci

ple

of

recr

uitm

ent

[7],

whe

n la

rger

axo

ns t

hat

inne

rvat

e th

e m

ore

easi

ly f

atig

able

fib

ers

are

recr

uite

d at

low

stim

ulus

m

agni

tude

s, a

nd th

e sm

alle

r axo

ns fo

llow

with

incr

ease

d st

imul

atio

n le

vels

[1, 5

]. An

othe

r pla

usib

le e

xpla

natio

n is

th

at, w

hile

dur

ing

volu

ntar

y co

ntra

ctio

n, th

e w

ork

is b

eing

sha

red

betw

een

diffe

rent

mot

or u

nits

of t

he s

ame

mus

cle

[5],

conv

entio

nal N

MES

doe

s no

t per

mit

alte

ratio

ns in

rec

ruitm

ent o

f mot

or u

nits

bec

ause

all

para

met

ers

rem

ain

fixed

dur

ing

the

bout

[5].

One

of t

he m

eans

to c

ount

er fo

rce

loss

dur

ing

elec

trica

l stim

ulat

ion

is a

imed

at a

chie

ving

an

asyn

chro

nous

beh

avio

r by

del

iver

ing

elec

trica

l st

imul

atio

n th

roug

h m

ultip

le e

lect

rode

loc

atio

ns o

n a

sing

le s

ite,

prod

ucin

g a

fuse

d co

ntra

ctio

n w

ith re

lativ

ely

low

stim

ulat

ion

rate

s, a

nd d

elay

ing

the

onse

t of f

atig

ue. T

his

type

of s

patia

lly d

istri

bute

d an

d se

quen

tially

app

lied

stim

ulat

ion

is r

efer

red

to a

s 'se

quen

tial

stim

ulat

ion'

. Fa

tigue

was

red

uced

with

suc

h st

imul

atio

n, w

idel

y sh

own

in a

nim

al e

xper

imen

tal m

odel

s [8

-11]

. Unt

il no

w, o

nly

a fe

w s

tudi

es [1

2-14

] inv

estig

ated

th

is s

timul

atio

n m

etho

d in

hum

an e

xper

imen

tal

setu

ps,

how

ever

, th

is m

etho

d ha

s no

t be

en s

ucce

ssfu

lly

inco

rpor

ated

into

clin

ical

app

licat

ions

.

The

view

s exp

ress

ed in

ths p

oste

r do

not n

eces

saril

y re

flect

thos

e of

any

of t

he g

rant

ing

agen

cies

.

The

auth

ors a

ckno

wle

dge

the

supp

ort o

f Tor

onto

Reh

abili

tatio

n In

stitu

te w

ho re

ceiv

es fu

ndin

g un

der t

he P

rovi

ncia

l Reh

abili

tatio

n R

esea

rch

Prog

ram

from

the

Min

istry

of H

ealth

and

Lon

g-Te

rm C

are

in O

ntar

io.

Spat

ially

Dis

trib

uted

Seq

uent

ial S

timul

atio

n (S

DSS

)&

Sin

gle

Elec

trod

e St

imul

atio

n (S

ES)

1C

ompa

rison

bet

wee

n SD

SS a

nd S

ES2

- FES

stim

ulat

es th

e m

otor

ner

ve b

undl

e th

at is

co

nnec

ted

mus

cle

fiber

s at

the

neur

omus

cula

r ju

nctio

n.- W

ith a

regu

lar e

lect

rode

set

up (S

ES),

FES

stim

ulat

es a

lim

ited

area

of t

he m

otor

ner

ve,

resu

lting

in a

ctiv

atin

g a

limite

d m

uscl

e fib

ers.

- With

SD

SS, b

y ch

angi

ng th

e so

urce

of t

he

elec

trica

l fie

ld, F

ES s

timul

ates

a la

rger

are

a of

th

e m

otor

ner

ve, r

esul

ting

in a

ctiv

atin

g m

ore

mus

cle

fiber

s, a

ltern

atel

y.

Brai

n

Spin

al C

ord

Mot

or N

erve

Stim

ulat

ion

Elec

trode

Neu

rom

uscu

lar

Junc

tion

FES

Dev

ice

SES

SDSS

Mus

cle

SES

SDSS

Elec

trode

Arra

ngem

ents

SES

SDSS 1

34

Tim

e [m

s]0

2550

7510

012

515

017

5

SES

SDSS

1 2 3 4Phas

e Sh

ift o

f Stim

ulat

ion

40 H

z

10 H

z

10 H

z

10 H

z

10 H

z

02468101214

020

4060

8010

012

0

Ankle Torque [Nm]

Tim

e [s

]

SDSS

02468101214

020

4060

8010

012

0

Ankle Torque [Nm]

Tim

e [s

]

SES

030

6090

120

0246810 Ankle torque [Nm]

Tim

e [s

]

SDSS

SES

Expe

rimen

t 1

- For

bot

h m

odes

, the

max

imum

torq

ues

quic

kly

deve

lope

d af

ter o

nset

of s

timul

atio

n an

d fa

tigue

ens

ured

imm

edia

tely

afte

r tha

t. H

owev

er, S

DSS

re

sulte

d in

cle

arly

less

fatig

ue th

an S

ES a

s ev

iden

ced

by a

low

er ra

te o

f tor

que

decl

ine

durin

g th

e fir

st q

uate

r of s

timul

atio

n an

d a

high

er to

rque

pr

oduc

ed a

t the

end

of s

timul

atio

n.- A

ll m

easu

res

of F

I, FT

, and

TTI

qua

ntita

teve

ly a

nd s

tatis

tical

ly s

uppo

rts th

e ab

ovem

entio

ned

obse

rvat

ion,

i.e.

, SD

SS le

ss fa

tigue

.

Expe

rimen

t 2

SES

SDSS

0.00

0.25

0.50

0.75

1.00

FI

SES

SDSS

015304560 FT [s]

SES

SDSS

0

240

480

720

960

TTI [Nm·s]

- In

SES,

a s

et o

f 9 c

m -

5 cm

ele

ctro

des

was

us

ed fo

r the

act

ive

elec

trode

and

the

refe

renc

e el

ectro

de.

- In

SDSS

, an

arra

y el

ectro

de o

f fou

r 4.5

cm

- 2.

5 cm

ele

ctro

des

was

use

d fo

r the

act

ive

elec

trode

, an

d a

9 cm

- 5

cm e

lect

rode

was

for t

he re

fere

nce

elec

trode

.- E

ach

elec

trode

in th

e ar

ray

elec

trode

was

st

imul

ated

with

10

Hz,

with

90

deg

phas

e sh

ift

amon

g th

e ar

ray

elec

trode

s.

Expe

rimen

t 2Su

bjec

ts:

- You

ng h

ealth

y m

ale

subj

ects

: n =

15

Task

: - K

nee

exte

nsio

n, k

nee

flexi

on, p

lant

ar fl

exio

n, a

nd d

orsi

flex

ion

- Iso

met

ric, r

epet

etiv

e co

ntra

ctio

n in

a s

ittin

g po

stur

e fo

r 2 m

in, 3

00 m

s-on

and

700

ms-

off

- Com

paris

on b

etw

een

SES

and

SDSS

(see

righ

t col

umn)

- 4 tr

ials

for e

ach

join

t with

eac

h co

nditi

on p

er s

ubje

ct in

a d

ay, 2

sep

arat

ed d

ays

for 2

con

ditio

ns- F

ES: P

ulse

freq

uenc

y, 40

Hz;

Pul

se w

idth

, 250

us

Mea

sure

men

ts:

- Joi

nt to

rque

Ana

lysi

s:- F

I

p <

0.00

1

p <

0.00

1p

< 0.

001

- With

the

able

-bod

ied

indi

vidu

als

and

repe

titiv

e co

ntra

ctio

ns, t

he s

imila

r obs

erva

tion

was

obt

aine

d.- E

xcep

t for

dor

sifle

xors

, SD

SS s

how

ed s

igni

fican

tly le

ss fa

tigue

com

pare

d to

SES

.

Impr

oved

Fat

igue R

esist

ance

in L

eg M

uscle

s dur

ing S

patia

lly D

istrib

uted

Sequ

entia

l Stim

ulat

ionSa

yenk

o D

G 1

) , Po

povi

c M

R 1

, 2) ,

Mas

ani K

1, 2

)

Toro

nto

Reh

ab is

a te

achi

ng a

nd re

sear

ch h

ospi

tal f

ully

affi

liate

d w

ith th

e U

nive

rsity

of T

oron

to.

1) L

yndh

urst

Cen

tre, T

oron

to R

ehab

ilita

tion

Inst

itute

, Tor

onto

, CA

NA

DA

2) In

stitu

te o

f Bio

mat

eria

ls a

nd B

iom

edic

al E

ngin

eerin

g, U

nive

rsity

of T

oron

to, T

oron

to, C

AN

AD

A

IFES

SB

anff,

Alb

erta

, Can

ada,

Sept

embe

r 9 -

12, 2

012

e-m

ail :

k.m

asan

i@ut

oron

to.c

a

Hyp

othe

size

d M

echa

nism

- In

SES,

a s

mal

ler n

umbe

r of m

uscl

e fib

res

are

activ

ated

con

tinuo

usly

with

a h

igh

frequ

ency

.- I

n SD

SS, a

larg

er n

umbe

r of m

uscl

e fib

res

are

activ

ated

alte

rnat

ivel

y w

ith a

low

freq

uenc

y.00.2

0.4

0.6

0.81

00.2

0.4

0.6

0.81

00.2

0.4

0.6

0.81

00.2

0.4

0.6

0.81

SES

SDSS

SES

SDSS

FI FI

Knee

Ext

Knee

Flx

Plan

tarF

lxD

orsi

Flx

p =

0.03

p =

0.00

7

p =

0.03

p =

0.07

Ref

eren

ces

[1] S

heffl

er L

R, C

hae

J. M

uscl

e N

erve

200

7; 3

5(5)

: 562

-90.

[2] P

eckh

am P

H, K

nuts

on J

S. A

nnu

Rev

Bio

med

Eng

200

5; 7

: 327

-60.

[3] B

ergq

uist

AJ,

et a

l. Eu

r J A

ppl P

hysi

ol 2

011;

111

(10)

: 240

9-26

.[4

] Dud

ley-

Javo

rosk

i S, S

hiel

ds R

K. J

Reh

abil

Res

Dev

200

8; 4

5(2)

: 283

- 96.

[5] B

icke

l CS,

et a

l. Eu

r J A

ppl P

hysi

ol 2

011;

111

(10)

: 239

9-40

7.[6

] Jon

es D

A. J

Phy

siol

201

0; 5

88(P

t 16)

: 297

7-86

.[7

] Hen

nem

an E

, et a

l. J

Neu

roph

ysio

l 196

5; 2

8(3)

: 599

- 620

.[8

] Lau

HK,

et a

l. C

lin O

rthop

Rel

at R

es 1

995;

(321

): 25

1-8.

[9] Z

onne

vijlle

ED

, et a

l. Pl

ast R

econ

str S

urg

2000

; 105

(2):

667-

73.

[10]

Lau

B, e

t al.

IEEE

Tra

ns N

eura

l Sys

t Reh

abil

Eng

2007

; 15(

2): 2

73-8

5.[1

1] Y

oshi

da K

, Hor

ch K

. Ann

Bio

med

Eng

199

3; 2

1(6)

: 709

-14.

[12]

Mal

esev

ic N

M, e

t al.

Mus

cle

Ner

ve 2

010;

42(

4): 5

56-6

2.[1

3] N

guye

n R

, et a

l. Ar

tif O

rgan

s 20

11; 3

5(12

): 11

74-8

0.[1

4] P

opov

ic L

Z, M

ales

evic

NM

. Con

f Pro

c IE

EE E

ng M

ed B

iol S

oc 2

009;

200

9:

6785

-8.