RI 8062 Physical property data on fine coal refuse · Report of Investigations 8062 Physical...

43
Report of Investigations 8062 Physical Property Data on Fine Coal Refuse By R. A. Busch, R. R. Backer, L. A. Atkins, and C. D. Kealy Spokane Mining Research Center, Spokane, Wash. UNITED STATES DEPARTMENT OF THE INTERIOR Stanley K. Hathaway, Secretary Jack W. Carlson, Assistant Secretary-Energy and Minerals BUREAU OF MINES Thomas V. Falkie, Director

Transcript of RI 8062 Physical property data on fine coal refuse · Report of Investigations 8062 Physical...

Report of Investigations 8062

Physical Property Data on FineCoal Refuse

By R. A. Busch, R. R. Backer, L. A. Atkins,

and C. D. KealySpokane Mining Research Center, Spokane, Wash.

UNITED STATES DEPARTMENT OF THE INTERIORStanley K. Hathaway, Secretary

Jack W. Carlson, Assistant Secretary-Energy and Minerals

BUREAU OF MINESThomas V. Falkie, Director

This publication has been cataloged as follows:

Busch, Richard APhysical property data on fine coal refuse, by R. A. Busch

[and others. Washington] U.S. Bureau of Mines [1975]

40 p, illus., tables. (U.S. Bureau of Mines. Report of investi-gations 8062)

Includes bibliography.

1. Coal mine waste. I. U.S. Bureau of Mines. II. Title.(Series)

TN23.U7 no. 8062 622.06173

U.S. Dept. of the Int. Library

CONTENTS

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Si te se lee tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Method of drilling and sampling.......................................... 6Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Discussion of results....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10Conclusions and recommendations 19References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22Appendix.--Direct shear computer program and example data output 23

ILLUSTRATIONS

1. Tripod setup on sludge zone at WDH-l................................ 22. Sampling setup on WDH-2,............................................ 33. Site and location of BDH-l and BDH-2................................ 44. Site and location of WDH-land WDH-2................................ 55. Brazing casing sections prior to driving................... 66. Constant head permeability setup. 77. Sedigraph 5000 for determining minus 200-mesh particle size......... 78. Direct shear device................................................. 89. Triaxial shear testing apparatus.................................... 9

10 Particle size ranges for drill hole samples 12

TABLES

1. In situ properties......................... 102. Shelby tube shear data... 113. Composi te samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174. Standard coal analysis...... 185. Chemical composition of ash......................................... 196. X-ray diffraction analysis of coal refuse 197. Spectrographic analysis of coal ash................................. 19

PHYSICAL PROPERTY DATA ON FINE COAL REFUSE

by

R. A. Busch, 1 R. R. Backer, 2 L. A. Atkins, 3 and C. D. Kealy 2

ABSTRACT

Sludge ponds of fine coal, fine soil, and water created behind largepiles of coarse coal waste can present hazardous conditions; this is a Bureauof Mines report of the subsurface physical property data developed on the finecoal waste materials that make up the core areas of two typical coal wasteimpoundments. These data will help define more completely the engineeringproperties of this problem area of the structures.

Additional calorific, chemical, and mineralogical data were obtained onthe coal waste materials to determine possible uses or development ofbyproducts. The possibility of extracting alumina from coal ash was alsoinvestigated.

INTRODUCTION

Since the early 1960's, the coal industry has been under constant pres-sure by environmental legislation to clean up liquid discharge into streams.Consequently, rather large sludge ponds have developed which consist of finecoal, fine soil, and water. These ponds are generally formed behind largepiles of coarse coal waste and in conjunction therewith formulate the of ten-criticized coal waste impoundments. As a sequel to Bureau of Mines RI 7964(1),4 this report deals primarily with the physical and chemical properties ofthe fine coal wastes in the pond.

The previous report was most concerned with the coarse material and con-tained only a minimum of sludge information from a few surface samples. Toobtain more information on coal sludge, especially at various depths, a sam-pling program was carried out on two typical waste piles. Four holes weredrilled and sampled at 5-foot intervals. These samples were carefullyextracted from the drill holes and shipped back to the laboratory in a manner

lCivil engineer.2Mining engineer.3Engineering technician.4Underlined numbers in parentheses refer to items in the list of references

preceding the appendix.

2

that would minimize disturbance. Laboratory tests were performed on thesesamples to provide data that could be used to evaluate problems involvingdrainage, liquefaction, strength, and stability. In addition, these samples,plus coarse refuse and red dog from previous sampling, were subjected to atypical coal analysis which could provide information as to the possible useof the waste products as a fuel or as a source for marketable byproducts.

SITE SELECTION

The sites chosen for sampling were selected on the basis of availabilityas well as being considered representative. They were inactive at the time ofsampling, which allowed access by the sampling crew with light equipment(fig. 1). Heavy drilling equipment could not be used because the deposit wassaturated and the support capability was poor. Consequently, drilling andsampling were carried out by hand methods (fig. 2).

FIGURE 1. . Tripod setup on sludge zone at WDH-1.

3

FIGURE 2•• Sampl ing setup on WDH·2 (note WDH·l at left of photo).

The difficulty of obtaining the samples and the limitations on time andfunds narrowed the fieldwork down to two holes per site. It was decided toconcentrate the sampling in what was considered the most hazardous materials--the saturated fine sludge farthest from the discharge line (figs. 3-4). Itshould be noted, however, that the history of the discharge location was notavailable so there may be discrepancies in the uniformity of the sludge withvarying depths in anyone hole.

martin.juanita
martin.juanita
martin.juanita
martin.juanita
martin.juanita

+:-

\N

,!'

>J .'/ "/

C':)

/'II

l\';

I::iI

,~I

::,:\

',"\.

'L:~1

,\'\

-:k'

.:',

,'I.

J.r'I

\'

'\'1

\:''.~~o"1.1

:~,~.<'.'.'

...,.

--.',':

'~,:

:-.-:<:

:.-:Access

rood

..'"

,."

~""

'

~>••

R'd~g'

",.'

.••

:~

~-~c';-'2;<-

..~

'~--:"',,__

ltJe<;10,

e:-

--.

Slurry

toilings

~:::

..;:

:;.

Pond

scole

.••••• a

100

FEET

LEGE

NDx

Drill

hole

location

',",Re

fuseem

bankme

nt','

Wate

r(pond)

Sludge

FIGU

RE3.

.Si

tean

dlo

catio

nof

BDH-

lan

dBD

H-2.

Side

hill'\

Diversion

ditch

,,,

\"

:',\/1

'''

.,I.,',

""

.','"'

,I'

-~=,~~

~~:~~~

~~~~

~~,~;.~,;.,:j~

A

----

----

--~~----~----

(Dum

ping

since

t~is

map

wasma

dehasWide

ned

theberm,This

samp

leisan

outer

crest)

6····'1

'00FE

ET

...,.

LEGEND

XDrill

hole

location

:-:¢.:'"

Refus

eem

bankme

nt////

Moderate,ly

level

tolev

el/////area

(active

dump

ing)

~Wate

r(pond)

'C',/

Sludge

FIGU

RE4.

-Site

and

location

ofWDH

·land

WDH

-2.

V1

6

METHOD OF DRILLING AND SAMPLING

The holes were drilled by hand auger. Because of the tendency of thesaturated material to flow into the hole, it was necessary to case the holeimmediately. The casing was 5-foot-long sections of 4-inch diameter pipe.Figure 5 shows how the coupling was slipped over this pipe at connections andwelded. The casing was driven ahead of the augered hole by a weight suspendedfrom a tripod and raised by a cathead mounted on one leg of the tripod. Aftera length of casing was driven, the hole was drilled by hand auger. At 5-footintervals, the hole was sampled by pushing a thin-walled sampler into thesludge ahead of the casing and retrieving the sample. To break the suction atthe bottom of the thin-walled tube and prevent the sample from being suckedout, an air line was attached to the outside of the tube and air was pumpedinto the area at the bottom of the tube as the tube was being extracted. Thismethod of driving casing, drilling, and sampling was performed until it becameimpractical to continue.

FIGURE 5. - Brazing casing sections prior to driving.

FIGURE 6. - Constant head permeabi I ity setup.

FIGURE 7. - Sedigraph 5000 for determining minus 200-mesh particle size.

7

PROCEDURES

The laboratory testswere performed in the Bureauof Mines Spokane MiningResearch Center (SMRC) labo-ratory using the followingprocedures:

1. Permeability of theundisturbed Shelby5 tubesamples was determined by aSMRC-developed method usinga constant head (fig. 6).

2. Grain-size distri-bution was performed accord-ing to ASTM StandardD-422-63, part II. Theminus 200-mesh portion wastested with a Sedigraph50005 particle size analyzer.The Sedigraph operates onthe principle of Stokes' law,utilizing X-ray absorption(fig. 7).

3. Specific gravitywas determined according toASTM Standard D-854-58,part II.

4. Maximum density andoptimum moisture contentwere determined according toASTM D-698-70. Minimum den-sity was determined accord-ing to ASTM D-2049-69.

5. The one-dimensionalcompression tests were

5Reference to specific makesor models of equipment ismade to facilitate under-standing and does notimply endorsement by theBureau of Mines.

8

performed in a SMRC-designed test chamber by a method developed in this labo-ratory by Nicholson and Busch (2)'

6. The direct shear test on undisturbed samples extruded from the Shelbytubes was performed on a direct shear device with the method outlined byLambe 0.) (fig. 8).

7. The triaxial shear on undisturbed samples extruded from the Shelbytubes was performed primarily according to ASTM D-2850-70. The pressure ofthe pore fluid was continuously monitored throughout the test, and failure wasdetermined using effective stresses (fig. 9).

8. The liquid limit was determined according to ASTM D-423-66.

9. The plastic limit was determined according to ASTM D-424-59 (1971).

FIGURE 8. - Direct shear device.

9

FIGURE 9. - Triaxial shear testing apparatus.

The following tests were performed by others:

1. Ultimate and proximate coal analyses and chemical composition of ashwere determined according to Bulletin 638 (1). The ultimate and proximatecoal analyses were performed by the Pittsburgh Energy Research Center. Thechemical composition of ash was determined by the Aluminum Co. of America(Alcoa) Laboratories.

10

2. Mineralogical analysis was done through X-ray diffraction on a sample ofpulverized material. Tests were done by the Alcoa Laboratories.

3. Spectrographic analyses were performed on ash by the Salt Lake City Metal-lurgy Research Center.

DISCUSSION OF RESULTS

The permeability of the material within an embankment or mine waste dump is oneof the most important factors to be considered in drainage and water seepage control.Table 1 shows the permeability of the undisturbed Shelby tube samples which are inthe low-to-very-low permeability range. This can be substantiated by the smalleffective size and the high coefficient of uniformity, indicating a well-graded,fine-grained material.

TABLE 1. - In situ properties

Assumed Inplace Inplace Effec- Coeffi- Spe-Drill Shelby eleva- moisture dry Vertical tive cient cific

Location1 hole tube tion, content, density, permeability, size, of grav-No. No. feet percent lb/ft''3 cm/sec romS uni- ity

formitvW •••••••• DH-l l4A 99.1 63.2 48.1 5.77 X 10-5 0.00062 10.97 1.54w ........ DH-l 7 94.4 51.0 55.6 5.31 X 10-6 .00049 14.90 1.64w ........ DH-l 8 89.1 57.1 53.9 1.38 X 10-6 .00042 13.57 1.68w ........ DH-l 13A 84.1 56.2 49.1 2.21 X 10-6 .00062 14.19 1.59w ........ DH-l l5A 69.1 54.4 54.0 2.00 X 10-6 .0006 11.00 1.59w ........ DH-l 16A 64.3 50.3 53.2 2.18 X 10-6 .00062 10.64 1.52w ........ DH-2 18A 99.0 62.5 48.2 8.76 X 10-6 .00056 11.61 1.66w ........ DH-2 l7A 94.1 47.4 55.0 7.76 X 10-7 .00076 14.47 1.45W •••••••• DH-2 19A 89.1 59.0 53.8 1.40 X 10-6 .0006 14.17 1.65W •••••••• DH-2 20A 84.1 51. 7 53.0 2.28 X 10-6 .001 20.00 1.52w ........ DH-2 SA 79.1 49.9 51.6 4.67 X 10-6 .001 11.00 1.47W •••••••• DH-2 6A 74.1 51. 1 53.1 5.59 X 10-6 .0014 11.43 1.58W •••••••• DH-2 7A 69.1 51. 9 52.8 2.42 X 10-6 .0011 12.73 1.53w ........ DH-2 8A 64.1 52.3 46.8 2.48 X 10-6 .001 12.00 1.59w ........ DH-2 9A 59.1 54.5 53.2 2.90 X 10-6 .00105 11.90 1.54B ........ DH-1 1 99.0 45.6 46.4 2.97 X 10-4 .0016 40.62 1.48B ........ DH-1 2 95.1 44.3 47.2 2.49 X 10-5 .0026 57.69 1.50B ........ DH-1 3 90.1 48.9 47.8 6.53 X 10-6 .004 45.00 1.46B ........ DH-1 4 75.1 24.2 61.0 2.06 X 10-4 .04 8.50 1.85B ........ DH-1 5 70.1 21.3 56.8 3.05 X 10-4 .069 8.55 1.56B .... DH-1 6 65.1 25.8 55.8 8.86 X 10-4 .088 6.14 1.64B3 ....... DH-2 3A 99.2 63.0 55.3 3.75 X 10-3 .0004 10.50 2.07B ........ DH-2 rOA 94.1 62.2 51. 0 9.18 X 10-7 .00086 7.32 1.74B ........ DH-2 llA 89.1 64.0 54.2 7.51 X 10-7 .00035 8.71 1.84B ........ DH-2 12A 84.2 59.6 50.9 1.76 X 10-" .'00045 7.11 1.84B ........ DH-2 A 79.1 57.7 51. 1 1.38 X 10-6 .0006 7.50 1.69B ..•••••. DH-2 1A 74.2 60.1 52.5 1.86 X 10-6 .00083 7.23 1.70B ........ DH-2 2A 69.2 57.7 52.8 4.12 X 10-6 .00041 9.02 1.66ISurface elevatIon at all drIll holes was assumed at 100 feet.2The size at which 10 percent is finer.3She1by tube 3A contained a large amount of vertical roots and holes.

11

The range of the grain-size distribution curves (fig. 10) for each drillhole shows a relatively well-graded material, quite similar within each drillhole, with the exception of BDH-1. BDH-1 was not homogeneous in respect tosize distribution and showed a much larger particle size in the deeper samples.This indicates that the discharge line was probably in a different location atsome earlier date and not as shown on figure' 1.

Specific gravity values shown in table 1 are relatively uniform for eachsite location. The low values of specific gravity indicate high coal content.The specific gravity of pure coal is in the range of 1.25 to 1.70 (£).

The importance of shear strength data dictated a rather extensive sheartest program. Two types of shear tests were performed on undisturbed Shelbytube samples: drained direct shear and unconsolidated triaxial shear.Results of the direct shear are shown in table 2. They indicate that there issome degree of strength and cohesion. However, these tests were allowed todrain and were run slowly enough to prevent pore pressure buildup. The angleof internal friction, ¢, was determined by using peak stresses.

TABLE 2. - Shelby tube shear data

Mean Drained direct shear in situ conditionsSite Drill Shelby e1eva- Moisture Placement Conso1i- Degree of Cohe-No. hole tube tion, content, density, dation satura- ¢, sion,

No. No. feet percent pcf density, tion, degrees psipcf percent

W •••• DH-1 14A 99.1 58.4 53.0 62.5 100.0 32 0.9w .... DH-1 8 89.1 50.2 58.4 66.0 100.0 29 4.7w .... DH-1 16A 64.2 49.7 56.5 62.9 100.0 32 4.0w .... DH-2 18A 99.0 66.0 54.4 66.0 100.0 26 3.0w .... DH-2 17A 94.1 61. 6 54.2 65.0 100.0 28 2.2w .... DH-2 9A 59.1 47.9 57.0 62.5 100.0 32 2.9B., .. DH-1 2 95.1 55.8 47.4 50.8 87.7 35 .4B .... DH-1 3 90.1 53.4 52.4 57.8 99.5 34 1.8B .... DH-1 4 75.1 21.8 63.7 69.0 66.8 35 1.3B .... DH-2 3A 99.2 59.9 61. 9 74.9 100.0 20 5.4B .... DH-2 11A 89.1 65.8 56.4 69.1 100.0 25 2.0B .... DH-2 2A 69.2 63. 7 52.7 57.2 100.0 34 1.2

The undrained, unconsolidated triaxial shear tests show no shear strengthor cohesion. This can be attributed to the high degree of saturation whichallowed the pore fluid pressure, ~, to attain the same pressure as the con-fining liquid or lateral pressure, 03' By using the effective maximum stressratio for failure, the results are zero.

PARTICLE

SIZE

DISTR

IBUTION

~ tv

SAMPLE

IDENTIFICATION

_--=B

:::D:.:.H.:

.---.:.-l

_

BYLAA

DATE

5-13-74

Preparation

0.3%

Calgon

solution

Maximum

Size:

3,900

micrometers

100IIIIhJmJ...,1.1

9011

I1I

IIIII

II~

8011

IIIII

IIII

I

'·'I:..'·\:

:·"I···II·

:··\·,..\'

·..·,j·,,'I····

'·TI·1

',

,.

.:;::::1i1

::::::::

:;;i;;::

::::::

··1'..·1'

..'\..·'

\·..

\"..\..·

'\..··

1.··.1..

':.·'..·,

'...'."

...,....

'...,1.'..

.;,.

hjj!"

••·,

II.

,I··.••.··••

':"1"'';':"',

...:::"

1"''':

I t:

.....,...".+..\'.

."....\".'..,.;\'....\..,

.,

1:""

!:'''!•~•LI"

:•

~to'

-:i'•t

••!."~,.

!'Iii~

.iI!:!..I'i'

r••

ffi701IIIIII

IIII

II

III'

z ~ ~ ~60111

1III

IIII

I~

III

III~

~5011

IIIII

II1I

I~

IIIIIII'

~401

illIII

I!I

II

IIIII

IIII'

~ -e ...J i30nII

,II

IIII

II

IIII

IrI

IIII'

;:) u

"1'

FIGURE

10.-

Particle

size

ranges

fordrill

hole

samples.

EQUIVA

LENT

SPHE

RICA

LDIAM

ETER

,micrometers

I".

:Hi:;:

!ij

I

t,;,

201IIIIII

IIII

III

IIIII

III

II~:nlfr:

101III1

IIIII

III

III

III

IIII

III

IIr

OI-..tll

..·t"t"!I·"I"!'I!ll

tI,

III:

II,I·

10POO

\000

·:·.t-~

"r.-

Bill 1

PARTICLE

SIZE

DISTR

IBUTION

SAMPLE

IDENTIF

ICATION

_--=B

::.::D:.

.=H-=-

---=2~

_

Preparation

0.3%

Calgon

solution

Maximum

Size:310

micrometers

I'Iii

100U

.Jj,

DATE

5-1

3-7

4

BY

LAA

9011

III

II

II

IIII,"'

-~g'lb

80,-1--++-+

+-IIII

I-HH

#t--~J I

501IIII

II

II

III

III

III

II

I,IIII'

~7011

1I

1I

1I

III

II

III

IIi'

"z ... ~60~:-ttttt-t±tt:t;

u '"w •... lI'llI'l -c ~

101I

III

I!Iill

III

III

I1

1II

I'I

IIII

II!

I!I

II

~40

11I

II

I-<

--t-4--

I:::

IIIII

I~

301

II

III!

I++-1I

uI!

II

IIIII

IiIII

II

IIIIII

IIIIII'l

20~~~

o_LJlJ

·;1..,

--I-'1

'1----I

100

EQUIVALE

NT

SPHERICAL

DIAMETE

R,micrometers

FIGURE

10.-

Particle

size

ranges

fordriIIhole

samples.-C

ontinued

10

II'

0.1

~ LV

PARTICLE

SIZE

DISTRIBUTION

DATE

5-13-74

SAMPLE

IDENTIFICATION

__W

---=--D

-"-'H:....

-l::....-

_

BYLAA

Preparation

0.3%(aI90n

solution

MaximumSize590

micrometers

;:::.!-::

::!::

::;:::::,

::,:::;

::.:,::

:';i:!:

:!;;';

..,..,,

,,.'I

i..,

,!.,.

I,-

.

10O,

...•~..

--_.

90 80

;.,.J.it'

.....:1It

i

:.t:1ftH

:.'.·.,

,

..+"t,··,,,,,·

;:'1:::1:

':1""\::

~:i:I::::I:;::I::::I::::

~,,:

I'!.

,;.i,'"

.•"IIII!

,:,;~"i

t••

•'"

01••

"'1""!:'

..I....I"..""

:I·..'/""

'....

·····"1'··'·'·

"'llJ·'tl1""

•:';1:.;·

;','.:

,.:.:..:

:'.

~70m

.....~... ~60

w u ""w .•.50

V\

V\ -c

~'

..~

..

w > ~ -c ...II..·

i3Ol

liill1l

B<I:: 20

I I I10~'

I·;1

I·-jI

III

11I;I

I0 1,000

·11·1

.r.\.....

......

••••1.•.•1.··01

...

1•••.1;."

t-' ~

:.i

•I

II

I

·-t't

,

..•..

..1·

;<t<:··w~

·"Ibli...

I·1"':

1···"'·

·1:··'1'

II\'!II

.···1··,

I

.'1

l'll"···\·

t·....

Il·11

............

......I....

rr...•..1

1

.II

I+---

..-

'[:

.r:.••...

.•..•.:····1

.I

Iill'··

•••.".••

..."I

II

ttl--

"~':;:I>f:tf:';::::'.'

.r.:~'/(>.,

.·:·:::?:~:'·'{i:~. ::

IT

··.••.I·.•~·.·....

··I~···

I·j···".·

'..:

........

..

II

...••..••.

•.....

.

1·......11

1;

1Ij:-

'.10

EQUIVALE

NT

SPHERICAL

DIAMETE

R,micrometers

FIGURE

10.-

Particle

size

ranges

fordrill

hole

samples.-C

ontinued

0.1

PARTICLE

SIZE

DISTR

IBUTION

SAMPLE

IDENTIFICATION

__W--

--=.D..;

:,.H'--.=

2_

DATE

5-13-74

BY

LAA

Preparation

0.3%Calgon

solution

Maximum

Size:420

micrometers ..

=..:

...:

=---

----

----

----

----

---

-II

III

II

IiI

•1-

....1-+--IIIIllil'll

1'1..

,LLJ..LI-LLJ

III

I,

IlOOf-+-+-+-1

II<d.",

90R= It

BOr-

,~

[-...··1

f-_.,

"1«t······

,,·-·1

Z70

rl-l.._I-...I-l--+-+-....I-....+-,.+-+-,+

-j-+---+--++-+-+-+-++

=Y:

~_.-

..e----

i

~60

r'"..~

IIII

IIII

II

I'

~I····

~...

:;sO

f'",

~r

!~

f~

40fl

II

III

II

III

II

III

II

II

III

1~!;(

I'"..J

...

~~-

.B

I:••.r

".! 'I'.

,.

I J

20fT

IIIII

III

I

!t~ '1

'I ,I

iiiI

101=++

IOL 1

,000

100

10

0.1EQUIVALE

NT

SPHERICAL

DIAMETE

R,

micrometers

FIGURE

10.-

Particle

size

ranges

fordrill

hole

samples.-C

ontinued

•.....

\Jl

16

major effective stress °1 + 0~ - 11'"Sa minor effective stress °3 - 11

where °1 the major principal stress,

°3 the minor principal stress,

and 11 the pore fluid pressure.

(1)

The presence of water does not affect the angle of internal friction of asoil, but as these test results indicate, it can dramatically affect the shearstrength of the soil. The value of shear strength that should be used in anal-ysis can vary considerably, depending on whether a slow "creep" type of fail-ure or a sudden "quick" condition exists. The slow permeability rates in coalsludge would indicate the possibility of pore water pressures and reducedstrength.

One-dimensional compression tests were performed on four compositedsamples (one for each drill hole). After the previous tests were performed,all Shelby tubes from each drill hole were composited and water was mixed witheach to attain the average in situ water content. The sample was then placedin the test chamber near the average inplace density. The test resultsyielded earth pressure at rest values, ~, approaching 1.0 (table 3). Thetest chamber was not completely sealed, allowing some water to drain duringthe test; this may account for the results that show 8 l~ value less than 1.However, the pore water pressure monitored during the test shows the readingto be the same as the vertical applied stress. These test results also indi-cate either no shear strength and the material being in a quick condition orzero effective stress. The Poisson's ratio and Young's modulus can beobtained from this test (table 3).

The maximum and minimum densities shown in table 3 are average numbersfor the two drill holes. Although it is not considered practical to compactthe entire sludge deposit, it is worth noting that the average field densitiesfor the two holes are less than 80 percent of maximum. Using the Proctor den-sity as the maximum and the usual minimum laboratory density as a base, therelative density of the most dense field sample is only 54 percent, which putsit in the critical range of potential liquefaction. Any sudden reduction invoid ratio due to a shock or shifting of the pond could easily set up a "quick"condition resulting in zero shear strength.

As noted in table 1, some of the field densities observed are lower thanthe laboratory minimum density. This is probably due to the excessive waterin the sludge deposit which separates the soil particles and increases thevoid ratio. The laboratory minimum tests are performed on dry material.

TA

BL

E3.

-C

omp

osit

esa

mp

les

rroc

tor

Den

sitv

Det

erm

inat

ion

On

e-D

imen

sion

alC

omor

essi

onT

ests

Op

tim

um

Gra

inS

ize

Per

cen

tV

erti

cal

Drill

Max

imu

mm

oist

ure

Min

imu

mEffective

Coefficient

Dry

Wat

erof

applied

Con

stra

ined

Earth

You

ng

ts

Atrerbere

Lim

its

Site

hole

den

sity

,co

nte

nt,

den

sity

,si

ze,

ofSpecific

den

sity

,co

nte

nt,

nat

ura

lsrress'

modulus,2

pre

ssu

reP

oiss

on's

lmodu1us,5Liquid

Plasticity

No.

No.

pcf

per

cen

tpcf

Du

nif

orm

ity

grav

ity

pcf

per

cen

tdry

psi

psi

atre

st3

rae-to''

psi

limit

index

10d

ensi

ty

WDH-1

66.4

27.8

44.8

.00048

11.67

1.61

53.0

55.4

101.3

00.0

00

0.0

41.7

8.7

54.5

104.2

25898.2

1.00

.500

.055.6

106.3

501,066.1

1.00

.500

.056.8

108.6

751,131.8

1.00

.500

.058.1

111.1

100

1,167.3

.992

.498

13.1

WDH-2

--

-.00078

10.26

1.60

49.9

53.4

96.1

0.0

00

.038.0

2.7

53.6

103.3

25353.0

.96

.490

21.0

55.3

106.6

50493.9

.98

.495

14.8

57.0

109.8

75580.2

.973

.493

23.1

59.4

114.4

100

606.6

.937

.484

56.2

BDH-1

70.4

18.0

50.0

.006

58.33

1.58

61.5

35.0

117.1

0.0

00

.034.3

064.0

121.9

25678.7

1.00

.5.0

64.4

122.7

501,183.9

1.00

.5.0

64.6

123.0

751,621.0

.997

.499

8.1

65.0

123.8

100

1,960.8

.990

.497

29.4

BDH-2

--

-.000349

9.17

1.87

51.1

60.6

97.3

0.0

00

.051.1

13.1

53.4

101.7

25566.0

.980

.495

16.9

54.1

103.0

50863.6

.990

.497

12.9

54.9

104.6

801,115.8

.994

.498

10.4

55.0

104.8

100

1,357.5

.990

.497

20.3

°""v

erti

cal

app

lied

stre

ss.

ii=

con

stra

ined

mod

ulu

s:::

0v/v

erti

cal

def

orm

atio

n(E

v)·

Ko=

eart

hp

ress

ure

atre

st=

late

ral

hor

izon

tal

stre

ss(o

h)

lov.

v=Poisson's

ratio

=K/(1+K).

E=Young'smodulus

=M~1-v-2e2)/(1-v).

Das

hes

ind

icat

ete

stw

asn

otru

n.

18

Because of the apparent substantial percentages of coal in the wastematerials, regular coal proximate and ultimate analyses were performed, andthe results are tabulated in table 4. The ash, volatile matter, and fixedcarbon percentages obtained by the proximate analysis define the amount ofcombustible material in the refuse, while the calorific value defines th~ rankof the coal. The ultimate analysis describes the elemental composition of thecoal portion and the percent ash.

TABLE 4. - Standard coal analyses

SamoleBDH-l1 WDH-ll Average Average

red dog2 3coarseProximate analysis:

In situ moisture ........... percent .. 35.0 55.4 7.1 7.4Moisture free:

Volatile matter ............ do ..... 22.1 22.1 6.8 15.8Fixed carbon ............... do ..... 52.4 45.6 3.4 29.0Ash ........... " ........... do ..... 25.5 32.3 89.8 55.2Heat content .............. Btu/lb .. 10,690.0 9,600.0 597.0 5,944.0

Moisture and ash free:Volatile matter .......... percent .. 29.7 32.6 70.0 36.6Fixed carbon ............... do ..... 70.3 67.4 30.0 63.4Heat content. ............. Btu/lb .. 14,340.0 14,180.0 4,856.0 13,102.0

Ultimate analysis, percent:Moisture free:

Hydrogen .......................... 3.6 3.3 .5 2.2Carbon ............................ 62.3 56.1 4.7 35.2Nitrogen .......................... 1.0 .8 .1 .6Oxygen ............................ 6.8 7.0 3.4 5.7Sulfur ............................ .8 .5 1.5 1.1Ash ............................... 25.5 32.3 89.8 55.2

Moisture and ash free:Hydrogen .......................... 4.9 4.8 5.1 5.1Carbon ............................ 83.6 82.8 58.4 77.7Nitrogen .......................... 1.3 1.2 .9 1.3Oxygen ............................ 9.2 10.5 25.6 13.3Sulfur ............................ 1.0 .7 10.0 2.6

lComposite of sludge from drill hole.2Composite of burned coarse coal waste from prior sampling program.3Composite of coarse coal waste from prior sampling program.

A chemical analysis was run on the ash left after burning the refuse. Bystudying the composition of the ash, any significant high percentages of com-pounds can be easily identified. This analysis was made to determine if thereare any useful recoverable elements in such an abundant source of "rawmaterial." Table 5 lists the composition of the various samples.

19

TABLE 5. - Chemical composition of ash

Sample SiO:a FeaOs rro, Al:aOs CaO NaaO SOs K:aO MgO Lost onfusion

BDH-l ............ 56.8 7.9 1.2 25.2 1.4 0.2 1.2 3.7 1.3 0.6WDH-l ............ 53.2 5.4 1.0 26.6 3.2 .5 2.8 4.3 1.9 .6Average red dog .. 60.9 8.1 1.3 22.9 .6 .3 .7 3.7 1.0 .3AveraQ:e coarse ... 59.2 7.2 1.2 22.6 2.2 .4 1.8 4.0 1.3 .8

X-ray diffraction of the refuse identifies major, minor, and trace miner-als. These data point out the dominant characteristics of the refuse materialand are listed in table 6.

TABLE 6. - X-ray diffraction analysis of coal refuse

Sample Quartz Illite Kaolin- Cal- Feld- Gyp- Hetalite Mul- Cristo-ite cite soar sum lite balite

BDH-ll ........... M m m - - - - - -WDH-l1

.....••.•.. M t m t t - - - -Average red dot· M - - - - m m m tAveraQ:e coarse .. M m m t t - - - -M = major mineral, mlComposite of sludge:aComposite of burned3Composite of coarse

minor mineral, t = trace mineral, - = undetected.from drill hole.coarse coal waste from prior sampling program.coal waste from prior sampling program.

In addition to X-ray diffraction, the ash wasgraphic analysis to identify the elements present.table 7, can be correlated with the results of thediffraction of the ash.

also examined by spectro-These data, listed in

chemical analysis and X-ray

TABLE 7. - Spectrographic analysis of coal ash

Site AQ: Al Be Ca Co Cr 'Cu Fe Ga K Mg Mn Na Ni Pb Sc Si Ti V y ZrBDH-l1 .••..... F A F C E E E B E B B D C D D E A C D E EWDH-l1 .••....• - A F B E E E B E B B D C D D E A C D E E1CompositeNOTE.--A

BCDEF

of sludge from drill hole.Probably >10 percent.Probably 1-10 percent.Probably 0.1-1 percent.Probably 0.01-0.1 percent.Probably 0.001-0.01 percent.Probably 0.0001-0.001 percent.Undetected.

CONCLUSIONS AND RECOMMENDATIONS

The physical properties and field conditions of coal sludge combine tomake deposits of this material unstable. The extremely fine size of the mate-rial plus the rather well graded grain sizes make the permeability very slow.

20

Consequently, the material acts as a barrier, impounding water, and if satu-rated, it is extremely difficult to drain. This characteristic of coal sludgeallows waste piles to become dangerous. It is generally accepted that if afine-grained saturated sand has a relative density less than 60 percent, itmay liquefy when subjected to sudden shock or reorientation of particles.Since most sludge is transported as a slurry from spigots, deposits occurwhich could be on the verge of liquefaction. The slow settling characteris-tics of the low-specific-gravity particles are conducive to loose or honey-combed structures of high void ratio with high degree of saturation.

The shear strength of sludge as determined by drained direct shear wasvery similar to the coarse coal waste, as could be expected. The results ofsaturated undrained triaxial shear tests indicate that in this condition,which may be more representative of field conditions, the sludge has verylittle strength. It is quite apparent that if a sudden failure due to a slideor shock were to occur, the sludge would not contribute anything to theresisting forces.

Coal sludge comprises approximately 25 to 30 percent ash when dried, butstill yields about 10,000 Btu per pound, which places it in the subbituminouscoal range. Since this material is a prime liability in waste embankments,utilization as a fuel would solve a hazard problem. Even if it were amarginalproduct, elimination of legal disposal problems may make utilization econom-ically feasible. Some companies are currently reclaiming coal from sludgeponds by minidredge machines. Recovery is about 40 tons of coal per hour.

The objection to high-ash coal is based upon fouling problems, erosion,decreased heat conduction, and corrosion of furnaces.s New developments infurnace design have resulted in units that can handle 30-percent ash materialwith little trouble, and projections are that furnaces will soon take coalsapproaching 50 percent ash.

The ash itself could very well be a valuable byproduct with its high alu-mina content. It has been reported that in Britain, 1 ton of alumina wasobtained from 10 to 12 tons of ash.7 8 A comparison of bauxite, the principalalumina ore, and coal waste ash follows:

Bauxite.(percent)

Alz03.... 50 to 60SiOz' . . . . 2 to 20FeZ03• • • • 1 to 25'TiOz. . . . . 1 to 3Other.... e)1Not determined.

Coal waste ash(approx. percent)

2560

7e)

6Reference 4, pp. 820-891.7Reference 4, p. 1098."Coal ash produced from burning U.S. coal waste average about the same percent

Alz03

as ash from British coal and, therefore, should contain the sameamount of alumina.

21

Coal Age magazine has quoted Alcoa as privately estimating that aluminafrom coal wastes could be produced on a commercial scale cheaper than thedelivered cost of alumina produced from high-grade bauxite from outside theUnited States (1). It was also stated that current technology makes thisrecovery ''matter of fact."

It appears that refuse materials could possibly be used as a supply ofheat for the production of alumina, and the ash from this burning would be asource of feed ore for alumina. Once the alumina was extracted, the new mate-rial would be high in Si02 and would very likely be a suitable constructionmaterial.

22

REFERENCES

1. Busch, R. A., R. R. Backer, and L. A. Atkins. Physical Property Data onCoal Waste Embankment Materials. BuMines RI 7964, 1974, 142 pp.

2. Coal Age. March 1974, p. 146.

3. Lambe, W. T. Soil Testing for Engineers. John Wiley & Sons, Inc., NewYork, 1967, p. 88.

4. Lowry, H. H. Chemistry of Coal Utilization, Supplementary Volume. JohnWiley & Sons, Inc., New York, 1963, 1142 pp.

5. Nicholson, D. E., and R. A. Busch. Earth Pressure at Rest and One-Dimensional Compression in Mine Hydraulic Backfills. BuMines RI 7198,1968, 40 pp.

6. Tieman, John W. Chemistry of Coal, Elements of Practical Coal Mining.Port City Press, Inc., Baltimore, Md., 1973, p. 40.

7. U.S. Bureau of Mines. Methods of Analyzing and Testing Coal and Coke.BuMines Bull. 638, 1967, 82 pp.

APPE

NDIX

.--D

IREC

TSH

EAR

COMP

UTER

PROG

RAMAN

DEX

AMPL

EDA

TAOU

TPUT

TEST

NO,

DATE

TEST

EDTF

STEo

Bv.O

HI-S

T14A

-OS-

I12

-10-

73L

ATKI

NS

CRUS

SSf

.CT.

ARFA

=4.

910

t1\1_

I)RY

\liT.

=.1

49Le

S.DR

YDE

NSlT

V=

52.3

90LB

S.IC

U.FT

.SA

MPLE

THIC

KNES

S=

1.00

0IN

•Wf

.TWT

.=

.229

LAS.

Wf.T

DENS

lTV

=80

.523

LBS.

ICU.

FT.

SAMP

LEVO

LUME

=•0

028

CII.

FT.

SPEC

.GR

AV.

=1.

<;40

MOIS

TURf

.CO

NTEN

T=

53.7

00PE

RCE

NT

INIT

IAL

CONS

OLID

ATIO

N=

.123

IN.

PROV

ING

RING

NO.

54CO

NSOL

IDAT

EDDR

YDE

NSIT

Y=

59.7

37Le

S.IC

U.FT

.IN

ITIA

LPO

ROSI

TY=

45.<

;06

PER

CENT

CAPA

ClT

V=

100

LAS.

INIT

IAL

INIT

IAL

VOID

RATI

O=

•835

APPL

If.D

LnAD

=73

.65n

LAS•

SATU

RATI

ON=

100.

00PE

RCE

NTIN

ITIA

LMO

ISTU

RECO

NTEN

T=

<;7.

20PE

RCEN

T

~~

~~

~~

~~

~~

TOT.

TIME

~SHE

ARDI

AL~S

HEAR

UISP

.~NO

RM.

DIAL

~NOR

M.DI

SP.~

PRDV

.RI

NG~S

TRES

SFO

R.~S

TRES

SFO

R.~S

HEAR

FORC

E~VO

IDto

PORO

SITY

(MIN

/SEC

)••

(1'1.

)••

(IN

.)

••(

IN.

)to

(IN

.)

••DI

AL(I

N.)"

(LB

S•

)"/

LOAD

RATI

Oto(

LBS/

SQIN

)"RA

TIO

~(P

ERCE

NT)

••••

••••

••••

••••

toto

000*

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***.

****

.***

***

••••

••••

••••

••to

toto

00/0

0••

.100

••0

to.3

80••

.123

••0

••<'

.060

1••

.028

0••

.419

6••

.609

3to

37.8

627

•••I

l0..

.010

••.3

78••

-0.0

02to

.005

3••

9.85

58••

.133

8••

2.01

76••

.605

7to

37.ni)1

••01

20••

.010

••.3

16to

-0.0

02••

.01l

4••

18.8

721

to.2

562

••3.

8832

to.6

020

to37

.579

0••

.130

••.0

10••

.374

••-0

.002

••.0

140

~22

.737

8••

.308

7••

4.70

28••

.598

3to

37.4

3~7

••.\

40••

.010

•••3

72••

-0.0

02••

.016

1to

25.8

729

to.3

513

to5.

3790

••.5

947

to37

.290

7••

.150

••.0

10••

•370

••-0

.002

••.0

178

••21

1.42

02••

.385

9••

5.93

94to

.591

0to

37.i

460

•••\

60••

.010

to.3

68••

-0.0

02••

.019

0to

30.2

238

••.4

\04

••6.

3496

to.5

973

to37

.00Q

7••

.170

••.0

10••

.366

••-0

.002

to.0

202

••32

.032

4••

.434

9••

6.76

50to

.583

6to

36.8

547

••.1

80••

.010

•••3

65to

-0.0

01••

.021

6••

34.1

490

••.4

637

to7.

2503

to.5

818

to36

.781

4to

•190

••.0

10to

.363

••-0

.002

••.0

226

••35

.665

4••

.484

3to

7.61

26to

.578

1to

36.6

344

to•2

00••

.nl0

••.3

6?to

-0.0

01••

.023

3~

36.7

29;>

to.4

987

••7.

8817

••.5

763

to36

.56'

;7••

.2\0

••.0

10to

.360

~-0

.002

••.0

242

to38

.100

0••

.517

3to

8.22

00to

•572

6to

36.4

i26

to.2

20to

.010

••.3

59••

-0.0

01••

.025

0~

39.3

213

to.5

339

to8.

5294

to.5

708

to36

.338

3~

.230

••.0

10••

.358

••-0

.001

to.0

256

••40

.239

1to

.546

4to

8.77

61to

.569

0to

36.2

(>39

•••2

40••

.010

to.3

56to

-0.0

02••

.026

0to

40.8

51"

••.5

547

to8.

9585

to.5

653

to36

.114

4to

.250

••.0

10••

.355

••-0

.001

••.0

268

••42

.079

6to

.571

3to

9.27

85to

.563

5to

36.0

394

•••2

60••

.nlO

••.3

53••

-0.0

02••

.027

1••

42.5

408

to.5

776

to9.

4321

to.5

598

to35

.888

9~

.270

••.n

l0••

.352

••-0

.001

to.0

277

••43

.464

4to

.590

1••

9.69

05••

.558

0••

35.8

134

••.2

80to

.010

••.3

51••

-0.0

01to

.027

9••

43.7

726

••.5

943

••9.

8138

••.5

561

to35

.737

7••

•290

••.0

10••

•35n

••-0

.001

••.0

284

~44

.544

1••

.604

8••

10.0

429

to.5

543

to35

.661

9••

•300

••.0

10••

•349

~-0

.001

••.0

287

••45

.007

<;••

.611

1to

10.2

047

••.5

525

to35

.585

8to

•310

••.1

)10

••.3

48••

-0.0

01••

.028

8••

45.1

621

••.6

132

••10

.297

9••

.550

6to

35.5

096

••.3

20••

.010

•••3

47••

-0.0

01to

.029

1••

45.6

262

••.6

195

••10

.463

2••

.548

8to

35.4

332

••.3

30••

.010

••.3

46••

-0.0

01••

.029

2••

45.7

810

••.6

216

to10

.559

0to

.546

9to

35.3

566

•••3

40••

.010

••.3

46••

0••

.029

6to

46.4

00~

••.6

300

to10

.763

7to

.546

9to

35.3

566

••.3

50••

.010

••.3

45••

-0.0

01••

.029

6~

46.4

006

~.6

300

to10

.826

2to

.545

1to

35.2

798

••.~

60••

.nl0

••.3

45••

0••

.029

6~

4~.4

006

~.6

300

to10

.889

4~

.545

1to

35.2

798

••.3

70••

.nl0

•••3

44••

-0.0

01••

.030

0••

47.0

211

••.6

384

••11

.099

8••

.543

3••

35.2

029

••.3

80••

.nl0

••.3

44••

a••

.030

4~

47.6

424

••.6

469

••11

.312

8••

.543

3to

35.2

029

••.3

90••

.nl0

••.3

43••

-0.0

01••

.030

6••

47.9

534

••.6

511

••11

.454

2••

.541

4to

35.1

2~7

••.4

00~

·010

••.3

43••

0••

.031

0••

48.5

759

••.6

596

••11

.672

1••

.541

4to

35.1

257

to.4

10••

.n10

••.3

42••

-0.0

01••

.031

4••

4901

99,

••.6

680

to11

.892

8••

.539

6••

35.0

484

••.4

?n••

.nlO

••.3

42••

0••

.031

2••

48.8

87<;

••.6

638

••11

.f!.

887

to.5

396

to3_5.O~Il'l.

\9/5

1••

,430

••.0

10••

,34?

••0

••.0

309

••4~

.420

~••

.657

4••

11.8

465

to.5

396

••35

.048

4

PEAK

STRE

SS=

10.0

202

PSI

PEAK

SATU

RATI

ON=1

00.0

0PE

RCEN

TUL

TIMA

TEST

RESS

=9.

8616

PSI

(ELI

MINA

TED

FROM

GRAP

H)..., '"

WOHI

-C;;

T14A

_I)t

;-2

12-1

0-73

TE~T

E"~Y

LAT

KINS

'"..,.TE

STNO

.DA

TET'

-"EO

CROS

S~E

CT.

AREA

4.y10

1~"I.

n~v

OWT,

.147

LRS.

DRY

DENS

ITY

WET

DENS

ITY

51.6

34LB

S./C

U.FT

.78

.587

LeS.

/CU.

FT.

SAMP

LFTH

ICKN

ESS

1.')

noI"',

WET

lAIT.

.223

LAS•

SAMP

LEVO

LIlt

"'E

•0"2

8el

l.FT

.SP

EC.

GRAV

.1.

540

MOI~

TURE

CONT

ENT

=52

.200

PER

CENT

INIT

TAL

CONS

OLIO

A1Tn

N.158

TN.

PRnV

TNG

~ING

~n.

267

CONS

OLID

ATED

DRY

OENS

ITY

=61

.323

LBS.

/CU.

FT.

CAPA

CITY

=So

nLRc

;,IN

ITIA

LAP

PLIE

IJLO

An=

147.

300

LRS.

SATU

RATI

ON=

100.

00PE

RCE

NT

INIT

I~L

PORO

SITY

41>.

291PE

RCE

NT

INIT

IAL

vnTU

RATT

n=

••~2

INIT

IAL

MOT~

TUAE

CONT

ENT

='Z

.70

PFAC

ENT

**

·"

"•

••

TOT.

TTME

*~HE

ARnr

AL*S

H~AH

UISP

.*Nn

RM.

nIAL

otIo

No~M

.OI

SP."

PROV

.R1

N~"S

TRF~

SFO

Q."S

TRES

SFO

R••S

HEAR

FORC

E.VO

lO•

PORO

SITY

I"IN

/SI'

C)•

(1"1.

)

·(IN

.)

*Ir«,

)•

(IN

.)

•DI

ALli

N.)•

CP~S,

I"/

LOAD

RATT

O"IL

AS/S

QIN

).RA

TIO

•IP

E'lC

ENT)

·•

··

•·

••

••

****

***~

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

••••

•••

****

*•••

·•

·•

•·

••

••

oO/n

•I00

*n

•.4

7c;

•.l

5A•

o•

0•

0•

.567

7•

36.2

131

*•II

~*

."10·

.474·.•

.•0.01

)1·.

0018·1f

...?

1811

••.1

101

•3.

3200

•.5

1>59

•36

.137

2*

.120·

•r:10·

.47<·.n

.0u2

•.0

034·3

n.~3

40•

.2nA

O•

6.30

33•

.562

1•

35.9

R50

·•

1~:l·

."10

•.4

70•

-0.O

!'l2

•.0

046·4

1.44

6n*

.2A1

4•

8.57

21•

.558

4•

35.S

3?O

.1'"n·

.n10·

.4"'

7•

-0.0

03·.

0055·4

'1.5

550•

.336

4·10

.302

5•

.552

8..

35.6

0i2

.1S'l

••f\10

...4

f-c;

,·-0

.002

...0

059

..51

.159

0••

.31>

09·11

.1n9

5..

.54'

11..

35.4

41>4

•.1

A-l

*.1'1n

•.4

fl4·-n

.OOI

...0

064

..57

.1\1

>40•

.3'1

15..

12.1

143

...5

472

•35

.31>

87.1

7,)·

•")

I)..

•4h7

"-0

.on2

...0

069·6

?169

0••

.422

1•

13.1

297•

.543

5•

35.2

128

.1~n·

.nlo·

•4"1'1

"-0

.002·.

0073

..1>

5.77

30·.

4465

..13

.964

5•

.539

8..

35.0

5~1

.1q-

.('1

0..

.459·-(

).oO

l..

.007

h·"

't.4

761'

l••

.4~4

9..

14.6

159

...5

379

•34

.977

5·~()(

:"

.(')1)

·.4

5R..

-o.o

nl•

.OOA

O..

77.0

800

-It

.4~9

3..

15.4

677

•.5

31>1

•34

.S98

7

·.")11

".('\)0

·.4

~7·-0

.001·.

00B3

"74

.7A3

n-I

t.5

077

..16

,134

2..

.534

2•

34.s

i97

·•::>;'"

·.,·')(1

..•4S~·-0

,002

...0

0A6·7

7.I+Q611

-It

.5?6

0..

16.B

OAO

...5

305

•34

.1\6

11..

•~":l"

".nII)

...4

54e

.•.•~l•

t')0l

...OflA

~·7Q

.2A8

n.tjo

.53R

3..

17.2

'125

•.5

286

•34

.58\

5•?4r.

"•·.

..•1Q

...4

';3·-o

.nn)

...0

091

..Al

.991

n••

.556

6..

17.9

799

~.5

268

•34

.50i

7.;)~!\

·."It'

...4lj7

·-O.n

ol..

.00'

12..

R:=t

.AQ2

n-It

.562

7•

IR.2

776

...5

249

..34

.42i

7•?f,'-l

"•(,In·

•'~~1

"-0

.on1

...0

095

"B~

.C;Q

5nott

.5Al

l..

18.9

7S0

...5

230

..34

.341

6.?

7n·

.r"I',·

."'-S1·

IJ..

.OnQ

7..

87.3

97n

••.5

'133

..19

.4AS

3·.

5230

•34

.34i

6•?R

l",..

•t.10

".4

'1('

*-o

.QOI

...0

0'1'

1·RQ

.lq9

~it

.6"156

..19

.998

3..

.521

2..

34.2

61?

·.?

Clp·

."1')

...'~

I~q

·-0.'

101·

•010

0.·q'

1.ln

OI1

.••

.1>1

17•

20.3

139

...5

193

•34

.I~n

6

·.":l(\11

·•f'l

0"

.44A·-0

.001

•.0

102

..Ql

.lln

2t1

-It

.6?3

9*

?n.A

372

...5

174

•34

.099

9"

.'1(1·

."1n

...44Ft

•n·.0

11'\

2*

Ql.Q

t')2

!'1

-It

.6?3

9•

20.9

556

...5

174

•34

.099

9

·•~?lj

·.0

Iu·

•44,Q

·0·.0

11'\

4-·Q1

.7()

4n'it

•I>36

I..

?'1.

4R86

...5

174

..34

.0'1

99•,

~r"

."Ill·

.447

*-(I.

nnl

•.0

104

~Q"

':l.

7(14

nit

.631

\1·?1

.1\1

2n..

.515

6•

34.0

1R9

•"~,~n·

•'ll

(1"

.4'.

7"

n•

.010

5..

Q4.6

05n

'It

.64?

3*

?1.9

45R

...5

151>

..34

.n1R

9"

.It...,j

...n

10*

.4/."·-1

'\.II11

1·•

01n7·Q

".40

7n.•

•.6

545

..?2

.493

7..

.511

7..

33.9

378

•:-tf."ll

".·'llll

*.'~4"

.:.(I

*.n

l08·9

7.

V18(\

.tjo.M

n6..

?2.A

364

...5

137

..33

.937

8•"

171\·

.f,}I)

".44A·

0..

.0ln

il..

Q7.1

nA"

.(I-

.61\

06..

?2.9

7n4

...5

137

..33

.937

8•"l'~;1·

.''In

*.,./tS

..-n

.OOl

...1

J}nf

.i..

Q7.3

('\A

n*

.61\

06..

?3.l

nM..

.511

9..

33.A

51>4

•.~</1

·•"J'!·

.ll·.S·

"..

.010

~*

Q1.3

nRIl

*.6

601;

..23

.243

1..

.51J

9..

33.8

564

•I.;.'\,~

·."1:1·

•'.4c;,

·"

"•n

1nq·QA

.?09

'l.•

•.6"

"7..

23.5

9A2

...5

119

..33

.A51

>4.4

1..

.,<-

.'l}(1

·.4

(.•4

"-0

.11(

\1"

.010

"*

QQ.2

n9n

*.6

1>1\

7..

?3.7

~qR

...5

100

..33

.774

9.4/1,-·

"."ln

".4'l4

"'J

"•01

fl~*

QQ.~

nql'

lolt

.1>1

>1\7

..~3

.RR3

0..

.5ln

o..

33.7

74'1

.';":'

,~I"

"•4/+4

·'J

"•(I1nk·

q7."1rI~"

u.

hh

nh·?3

.Rf"

\74

...5

100

..13

.774

9•I~I,'l

,>.,,1

n"

.ll/~

4

·0·

.nl(

'lf.

...

Qt;.

~'l6

(\~

.64A

4·?3

.5n9

1..

.510

0..

11.1

749

;)1/"~

<,./1t.;!!

·•:",1n·

.4/l4

..n

..•,11

nt:,

,>q4.~n5[l

it.6

423

..23

.410

1·.

510n

..11

.774

9

pI-/,;."

~T.(~

$t_;

=,.'"l.

nq1""

'1PC

;;T

PEhK

5ATI

lRAT

IO'"

=loo

.nn

PERC

ENT

l'lT

T"'/\

TF~T

Ht:S

S=

1q.

?(,7

AtlC

;T

(F"Lt

....•!I\J

ATF:

)Fr~nM

(jRAj.)·-!)

TEST

"J().

nATE

TF.S

TEn

TFc;

Tl:n

8Ywn

HI-Q

I4A_

nS-3

12-1

0-73

LAT

Kl,"

S

CROS

SSE

CT.

AREA

=~.

910

r»,

f)QY

INT.

=01

56LR

S.nR

YDE

NSIT

Y=

55./)

€-4

Lf~S./C

IJ.FT.

SAMP

LETH

ICKN

ESS

=1.

000

1/1,

,1.

WI=.:T

WT.

=.2

24LR

S.wF

TnE

"SIT

Y=

78.7

42LB

S./C

U.FT

.SA

MPLF

VOL'

Jt-I

E=

.01'

l28

GIl.

FT.

SPEC

.G

RAV.

=1.

540

MOIc

;TUQ

Ecn~TENT

=43

.COO

P~R

cr-rr

INIT

IAL

CO~S

OLIO

ATIO

~•

.,13

TN.

pqnV

TNG

RING

NO.

<~7

CONS

OLID

ATEO

ORY

OENS

ITY

•66

.583

LBs.

/CII

.FT•

INIT

IAL

pnRO

SIT

Y•

42.7

23PE

RCE

NTCA

PACI

TY=

500

LR5.

I'lI

TIAL

l'lI

TIAl

VOID

RATr

n=

.746

APPl

tEU

LnAO

=2q

4.60

!'l

LI~S.

SATI

lRAT

lnN

=10

0.00

PER

CENT

INIT

IAL

MOIS

TURE

CONT

ENT

=~5

.3n

PFRC

E~T

*..

**

**

**

**

TOT.

TIME

*SHE

ARDI

AL*S

HEAR

UISp

.*Nn

RM.

nIAl

"NDR

M.OI

SP.*

PROV

.RI

NA*S

TRES

SFO

R.*S

TRES

5FO

R.*S

HEAR

FoRC

E*VO

ID*

PORn

SITY

(MIN

/SEC

)*

(I~J.I

..(

IN.

)*

(IN

.)

*(

IN.

)*

OIAL

(IN.

)*(LR

S.I

*/Ln

ADRA

TTO"

(LRS

/SQ

1'1)

*RA

TIO

*(P

ERCE

"'TI

....

*..

*..

**

**

**~*

~*~*

*~**

~***

**~*

****

~***

***~

****

****

****

****

****

****

****

****

****

~***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***

**

*..

**

e.*

..*

00/0

0*

.100

..0

*.S

Q3..

.113

*0

*n

*0

*0

*.4

439

*30

,741

7..

,1I0

...1

"110

*.5

93..

0..

.002

9*

21;.1

290

*.0

'187

*5.

3488

*.4

439

*.;

0.74

17..

.120

...n

lO..

.S92

*-0

.001

*.0

045

*40

.545

0*

.137

6..

8.34

26*

.442

1*

30.6

579

*.1

30*

.010

*.C;

Qn*

-0.0

02*

.006

3..

5~.n

30*

.192

7*

JI.7

4OO

*.4

3A6

*30

.4A9

~*

.140

*.0

10*

.5A7

*-0

.01)

3*

.008

1*

7~.9

Aln

*.2

477

*15

.172

'1*

.433

4*

30.2

356

*.1

50*

.010

*.5

84..

-0.0

03*

.010

1*

91.0

1)11

"1••

.30B

9*

19.0

1AO

...4

282

*29

.979

7*

.160

*•n

I0*

.'58

2*

-0.0

02*

.011

4*

1n~.

114f

'\••

.348

7*

21.5

786

*.4

247

*29

.80A

I.1

70..

.l"!

10*

.58(

1..

-0.0

02*

.012

6*

I13.

526n

*.3

854

*23

.975

9*

.421

2*

29.~

35~

*.1

"0*

.nlO

*.5

7P*

-0.0

02*

.013

7*

123.

437n

*.4

190

*26

.207

4*

.417

7*

29.4

623

*.1

90*

.010

*.'5

76*

-0.0

02*

.014

4*

1?9.

744f

l*

.440

4*

>7.6

934

*.4

142

••29

.2A8

1*

.200

*.0

10..

.574

••-0

.1')

02*

.015

2••

136.

9520

*.4

649

••29

.388

6*

.410

7*

29.1

I31

*.?

1n..

•f)10

*.5

72..

-0.0

02..

.015

9*

143.

2590

*.4

Q63

*30

.907

7*

.407

2*

2A.9

17<

*.2

20*

.ryl

O*

.571

*-0

.001

••.0

164

*14

7.76

4~••

.501

6*

12.0

524

*.4

055

••28

.A4A

9..

.230

*•n10

*.<

;69

*-0

.002

*.0

168

*15

1.36

8~••

.513

8*

33.0

130

••.4

020

*2A

.67i

7*

•240

••.n

Io..

.568

*-0

.001

...0

17'5

*15

7.67

50*

.535

2*

34.5

7~8

*.4

002

*2R

.<;8

?A*

.250

...0

10*

.'56

6*

-0.0

02..

.017

9*

161.

2790

*.5

475

*15

.561

8*

.396

7*

2A.4

042

*.2

60*

.('l10

*•565

*-0

.001

*.0

1A2

••16

3.98

20*

.556

6*

16.3

579

*.3

950

*28

.314

6••

.270

••.0

10*

.563

••-0

.002

*.0

186

*16

7.58

6n*

.%89

*37

.3~3

6*

.391

5••

2A.1

347

*•~

RO..

.010

*•5

62*

-0.0

01••

.019

0..

171.

1900

*.S~11

••3"

.3A0

6••

.389

7*

2A.n

445

...2

90*

.1"\10

*.5

62*

0*

.019

3*

173.

8Q30

*.5

903·

*39

.205

7*

.389

7*

2A.0

445

*.3

00*

•n10

*.'

561

*-0

.001

*.0

196

••17

6.SQ

6f1

••.5

Q94

*40

.040

2*

.381

l0*

27.9

540

0.3

10*

.010

••.'5

6'1

*-0

.001

*.0

199

*17

9.29

90••

.608

6*

40.8

840

••.3

863

*27

.A6;

2••

.320

••.0

10*

.559

*-0

.001

*.0

200

*lAn

.?'OOf

l-It

.611

7••

41.3

242

*.3

845

*27

.172

2••

.330

...n

l0*

.558

*-0

.001

*.0

200

*18

0.20

00*

.611

7*

41.5

~16

*.3

828

*27

.681

1*

.340

*.O

}o*

.55A

..0

*.0

200

*lf~n.2f)OI'

••.6

117

••41

.A01

5*

.382

8••

27.6

811

*.3

50*

.010

*.5

570

-0.0

01*

.020

1*

181.

1010

*.6

147

*42

.254

5••

.381

0*

27.5

A96

*•3

60..

•01

0*

.<;5

6*

-0.0

01*

.020

2*

IA2.

0020

*•617

8*

42.7

125

••.3

793

••27

.498

0••

.370

••.n

lO..

.556

..0

*.0

204

*18

1.'1

040*

.6?3

9*

43.3

886

*.3

793

••27

.498

0*

•380

*.0

10••

.555

*-0

.001

...0

206

••IB

<;.6

060*

.630

0..

44.0

725

••.3

175

*27

.40(

,1*

.3Qo

*.0

10*

.555

*0

*.0

206

••18

r:;.

6n6n

••.6

300

*44

.334

0••

.377

5*

27.4

061

••.4

00*

•('1

0*

.554

••-0

.001

••.0

206

*18

5.60

60••

.610

0*

44.5

985

••.3

75B

*27

.3j4

0*

.410

*.0

10*

.554

*0

*.0

208

*IA

7.40

80*

.636

1*

45.3

017

*.3

758

*27

.;14

0••

.420

*•nlO

*.5

53*

-0.0

01••

.020

8*

187.

4080

•••636

1*

45.5

749

••.3

140

••27

.221

6*

.430

*.·

010

*.5

53*

0*

.020

8*

IA7.

408n

••.6

361

*45

.851

3*

.374

0*

27.2

216

..•440

*.0

10••

.552

*-0

.001

*.0

206

*IQ

5.M6

00

.630

0*

45.(

,874

*.3

723

••27

.129

0*

•451

)*

.010

••.5

52*

0*

.020

6••

1As.

606n

*.6

':100

*45

.967

6••

.372

3*

27.1

?90

2111

2*

.460

*.0

10*

.552

••0

••.0

205

*18

4.70

50••

.627

0*

46.0

266

*.3

723

••27

.129

0

PEAK

STRE

SS=

38.1

686

PSI

PEAK

SATU

RATI

ON=1

00.0

0PE

RCEN

TUL

TIMA

TEST

RESS

=37

.618

1PS

I(E

LIMI

NATE

DFR

OMGR

APH)

'"<.n

'"'"""

••••••••0

If.) 00CL

.-. -I00ClI (/)cr: 0) 00::r Or- lJ.J....• a:::t- 0) en t-OO en -0) (/).....•

-I I cnC).....• (/) .....J

::c Cl cr:Cl I II II ~~ cr: 0:::

:T W • E:>

-•....•~-lZ Z

C) t- cr: CDE:>Z 00 lJ.J Z •....••

I CL cr: 00t- ~ .-. W(/)o::::cII •.....•:c •w ::c Cl ::c E:>t- t- 3: IE CL U

•or-26

•oto

oo

"""'1"""I"""I""T'T'"T"'T''''I''''T'"'I''''T'"'''''''I'''''I'"''''I'''''I''''''I''''"r''T"'I''''T'"''--'~_'''I'''''I'"~~I"''I''''I''"'I'''''I'''''I'''''I'"'''''''''''''''..+-I •

• • • • •olJ)

ozr

oC\I

( 1Sd ) SS3~lS ~~3HS

MS FORT~AN (4.2) / MSOSPROGRAM DIRSHFAR

CC

COMMON PI:F.K(2C:;),PLOAD (?S) 'IlLT (25) .I'LOAD (215) 'HIl.J~ (2) 'T~J1IM~(2) ,

1 TEST(3),KNTP,KNTUr)JI>1EN~ION A(1},75), TEsTER1(5), TI':C:;TFR2(5), TTMI:(7S)

c

CINTEGER TESTERl, TESTEP2, TfST

cR~AL MOIST, MOISTURE, ~IORMtNIT, MOIc:;TA

ccCCCCCCCCCCCCCC

KNTU= NUMBER OF DATA SETS Uc:;tl\lGULTIMATE FOR PLOTTING.KNTp= NUMBER OF DATA SETS UStNG PEAK FOR PLOTTING.

N = NUMBER OF POINTe:; IN EACH SETTEST(ll=

1 ..• PL~f ENTIRE GRApHo - PLO AXIS AND POINTS ONLYTEST(2)=

1 ... DROP PEAK vAllIE:o - KEEP PEAK VALUE

TE5T(3)=1 "'_DROP ULTIMATE VALUEo - KEEP ULTIMATE VALUE

2 CONTINUEKl\JTU = 0KNTP=ONJUMP = 0

ccc

READ HEADING AND INITIAL NOQMAL DIAL REAotNG1 REAO(60'600) TEST'TNUM'OATE'TESTERl'TESTER2'RINGN'MCAP

IF (f-DFCKF (60) .EQ. 1) GO TO 999REAO(60,602) MOIST,WETWT,T~ICK.AREA,PSI,GRAV, MOISTA

CCC

SAVE FIRST TEST NUMBER FOR PLOT LABEL.

c

IF ( NJUMP .EQ. 1 ) GO TO 4TNUMF(l) = TNUM(I)TNUMF(2) = TNUM(Z)NJUMP = 1

4 READ(60,604) A(I,I), A(I,2), NORMINITN=t)

5 "'=N+lccc

READ DATAREAO(60'604) TIME(N),IF ( ITRIG .EQ. 4H

A(2'N)' 1\(4.N)' 1\(6.N)' !TRIG) GO TO '5

c

27

28

MS FORTRAN 14.2) 1 MSOS 09/24174 PAGE: 002

CC

ccC

CONSOL = 0.0IF I NORMINIT .EQ. 0.0 ) GO TO toCONSOl = NORMINIT-A(4,,)

CALCULATE INITIAL VALUES10 ACCUM = 0.0

APPLOAD = AREA ~ PSIRADIUS:SQRTIAREA/3.141;9)ARIA = CONTACTIACCUM,RAOIUS)SAMVOl = AREA ~ THICK I 1728.wETWT = wETWT * .0022DENwET = wETWTI SAMVOlOENDRY=OENWET/ll +MOIST)DRYWT = DENDRY * SAMVOlCONOEN = DRyWT 1 I lT~ICK - CONSOLI * AREA)CONDEN = CONDEN * 1728•MOISTURE = MOIST*tOoVOLCC = SAMVOl * 1728.* 16.387064vs = DRYWT * 453.6 1 GRAVVOIO=IVOlCC·VS)/VSPOR = VOIDI II. + VOID) * 100.NCAp=1000IF I MCAP .EQ. 4H500 ) NCAP = soo~~~~gt~:~~::~~g~o)lN~~~p==l~gooSATURATE = I (MOISTA * GRAV)I VOID) * 100·IF I SATURATE ,GT. 100. ) SATURATe: = 100•MOISTA = MOISTA * 100.IF l MOISTA tEQ. 0·0 ) SATURATE = 0.0

CCC

WRITE HEADINGWRITEI61'700) TNUM'DATE'TESTERl'TESTER2WRITEI61,702) AREA,DRYWT,DENDRYWRITEI61,704) THICK,wETWT,OENWETWRITEI61'706) SAMVOl'GRAV'MOISTURF.WRITEI61,70B) CONSOL,RrNGN. CONoENWRITE 161, 710) POR, MCApWRITE 161'712) VOID' APPLOAD' SATURATEWRITEl61,713) MOISTA

SET FIRST ROW OF OUTPUT IN TARLESUBTRACT INITI~L CONSOLIDATION TO GET ACTUAL THICKNESS AT TIMFOF DATA READINGS.

CCCCCC THICK = THICK - CONSOl

THICKA = THICKAI3,1l=0.OAlS,l)=CONSOlA(7,1)=STRESSlAI6,1).NCAPI

29

09/24/74 PAGE 003

~C~'11=ACA'11/AP~LOiDC til = C7tlll RIAC10'I) = C APEA * THIrK ~ 16'3R7"64 - VSll VSACll,11 = AC10,111 (1. + AC10,1) I •• 100.c

CC

CALCULATE DATA IN TABLE

00 50 K = 2'NAC3,,0 = A(2'K) - A(2'K-llACCUM = 'CCUM + A(3,K)AC"5,K) = AC4,Kl - A(4'K-1)A(7'K) = STRESSCAC6'K), NeAp)ACg,K) = AC7,K) / APPLoADAPIA = CONTACT CACCUM. RADIUSAc9'Kl = AC7'K) I AfnlT~ICK = THICK + ACS,K)AC10,Kl = C APEA ~ THTrK * 16.3A7n64 - VS)I VSAC11,K) = AC10,K) / (1. + AI10,K» * 100.

50 CONTINUECCC

WRITE OUT RESULTS IN TARLE FORM

Kl = 1K2 = '0

60 IF CK2 .GT. N) K2 = NWqITE 161,714)WRITE 161,716)WRITE 161'718)Wi:lITEI61,714)I!\ST = IH*WqITEI61,720) IIAST, I = 1,131)WRITE C61,714)

C*"***WRITE 161, 722) C TIMEIJ), IAII,J), T = 2,11), J = I,N)wRITE 161,722) (TIMECJ),(AII,J)tI=2'111,J=Kl,K2)IF (K2 .EQ. N) GO TO 6~Kl = Kl' + 1K2 = K1 + 49WRITE C61,701)

701 FORMAT (lHI)GO TO 60

65 CONTINUE

M-OA1974M-OA1974M-OA1974

M-OA1974M-OA1974M_OA1974M-OA1974M·O~1974M-OA1974M-OA1974M_OA1974

CCC

CALCULATE PEAK = STRESS/AREA -- AT HIGHEST STRESS FORCE/LOAn RATTO.

MIIX = "pE:AK = 0.0DO 7S J = 1, NIF( ACA,J) .LE. PEAK) GO TO 75pE:AK = AI8,J)MIIX = J

75 COt-.jTINUEPEAK = A(7' MAX)NEND = N _ MAx

C

30

MS FORTRAN 14.2) I MSOS 09/24174 PAGE 004P~AKSAT = ( (MOIST * GRAVJ I A/lO,MAX) ) * 100.IF ( PEAKSAT .GT. 100. ) PEAKSAT = Ino.

CCC

CALCULATE ULTIMATE RASED O~ PEAK TERMIF 1 NEND ) 76' 76' 78

76 ULTIMATE = PEAKGO TO 110

78 GO TO /80,80,80,85), N~NDaO ULTIMATE = A(7,N )

GO TO 11085 LN = 0

DO 90 J = 1,NENDM = N" JIF 1 AI7,M) 1 A(7'N ) .GT•• oc;) GO TO 95

90 LN = LN • 195 IF ( LN .Ea. 0 ) GO TO 80SUM = 0.0M = 0DO 100 J = M'LNNZ = N.. M

100 SUM = SUM' A(7,NZ)ULTIMATE = SUM I ILN • 1)

DIVIDE PEAK AND ULTIMATE BY AREA AND SAVE FOR PLOTTINGALSO SET LOAD EQUAL TO PSt READING AND SAVE FOR PLOTTING

110 PK = PEAK 1 AREAIF ( TEST(Z) .EQ, 1 ) GO TO lISKNTP = KNTP • 1PEEK(I<NTP) = PKPLoADIKNTP) = PSIIIIRtTEI61,7Z6) PKGO TO 120115 WRITEI61.724) PK

120 WRITEC61,731) pEAKSATUT = ULTIMATE 1 AREAIF ( TEST (3) .EQ. 1 ) GO TO iasKNTU = KNTU • 1U!,.TCKNTU)= UTULOADIKNTU) = PSIWRtTE(6lt730) UTGO TO 130

125 WRITEC61,728) UT

CCCC

c130 IFIITRIG .Ea. 4HAA ) GO TO 1

CCALL GRAPHGO TO 2 M·OR1974999 CONTINUE M·OR1974

CC 600 5 ARE INPUT FORMATSC 600 FORMATI3rt' 3A8' 10A4' A7' 2X' 44)

MSFO

RTRA

N(4

.2)

IMS

OS

~02

FORM

AT(F

90·

6FI0

.0)

04FO

RMAT

(A~

.4X

.3F

I0.0

.39

X.A2

)

09/2

4174

I>AG

E00

5

C C C70

0FO

RMAT

(IHl

'40X

'8HT

EST

NO.'

12X'

IIHD

ATE

TEST

ED'I

IX'9

HTES

TED

ByI1

39X

1.2A

8.7X

.A8,

13X.

5A4/

83X,

5A41

1)70

2FO

RMAT

(9X

,19

HCRO

SSSE

CT.

AREA

=,F

6.3.

4HIN

••12

X,10

HDRY

WT.

1,F

6'3,

5HLB

S·,1

4X'1

4HDR

YDE

NSIT

Y=

,F7·

3.12

HLA

S'IC

U'FT

'/)

704

FORM

AT(9X

.19

H5AM

PLE

THIC

KNES

S=

.F6.

3•4H

IN••

12X.

l0HW

ETWT

.1

,F6.

3,5H

LBS.

,14X

.14H

WET

DENS

ITY

=,F

7.3,

12H

L8S.

ICU.

FT./

)70

6FO

RMAT

(9X

,19

H5AM

PLE

VOLU

ME=,

F6'4

,7H

CU'F

T',9

X'14

HSPE

C'G

lRAV

.=

'F6.

3.15

X,19

HMOI

STUR

FCO

NTEN

T=.

F7.3

.9H

PER

CENT

II)

708

FORM

AT(9X

.24

HINI

TIAL

CONS

OLID

ATIO

N=

.F6.

3.4H

IN••

23X,

17HP

ROIV

YNG

RING

NO'

•A7

'9X

.~C

nNSO

LIDA

T~D~

/.99

X'~D

RYDE

NSIT

Y=

~,F7

'3••

~LB

S./C

U.FT

._/)

710

FORM

AT(9X

.24

HINI

TIAL

PORO

SITY

=•

F6.3

,9H

pER

CENT

'18X

.l1

IHCA

PACI

TY=

•A4

'5H

LBS"

I99

X,~I

NITI

AL-

)71

2FO

RMAT

(9X

.24

HINI

TIAL

VOID

RATT

O=

.F6.

3.27

x,15

HAPP

LIEn

LOAn

1=

,FA

.3.

5HLB

S••

5X,

~SAT

URAT

ION

=_.

F6,2

._

pER

CENT

~I

)71

3FO

RMAT

(9X.

_INI

TIAL

MoIS

TURE

CONT

ENT

=_

F5'2

,~

PERC

ENT_

II)

714

FORM

AT(2

X,10

(llx

.IH*

)71

6FO

RMAT

(3X,

ll~T

OT.

TIME

*'12

HSHE

ARDy

AL*.

12HS

HEAR

DISI

>,*,

12H

NORM

l'oI

AL*.

12HN

ORM.

DISP

.*'1

2HPR

OV'

RING

*'12

HSTR

ESS

FOR'

*'12

HSTR

ESS

2FO

R.*,

12HS

HEAR

FORC

E*,1

2HVO

ID*,

IIH

PORO

SITY

)71

8FO

RMAT

(3X,

IIH(

MIN/

SEC)

*12H

(TN.

)*.

12H

(IN.

)*,

l?H

(IN.

1)*'

12H

(IN,

)*'

12H

DIAL

(IN.

)*'1

2H(L

BS.)

*'12

H/LO

ADRA

T2I

O*,1

2H(L

AS/S

QIN

)*.1

2HRA

TIO

*,ll

H(P

ERCE

NT))

720

FORM

AT(2

X,13

1Al)

722

FORM

AT(4

X'A5

'5H

*,4(

IX.

F7'3

'4H

1F8

,4.

2H*.

2X.F

6.4,

4H*,

lx,F

8.4.

3H72

4FO

RMAT

(11

25X,

14Hp

EAK

STRE

SS=,

F8,4

,4H

1MGR

APH»

)72

6FO

RMAT

(11

25X,

14HP

EAK

STRE

SS=

.F8.

4,4H

PSI)

72A

FORM

AT(2

1X,1

8HUL

TIMA

TEST

RESS

=.F

A.4.

4Hps

I,24

H(E

LIMI

NATE

DFR

O1M

GRAP

H»73

0FO

RMAT

(21x

.18H

ULTI

MATE

STRE

SS=

,FB.

4,4H

PSI)

731

FORM

AT(I

H.,

BOX.

~pEA

KSA

TURA

TION

=_,

F6.2

,~

pERC

ENT_

I)GO

TO2

331

CONT

INUE

700

SAR

EOU

TPUT

FORM

ATS

OJ.

2X.F

6'4'

4H*.

2X,

*,2x

,F6.

4,4H

*,2x

,FB.

4)Ps

I,24

H(E

LIMI

NATE

DFR

O

CF'

JDPR

OGRA

MvA

RIAB

LES

0064

2R

A04

316

RGR

AV04

305

IMC

AI>

0443

4R

P(AK

SAT

0403

1t

tEST

ER2

0433

0R

ACCI

JM04

423

II

0426

5R

MOIS

T04

450

RI>

K04

310

RHI

CK04

~32

RAP

PlOA

D04

422!

UST

0427

3R

MOIS

H04

377

RPO

R04

413

RTH

ICKA

0431

2R

AREA

0432

2I

TTRl

t;04

267

RMO

ISTU

RF04

314

RPS

I04

036

RTI

ME04

340

RAR

IA04

425

IJ

0432

0t

N04

336

RRA

DIUS

0443

6R

ut,TI

MATE

04~C

;6R

COND

EN04

415

IK

0440

1I

NCAP

0430

3R

RING

N04

452

RUT

0432

6R

CONS

Ol04

416

IK1

0443

3I

NEND

0434

4R

SAHV

Ol04

371

RVO

ID04

3n1

RnA

TE04

417

I1(

204

276

INJ

UMP

0441

0R

SATU

RATE

0436

3R

VOlC

C04

352

ROE

NDRY

0444

1I

LN04

271

RNO

RMTN

IT04

445

RSU

M04

367

I-lVs

0435

°R

DENW

n04

442

tM

0444

7I

NZ04

024

ITE

STEi

'll

0430

6R

WETt

oiT

04,<

;4R

[lRY

WT04

430

IMA

X04

431

RPE

AKCO

MMON

VARI

ABLE

S

0032

3I

KNTP

0000

0I-l

PEEK

0032

0I

TEST

0011

4R

TNUM

E00

144

RUl

T'"•....

W N

0032

4I

KNTU

0006

2R

PLOA

D00

310

RTN

U!.\

00;:

>?6P

ULOA

D

STAT

EM~N

TNU

MBER

S1

0464

175

0564

0iio

0601

660

400

014

710

00;:

:>41

722

00<;

032

0463

076

0567

611

506

041

700

0002

271

200

;::>

7172

400

"i40

404

140

7805

701

li'O

0605

570

100

000

713

0012

572

61'

)0<;

615

n475

580

0571

21t

.'506

114

702

0005

071

400

342

728

0057

310

0502

485

057]

6"0

0612

270

400

105

716

0034

673

000

614

So05

446

9005

741

131

0613

570

600

142

llA

0042

373

1O0

6?6

6005

462

9505

753

"00

0000

270

800

177

720

000:

;00

999

0613

365

0561

310

005

774

602

0001

0

EXTE

RNAL

RE~E

RENC

ESCO

NTAC

TE"

o~CK

FGR

ApH

SQRT

STRF

;:SS

FORT

RAN

DIAG

NOST

ICRE

SULT

S~O

ROI

RSHE

AR

NULL

STAT

EMEN

TNU

MBER

S33

1CO

MPIL

EDLE

NGTH

SOF

OIRS

HEAR

-P

01l1

5?C

0032

5D

0000

0

33

MS fORT~AN (4.2) 1 MSOSFONCTION STRESS ( B,N)IF ( N .EQ. 5"0 ) GO TO So~~ :NN·:~~.l~g~OG~ ~g ~go15o

09/24174 PAGi=:001

CC COMPUTATIONS FOR 1000-POUND RtNGC

STRESS = 5.368421 + 25562.348 * 8RF.TURN

CC COMPUTATION FOR 500-POUND RINGCC 50 STRESS = 8920.0 * B

SO STRESS = 9010.0 * BRETURN

CHANGED TO FOLLOWING CARD ON 18 JAN 72

cC COMPUTATION fOR 100-POUND RINGC

100 STRESS = 26638.302*8**3 + 185.42126*8**2 + 1469.1632*8 + 2.0601RETURN

ccC

COMPUTATION FOR 2500-POUND RING.150 STRESS = 63000. * B

RI!:TURNEND

STATEMENT NUMSERS

So 00060

6JUN72

100 00064 150 00105EXTERNAL REFERENCESSYSTEM EXTERNALS ONLY

FORTRAN DIAGNOSTIC RESULTS FOR STRESSCOMpILED LENGTHS OF STRESS

NO ERRORS - p 00147 C 00000 D 0000"

34

MS FORTRAN 14.2) 1 MSOS 09/24174 PAGF: 001

FUNCrtON CONTACT lD,R)S!NTERM = 2 0 R 0 R 0 ASINe O/12.*R) )SQTERM = 0/2. * SQRT e 4. 0 R 0 R • n * 0 )CONTACT = 3.14159 * R * R • e SQTrRM • SINTERMRnURNEND

PROGRAM VARIABLES00004 R SINTERM 00011 R

EXTERNAL REFERENCESASIN SQRT

FORTRAN DIAGNOSTIC RESULTS FOR cONTACT

COMPILED LENGTHS OF CONTACT • PNO F:RRORS

00130 c 00000 D 00000

MS FORTRAN 14.2) 1 MSOS 09/24174 PAGE 001

FUNCTION ASINlX)C ••••• THIS PROGRAM COMPUTES THE ARCSIN FUNCTION USING THE ALGORYTHEMC ••••• ON PAGE 163 OF APPROXI~ATIONS FOR DIGJTAL COMPUTERS BY HASTINGSC ••••• 1q55 PRINSTON UNIVERSITY PRESS.

DIMENSION A(8)OATAlA= •• 0012624911,.0066100901, •• 0170881256,.0308918B10,1 ··0501743046,·08891B9874,··2145988016,1·5101963050)ASIN = 0.0D0 25 J = 1, 8ASIN = ASIN * X • AeJ)

25 CONTINUEASIN = 1.570796326 • SQRT(l.X) * ASINRETURNEND

PROGRAM VARIABLES

00002 R A 00024 I J

STATEMENT NUMBERS25 00056

EXTERNAL REFERENCESSQRT

FORTRAN DIAGNOSTIC RESULTS FOR ASIN

COMPILED LENGTHS OF ASIN - P 00130 C 00000 0NO ERRORS

00000

MS FORTRAN 14.2) / MSOSSU8ROUTINE GRApH

cc COMMON ypI2S)'YPLlZS)'YUlZS)'YULI2S)'TNUMI2)'TNUMFI2)'TESTI3)'

1 KNTP,KNTUC

cINTEGER TESTDIMENSION XI2S)'YlZS),IBUFlSO),IWORDI6)

cccccccCCCCCCCCCC

YP = PEAK STRESSESYPL = CORRESPONOING LOADS

KNTP = NUMBER OF PEAKS TO PLOTTEDYU = ULTIMATE STRESSES

YUL = CORRESPONDINr, LOADSKNTU = NUMBER OF ULTIMATES TO BE PLOTTED

TEST I1) =1 • DRAW ENTIRE PLOT.o - PLOT AXyS AND POINTS ONLY.

KOUNT = 0 IMPLIES PEAKSKOUNT = I IMPLIES ULTIMATES

GET X' Y MAXIMUM FOR PLOTKOUNT = 0MN = YPLlt<NTP) / 10•• 1.XMAX = ~N * 10yMAX = 0 0[')0 10 K=I,KNTPIFlYPll<) .LE. YMAX) GO TO 10YMAX :I: YPlK)

10 CONTINUEMN = yMAX / 10•• 1.yMAX = MN * 10

CC SCL = SCALE FACTOR -- INCHES/USERS UNITCC*****yMAX=SO.C*****SCL = 9./ YMAX

XSC :I: 12.86/XMAXYSC = q.O/YMAXIF IIYMAXOXSC) .GT. 9.0) GO TO 12SCL = XSCyMAX = 9.0/XSC • 0·5MN = YMAX/10•OYMAX = MN*10GO TO 15

12 SCL = YSCXMAX = 12.86/ySC • 0.5MN = XMAX/I0·0XMAX = MN*1015 CONTINUE

35

PAGF: 001

M-OA1974M-OA1974M-Oq1974M"'OAl'h4M-OA1974M_OA1974M_OA,974M"Ol:l1974M ••OA1974M_OA,974M-OA1974M_OPICl74M_OAlcH4

36

MS FORTRAN 14.?1 1 r-1S0S

ctlll PLOTS l If:lUF,50, 7CAll PLOTC3·0.-12·0'-31CALL PLOTlc.a.9.5,-3)CALL FACTORl.70)

09/24174 PAGF 002 1974

cC THPU 2~0 -- PLoTS V AXTS AN~ NUMBERS IT.C

250

FPN = 0.0ChLL NUM8EPco.a,.75,.2],FPN.270 •• 01CALL PLOTCO·O,·14,3)CALL PLOTlo.a,0.0,2)MN = VMAXLTK = °STEP = 0.01)0 260 K = 1,MNI.T K = L T t< + 1STEP = STEP + 1 * SCLCALL PLOTCSTfP,0.0,21IF l LTt< .EQ. 51 GO TO 250IF l LTK .EO' 10 ) GO TO 2~5CALL PLOTlSTEP,.07,2)CALL PLOTlSTEp,O.o,Z)GO TO 260COPlJTINUECALL PLOTCSTEP •• 14,Z)CALL PLOTlSTEp,0.O,2)GO TO 260FPN = FPN + 10.C/.ILLNIJM8ERCSTEP,. 75,.2ltFP~I,270 •• 01CALL PLOTlSTEP"14,3)CALL PLOTlSTEP,O.O,Z)tTK = I)C()NTIN11EFPN = 0.0

255

?60CCC

THRU 2~O DRAWS X AXIS AND NUMBERS IT.

CALL NUM~ERl-.4'.21'.21'FPN'Z10.'11CALL PLOTlO.O,.14,3)CALL PlOTlO.O,O·O,ZIMN = XMAXLTK = (\STEP = 0.000 280 K = ltMNLTK = LTK + 1STEP = STEP - 1 * SCLCALL PLOTlO.O,STEP,Z)IF l LTK .EQ. 5) GO TO 270IF l LTK .EQ· 10) GO TO Z75CALL PLOTl-.07,STEP,Z)CALL PLOTlO.O,STEp,Z)GO TO 280CONTINUF.CALL PLOTl-.14.STEP,Z)

37

MS FORTPAN C4.2) 1 MSOS 09/24114 PAGr:: 003CALL PLOTCO.0·STEP'2)ria TO 280

?75 FPN = FPN + 10.8~CK = STEP + .21CALL NUMBERC-.40,RACK,,21,FPN.270.,0)CALL PLOTC-.14,STEP,3)CALL PLOTCO.O,STEP,2)LTK=O280 CONTINUE

CC PUT DATA POINTS ON GRAPHr

C

YSYMROL = 1100 40 KK = 1, KNTPypT = YPCKK) 0 SCLXPT = YPLCKK) 0 SCLXPT = XPT 0C-l)

40 CALL SYMBOLC ypT, XpT, '12, ISYMBOL,270., -1)IF C TF.:ST(1).E"Q. 1 ) GO TO 60

45 CALL PLOT CO.O, 0,0, 3)45 CONTINUE

WRITE C59,810)pAusE 1GO To 420

46 CIJNTINUEISYMBOl = 2DO So KK = 1, KNTUXpT = YULCKK) 0 SCLyPT = YUCKK) * SCL

50 CALL SYMBOLCXPT,YPT,.I?,ISYM80L,O.O,-I)TEST TO SEE IF REST OF GRAPH IS To BE PLOTTED

CCC IFCTESTCl) .NE. 1) 55'206

55 XPT = XMAx * SCL + 6.r,ALL PLOT CXPT,O.O,3)RETURf\J

cr.c

LABEL Y AXIS

C60 ENCODEC23,800.IWORD)

CALL SYMBOL C-l.5,1.25,.28.IWORD,QO.0,23)CALL SYMBOL Cl.25,1.5 ••2A,IWORO,0.0.23)

CCC

LAI:3ELX AXISENCODE C23'AOl.IWORO)CALL SYMBOL C1.5,-.98,.28,IWORO,O.0,?3)CALL SYMBOL C-.98.-3'5,·28,tWORD,210.,23)

c

CCC

SET LOADS AND STRESSES TN ARRAYS X AND Y FOR CURVf FITTINA.DO 205 K=I'KNTPYCK) = YPCK)

38

09/24/74 pAGE 004MS FORTRAN (4.21 I MSOS

ccc

220CCC

CCC

205 X (KI = YPL (KINPLTP = KNTPGO TO 209DO 207 K=1.KNTUY (10 = YU (K IXIKI = YUL(KINPLTP = KNTU

206207

DETERMINE STRAIGHT LINE EQUATION THRU DATA PTS.209 'lAVE = 0.0

yAVE = 0.0DO 210 K = 1,NPLTpXhvE = XAVE • X(KI/NPLTPyAVE = yAVE • y(KI/NPLTPXY = 0'0oENOM = 0.000 220 K = 1,NPLTPxy = Xy + X(KI * Y(KIOF.NOM = DENOM • ( X(KI ~ XAVE 1**2

210

A = Y INTERCEPT B = SLOPEB = ( XY - NPLTP * XAVE * YAVE II OENOMA = yAVE _ 8 * XAVE

THRU 290 PLOT STRAIGHT LINE EQUATION DETERMINED FOR PTS.MN = XMAXyPT = A * SCLCALL PLOT(YPT.O.O,31XPT • 0.0DO 290 K = 1,MNXPT = XPT - 1 * SCLYpT = YpT • 8 * 5CL

C*****IF ( YPT .GT. YMAX I GO TO 295IF (YPT .GT. YMAX*SCLI GO TO 295

290 CALL PLOT(YpT,XPT.21CCC

LABEL PHI ANGLE ANn COHESION AND PUT ON RIGHT EDGE OF GRAPH295 XPT = XMAX * SCL • .5

yPOINT = 9.0IF(KOlJNT .EQ. 1) GO To 415F.NCOOE(2B,804,IWORO) TNUMFCALL SYM OL(9.0,-1.S,.28,IWORD,270.,28)ENCOOE(4,805,IWORD)CALL SYMBOL(S.5,-1.S,.28,IWORO,270.,41ENCODE(19,806,IWORDI TNUMCALL SYMBOL(8.0,-1·5"2A,IWORO,270.,191ENcOOE(8,807,IWORDICALL SYMROL(7.5,-1.5,.2S,IWORD,270.,AIGO TO 402yPOINT • YPOINT - 3.5415

MSFO

RTRA

N(4

.2)

/MS

OS09

/241

74

CALL

~YMB

OL(X

pT'

YPOI

NT-4

.0••

28'

2'0.

0'-I

If~

CODt

(II.

808.

lWOR

D)CA

LLSY

MAOL

(XpT

'.28

.YP

OINT

_4.0

••2R

.IW

ORD.

0.0,

11)

402

fNCO

DEI1

3.80

2,Iw

ORDl

CALL

SYM8

0L(7

.0,-

1.5,

.~A,

IwOR

n,27

0.,1

31CA

LLWH

tRE

(XD.

ypT,

FACT

lAN

G=

ATAN

(AI

~57

.295

77xn

=XC

••15

CALL

NUMA

ERl7

,0.-

XD'2

'14"

28,A

NG,2

70.,

3)EN

COOE

(12,

a03.

lWOR

D)CA

LLSY

MAOL

I6.5

,-1.

5,.~

8,IW

ORD,

?70

••12

lCA

LLwH

ERE

(XD,

ypT,

FACT

lX~

=XD

••2

CALL

NUMA

ERI6

.5.-

XD'1

.78

••28

,A.2

70.,

J)c c

IFIKO

llNT

.so,

1)

GOTO

420

KCll

lNT=

1(;

0TO

45C r r:

RUN

PEN

AHEA

D10

INCH

ES.

420

XPT

=YM

AX~

SCL

•5.

clLL

PLOT

(XPT

,0.O

,-3)

c cRE

TURN

c C CFO

RMAT

SFO

RPL

OTLA

BELS

.80

0FO

RMAT

123H

SHEA

RST

RESS

(PST

I)RO

IFO

RMAT

l23H

NORM

ALST

RESS

IPS

III

AO?

FORM

AT(l

JHpH

IAN

GLE

=)

A03

FORM

AT(1

2HCO

HESI

ON=I

A04

FORM

AT(9

HTES

TNO

.2A

8180

5FO

RMAT

(4HT

HRU)

80"

FORM

AT(2

A8)

807

FORM

AT(8

H~=

pEAK

)80

8FC

lRMA

T(11

H=

llLT

IMAT

E)RI

OFO

RMAT

(27H

CHAN

GEIN

KON

PLOT

TORF

O)C C

ErIl

O

PROG

RAM

VARI

ABLE

S

0045

2R

A00

503

RANG

0045

0R

A00

40r,

RBA

CK00

44r,

ROE

NOM

0047

7R

FACT

00"3

63R

FPN

0022

3I

0041

0I

0030

5I

0033

1I

0041

21

0031

3I

lAUF

TSYM

ROL

lWOR

OK KK KO

UNT

COMM

ONVA

RIAA

LES

00J2

3I

00J2

4I

0032

0I

0031

0R

KNTp

KNTU

TEST

TNUM

STAT

EMEN

TNU

MBER

S

0037

6I

0032

1I

0043

7I

0034

4R

0037

7R

0005

7R

UK 'IN

NPLT

pSC

LST

EPX

0031

4R

0000

0R

TNUM

FYp

pAGE

005

0044

0R

0047

5p

0032

2R

0041

5p

0033

5p

0044

4p

0006

2R

0014

4R

XAVE

XD XMAX

XpT

XSC

XY ypL Yu

0014

1R

0044

?R

0032

7R

0045

4R

0041

3R

0034

1R

0022

6R

Y YAVE

YMAX

YPOI

NTYP

TYS

C

YUL

co -c

)} c Ul o o < m Jl Z ~ m Z --l "U Jl Z --l Z o o " " o m

-I'- o

415

0203

780

400

"30

420

0222

6~0

5(l

on14

8(1

)00

000

806

00n3

680

100

007

807

0004

0SO

?00

n16

808

00n4

313

0100

023

810

oon4

7

1000

613

5001

400

?Oq

0154

227

001

222

1200

672

5501

425

210

0155

627

501

240

150(

1710

6001

4'37

no01

606

280

01?7

640

0132

520

501

504

?50

0104

229

001

fl76

4S01

354

206

0152

1,,5

501

056

295

0171

246

0136

420

701

526

260

0110

540

202

103

EXTE

RNAL

REFE

RENC

ES

AlAN

NUMB

ERPL

OTS

FACT

ORPL

OTFO

RTRA

NDI

AGNO

STIC

RESU

LTS

FOR

GRAP

H

<0 -..J (J1 in o w .:.., (J1 '":::;SY

MBOL

WHER

E

NULL

STAT

EMEN

TNU

MBER

S46

COMP

ILED

LENG

THS

OFGR

APH

-P

n032

5D

0000

002

267

c