Richard Belsho Missouri State University MAA Student ...

83
Wallis’ Formula and Other Infinite Products Richard Belshoff Missouri State University MAA Student Chapter Talk January 29, 2009

Transcript of Richard Belsho Missouri State University MAA Student ...

Wallis’ Formula and Other Infinite Products

Richard BelshoffMissouri State University

MAA Student Chapter Talk

January 29, 2009

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

Wallis’ formula

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

(2

1· 2

3

)(4

3· 4

5

)(6

5· 6

7

)· · · =

π

2.

Now pull out every other pair of terms.(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · · =

√2

AMAZING!

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”

p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1,

p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2,

p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3,

. . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . ,

pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an,

. . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M,

then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:

∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

What do we mean by an infinite product?

a1a2a3 · · ·?= M

Consider the sequence of “partial products”p1 = a1, p2 = a1a2, p3 = a1a2a3, . . . , pn = a1 · · · an, . . . . . . .

If pn → M as n→∞, i.e. if limn→∞

pn = M, then we say that

a1a2a3 · · ·=M.

Notation:∞∏i=1

ai = a1a2a3 · · ·

n∏i=1

ai = a1a2 · · · an

∞∏i=1

ai = limn→∞

n∏i=1

ai

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

The Factor Theorem

Theorem (Factor Theorem)

A real number r is a root of a polynomial p(x) if and only if(x − r) is a factor of p(x).

Example

A polynomial with roots −2, −1, 0, 1, and 2 is

p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)

= x(x2 − 1)(x2 − 4).

But this is not unique

p(x) = Cx(x2 − 1)(x2 − 4)

An infinite number of roots?

What about an infinite number of roots?

Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x

(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, .....

sinπx .

An infinite number of roots?

What about an infinite number of roots?Could we construct an “infinite polynomial” with roots 0, ±1, ±2,±3, . . .?

f (x)?= Cx(x2 − 1)(x2 − 4)(x2 − 9) · · ·

Better:

f (x) = Cx(1− x2)(1− x2

4)(1− x2

9) · · ·

This infinite product converges for all values of x(Knopp, Theory of Functions, Part II, Dover, New York, 1947.)

There is a well-known function that behaves similarly, that is zeroat all the integers, namely, ..... sinπx .

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·

I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · =

limx→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

I f (x) = Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · ·I sinπx

I Both are zero at all the integers.

I If Cx(1− x2)(1− x2

4 )(1− x2

9 ) · · · = sinπx , then C = π.

limx→0

C (1− x2)(1− x2

4)(1− x2

9) · · · = lim

x→0

sinπx

x

Therefore C = π.

I When C = π, we have f (x) = sinπx for all values of x .

I Euler’s infinite product for sine:

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

AMAZING!

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Digression: The Basel Problem

Aside: Euler used this identity

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

to prove

1 +1

22+

1

32+

1

42+ · · · =

π2

6.

Our goal: prove Wallis’ formula.

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · ·

(2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2

· 1 · 32 · 2

· 3 · 54 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2

· 3 · 54 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4

· 5 · 76 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6

· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,

π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

Proof of Wallis’ Formula

sinπx = πx(1− x2)(1− x2

4)(1− x2

9) · · ·

sin(π/2) =π

2·(

3

4

)(15

16

)(35

36

)· · · (2n − 1)(2n + 1)

(2n)2· · ·

1 =π

2· 1 · 3

2 · 2· 3 · 5

4 · 4· 5 · 7

6 · 6· · · · · · · · ·

Therefore,π

2=

2

1· 2

3· 4

3· 4

5· 6

5· 6

7· · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]

sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

An infinite product for cosine

sin(πx) = πx(1− x2)(1− x2

4)(1− x2

9)(1− x2

16)(1− x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− 4x2

4)(1− 4x2

9)(1− 4x2

16)(1− 4x2

25) · · ·

sin(2πx) = 2πx(1− 4x2)(1− x2)(1− 4x2

9)(1− x2

4)(1− 4x2

25) · · ·

sin(2πx) = 2

[πx(1− x2)(1− x2

4) · · ·

] [(1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

]sin(2πx) = 2 sin(πx) cos(πx)

Therefore,

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,

√2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

The infinite product for√

2

cos(πx) = (1− 4x2)(1− 4x2

9)(1− 4x2

25) · · ·

cos(π/4) =

(3

4

)(35

36

)(99

100

)· · ·

1√2

=

(1 · 32 · 2

)(5 · 76 · 6

)(9 · 11

10 · 10

)· · ·

Therefore,√

2 =

(2

1· 2

3

)(6

5· 6

7

)(10

9· 10

11

)· · ·

That’s all folks!

THE END

References

Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math FunFacts. http://www.math.hmc.edu/funfacts.

Vandervelde, S., “Newton’s Sums and the Infinite ProductRepresentation for sinπx ,” Mathematics and InformaticsQuarterly, 9 (1999), pp. 64-69.

References

Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math FunFacts. http://www.math.hmc.edu/funfacts.

Vandervelde, S., “Newton’s Sums and the Infinite ProductRepresentation for sinπx ,” Mathematics and InformaticsQuarterly, 9 (1999), pp. 64-69.