Richards PCD Shortcourse5(Epithermal)

download Richards PCD Shortcourse5(Epithermal)

of 7

Transcript of Richards PCD Shortcourse5(Epithermal)

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    1/7

    Porphyry Short Course Part 5

    Richards (2011)1

    Porphyry Cu-Mo-Au Systems

    Part 5: Epithermal Deposits

    Jeremy P. Richards Dept. Earth & Atmospheric Sciences

    University of Alberta Edmonton, Alberta, T6G 2E3, Canada

    [email protected]

    The fumarolicepithermal environment

    Hedenquist et al. (1996)

    Active fumaroles on Volcn Lastarra, Chile

    Richards (2011)

    Mina Julia sulfur mine, NW Argentina

    Richards (2011)

    Sulfate fumaroles, Corrida de Cori, NW Argentina

    Left: Gypsum fumarole spiressurrounded by volcanic bombs (black).

    Right: Anydrite veins feeding fossilfumaroles.

    Richards (2011)

    Two main types ofepithermal deposits:

    (a) High sulfidation(acid-sulfate)

    (b) Low sulfidation(adularia-sericite)

    Newly recognized class:

    (c) Intermediate sulfidation(basemetal sulfides, illite).

    Evans, A.M., 1993, Ore geologyand industrial minerals, anintroduction, 3rd edn: BlackwellScientific, 390 p.

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    2/7

    Porphyry Short Course Part 5

    Richards (2011)2

    The epithermal environment

    Hedenquist et al. (1996)

    .

    1 1 / / / .

    Intermediate-sulfidationepithermalAu-Ag

    High-sulfidation epithermaldisseminatedAu Ag Cu

    High-sulfidation

    lode Cu-Au AgCarbonate-replacementZn-Pb-AgAu (or Cu)

    DistalAu/Zn-Pbskarn

    Marblefront

    ProximalCu-Au skarn

    PorphyryCu Au Mo

    Base oflithocap

    1km

    1km

    Subepithermalvein Zn-Cu-Pb-

    Ag Au

    Sediment-hosted distal-disseminated

    Au-As Sb Hg

    Late-mineral porphyry Phreatic brecciaLITHOCAP

    PORPHYRYSTOCK

    PRECURSORPLUTON

    HOSTROCKS

    MAAR-DIATREMECOMPLEX

    Dacite porphyry plug-dome

    Lacustrine sediment

    Late phreatomagmatic breccia

    Early phreatomagmatic breccia

    Late-mineral porphyry

    Intermineral magmatic-hydrothermal breccia

    Intermineral porphyry

    Early porphyry

    Equigranular intrusive rock

    Dacite dome

    Felsic tuff unit

    Andesitic volcanic unit

    Subvolcanic basement / carbonate horizon

    V

    V

    V

    V

    V

    V

    V

    V

    V

    V

    . .,

    ,

    . ,, .

    , .. 1

    , , , , .1 , 1 , .

    Relationshipbetween

    porphyry and

    HSISepithermal

    deposits

    Sillitoe, R.H., 2010, Porphyrycopper systems: EconomicGeology, v. 105, p. 341.

    Epithermal deposit characteristics:

    Shallow environment: Typically "1 km depth offormation.

    Ore fluid: 50300C, typically

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    3/7

    Porphyry Short Course Part 5

    Richards (2011)3

    HS fluids

    Possible pathwaysfor magmatic fluids

    to contract tomoderate salinityliquids, as seen inHS systems (0.2 to4.5 eq.wt.% NaCl

    (Mancano andCampbell, 1995).

    Mancano, D.P., andCampbell, A.R., 1995,Microthermometry ofenargite-hosted fluidinclusions from theLepanto, Philippines, high-sulfidation CuAu deposit:Geochimica etCosmochimica Acta, v. 59,p. 39093916.

    Richards (2011)

    Possible pathwaysfor magmatic fluids

    to contract tomoderate salinity

    liquids:(1) condensation,

    (2) non-condensationpaths of Heinrich et

    al. (2004) andHedenquist et al.

    (1998), respectively.

    Hedenquist, J.W., Arribas, A., Jr.,and Reynolds, J.R., 1998,

    Evolution of an intrusion-centeredhydrothermal system: Far

    SoutheastLepanto porphyry andepithermal Cu-Au deposits,Philippines: Economic Geology, v.

    93, p. 373404.

    Heinrich, C.A., Dreisner, T.,

    Steffnson, A., and Seward, T.M.,2004, Magmatic vapor contraction

    and the transport of gold from theporphyry environment toepithermal ore deposits: Geology,

    v. 32, p. 761764.

    Richards (2011)

    Physico-chemical

    conditions of

    epithermal oreformation

    HS

    LS250C, !S = 0.02 m,

    salinity = 1 m

    Heald, P., Foley, N.K., and Hayba, D.O.,

    1987, Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfateand adularia-sericite types: EconomicGeology, v. 82, p. 126.

    Physico-chemical

    conditions of

    epithermal oreformation

    HS

    LS

    250C, salinity= 1 m

    Heald, P., Foley, N.K., and Hayba,D.O., 1987, Comparative anatomy

    of volcanic-hosted epithermaldeposits: acid-sulfate andadularia-sericite types: EconomicGeology, v. 82, p. 126.

    Gold dissolution asbisulfidecomplexes

    (e.g., Au(HS)2):

    [Au]measured in natural fluids# 1.5 ppb

    Experimentally determined solubilities:

    [Au(HS)2] % 11.1 ppb

    [AuCl2

    ] %

    1.2 x 10

    7

    ppb

    Therefore, Au is mainly dissolved as

    bisulfide rather than chloride complexes.

    Gold transport and deposition

    Richards (2011)

    Precipitationof Au caused by destabilization of Au-

    bisulfide complexes:

    Reduction acidification:Au(HS)2

    + H++ 1/2H2O "Au+ 2H2S +1/4O2

    Oxidation neutralization: Au(HS)2

    + 33/4O2+1/2H2O "Au+ 2SO4

    2+ 3H+

    Gold transport and deposition

    Richards (2011)

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    4/7

    Porphyry Short Course Part 5

    Richards (2011)4

    Gold solubility in relation to acidity and oxidation state Boilingis an effective ore forming process. Gases such as

    CO2and H2Sare lost to the vapour phase:

    Au(HS)2+ H++ 1/2H2O "Au+ 2H2S(g)#+

    1/4O2

    HCO3

    + H+"H2O + CO

    2(g)#(pH increases with loss of CO

    2

    gas)

    Zn2++ HS"ZnS+ H+(sulfides and calcite ppt with increasing pH)

    Ca2++ HCO3"CaCO3+ H

    +

    Ca2++ 2HCO3"CaCO3+ H2O + CO2(g)#(bladed calcite)

    Gold and Ag-telluridespseudomorphing

    bladed calcite in Py,Porgera, PNG

    Bladed calcite andvuggy Qz,

    Pachapaqui, Peru Richards (2011)

    Casts of bladed

    calcite in quartz

    Casposo LS epithermalAu deposit,

    NW Argentina

    PPL

    XPL

    Richards (2011)

    Boiling pointdepth relationships for pure and saline waters,and CO2-bearing waters

    CO2increases the depth(pressure) or lowers thetemperature of boiling (phaseseparation or effervescence)

    Henley, R.W., Truesdell, A.H., Barton, P.D., Jr., and Whitney,J.A., 1984, Fluidmineral equilibria in hydrothermal systems:

    Reviews in Economic Geology, v. 1, 267 p.

    Bodnar, R.J., Reynolds, T.J., and Kuehn, C.A., 1985,Fluid inclusion systematics in epithermal systems:

    Reviews in Economic Geology, v. 2, p. 7397.

    Wallrock sulfidationis also effective:

    FeO + 2H2S +1/2O2"FeS2+ 2H2O

    2Au(HS)2+ FeO + 2H+"2Au+ FeS2+ 2H2S#+ H2O

    Gold transport and deposition

    Pyritized Mt,

    Porgera Audeposit, PNG

    Richards (2011)

    Relationship between epithermal systems and

    volcanism (Sillitoe, 1973)

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    5/7

    Porphyry Short Course Part 5

    Richards (2011)5

    Lepanto HS epithermal system linked to FSE porphyry

    Shinohara, H., and Hedenquist, J.W., 1997, Constraints on magma degassing beneath the FarSoutheast porphyry Cu-Au deposit, Philippines: Journal of Petrology, v. 38, p. 17411752.

    HS: Advanced argillic

    alteration: alunite-silica

    body surrounded byquartz-kaolinite

    (Aras, Iran)

    Richards (2011)

    Vuggy silicalithocap

    overlyingalunite-

    cemented

    breccia,

    Richards (2005)

    Co. Laguna Pedernal,NW Argentina

    Richards (2011)

    5000m

    3500m

    6409m

    Silicified lithocap above high-sulfidation

    epithermal Au mineralization, with marginal

    intermediate sulfidation Pb-Zn-Ag veins(Volcn Antofalla, Argentina)

    Lithocap

    Alunite-clay

    alteration

    Pb-Zn-Ag veins

    Richards (2011)

    Distal Pb-Zn-Ag intermediatesulfidation epithermal veins in

    underlying sedimentary rocksbeneath volcanic sequence

    Quebrada de las Minas,Volcn Antofalla

    Richards (2011)

    Bonanza-type (low sulfidation) epithermal deposits

    Panteleyev, A., 1988, A Canadian Cordilleran model for epithermal gold-silver deposits, inRoberts, R.G., and Sheahan,P.A., eds., 1988, Ore deposit models: Geoscience Canada Reprint Series 3, Geol. Assoc. Canada, p.3143.

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    6/7

    Porphyry Short Course Part 5

    Richards (2011)6

    Low-sulfidation epithermal deposits

    Examples: Tonapah (NV), Creede (CO),Pachuca-Real del Monte (Mexico),Hishikari (Japan).

    Derived from near-neutral, bisulfide-bearing fluids.

    Commonly associated with rhyolitic rocks.

    Alteration is characterized by Qz-adularia-carbonate-sericite assemblages.

    High Ag/Au ratios, variable concentrationsof Cu, and anomalous Mo, W, Mn, F, Se.

    Ore minerals include base metal sulfides,sulfates, sulfosalts, selenides, Au,electrum.

    www.jamstec.go.jp/jamstec-e/XBR/suger/en/therod21.html

    Hishikari, JapanTypical boiling textures

    (bladed calcite, vuggy quartz)

    Pachapaqui Pb-Zn-Ag mine, Pru

    Richards (2011)

    Hedenquist et al. (1996)Distal low-

    sulfidationepithermal Aumineralization

    Hishikari, Japan

    Sakurajima volcano

    Richards (2011) Richards (2011)

    Efemukuru LS Au deposit,

    Western Turkey

    High grades (up to 210 g/t Au over 1 m)in quartz-rhodonite-rhodochrosite veins,

    with minor sphalerite and galena.

    Alkalic-type low-sulfidation

    epithermal Au

    mineralization

    Porgera, Papua New Guinea

    Bonanza grades over

    1000 g/t

    Richards (2011)

    A veins cuttingintrusion

    Pyrite, galena,

    arsenopyrite, andrare chalcopyrite

    Au in pyrite

    Tetrahedrite,arsenopyrite,

    sphalerite, (Au)

    Galena, sphalerite,arsenopyrite, (Au)

    Porgeraearly (A)

    veins(Stage I)

    Au

    Richards (2011)

  • 8/13/2019 Richards PCD Shortcourse5(Epithermal)

    7/7

    Porphyry Short Course Part 5

    Richards (2011)7

    FIs in sphalerite(Th = 300350C)

    Hypersaline FIs in earlyquartz with phyllic

    alteration

    Porgera A veins:Fluid inclusions

    Richards (2011)

    A vein with late D-

    type vuggy cavity,

    showingparagenetic

    sequence (A "D)

    (Note: This AD veinterminology is mine-specific,and not related to Gustafson& Hunt$s (1975) porphyry vein

    terminology)

    Richards (2011)

    Breccia-type D veins with visible Au

    Richards (2011)

    Typical brecciatedD vein

    Roscoelite withpyrite and Au

    Au withpyrite,

    tetrahedrite

    Au-Ag tellurides withpyrite

    Au-Ag telluridespseudomorphing

    bladed calcite in Py

    PorgeraD veins

    (Stage II)

    Richards (2011)

    Typical layered D vein: Auoccurs near the fine-

    grained margin

    Rare vapor-rich FIs

    FIs in growth zonesin vuggy quartz (Th %150C)

    Rare CO2-rich FIs

    Porgera D

    veins:

    Fluidinclusions

    Richards (2011)

    Summary

    Epithermal deposits are divided into two main categories:Low sulfidation (a.k.a., adularia-sericite) and highsulfidation (a.k.a. acid-sulfate). Intermediate sulfidation

    deposits feature more abundant base-metal-sulfides andillite, and may reflect higher salinity fluids.

    HS deposits are closely related to magmatic act ivity; fluidsof direct magmatic origin. Early intense acidic alteration by

    magmatic volatiles provides permeability, followed(sometimes) by later less-acidic mineralizing fluids.

    LS deposits are commonly distal to magmatic activity, andpost-date it by ~1 m.y. or more. Fluids dominantly of

    meteoric origin, although some magmatic fluid may be

    present. Metals may be derived from country rocks ormagmas. Boiling is a characteristic ore depositional

    mechanism. Richards (2011)