Rheometer DMA Examples 2014 n

download Rheometer DMA Examples 2014 n

of 9

description

Polymers

Transcript of Rheometer DMA Examples 2014 n

  • 1

    RHEOLOGICAL CHARACTERIZATION OF MATERIALS

    USING RHEOMETER and DMA

    Prof. Dr. Necati zkanCentral Laboratory

    Middle East Technical University

    EXAMPLES (DMA)

    DYNAMIC MECHANICAL ANALYSIS (ELASTOMER)The dynamic mechanical properties (E, E, tan) of elastomers can be determined using Dynamic mechanical analysis (DMA). The ability of materials to store and dissipate mechanical energy upon deformation can be quantified using DMA. By using DMA, glass transition temperature (Tg) and elastomer melting point can also be determined. The DMA data allow the development of structure-property-performance relationships for an elastomer; in other words, how do changes in chemistry, processing or composition impact performance.STORAGE MODULUS: The solid-like or elastic portion of a viscoelastic material (elastomer, polymer, ...). It can be used for the determination of energy stored during deformation.E : stretching deformations (tensile)G: shearing, twisting, or torsional deformationsLOSS MODULUS: The liquid-like or viscous portion of a viscoelastic material (elastomer, polymer, ...). It can be used for the determination energy lost during deformation. The energy lost is in the form of heat.E : stretching deformations (tensile)G: shearing, twisting, or torsional deformationsTan Delta (tan): Indicative of the material's ability to dissipate energy, where tan = E"/E' = G"/G'. GLASS TRANSITION OF AN ELASTOMER: Temperature region over which the material changes from a rigid, glassy solid to a more flexible, elastomeric solid. RUBBERY REGION: The region above Tg where the modulus is nearly independent of temperature. HARD SEGMENT MELT: The temperature at which the solid-to-liquid transition of the hard segment occurs. It defines the upper use temperature of the elastomer.

  • 2

    Temp Cel100.00.0-100.0

    E' (

    Sto

    rage

    Mod

    ulus

    ) M

    Pa

    1.0E+00

    1.0E+041.0E+04

    tanD

    1.0000

    0.8000

    0.6000

    0.4000

    0.2000

    0.0000

    E"

    MP

    a

    1.0E-04

    1.0E+001.0E+00

    - 6 4 .7 C e l1 . 0 0 0 H z

    - 5 7 .0 C e l1 . 0 0 0 H z

    - 4 1 .1 C e l1 . 0 0 0 H z

    - 1 1 0 .5 C e l4 .5 E + 0 3 M P a

    4 8 . 1 C e l1 . 1 E + 0 1 M P a

    9 9 .3 C e l1 .1 E + 0 1 M P a

    4 9 .6 C e l6 . 1 E -0 4 M P a

    ELASTOMER

    G = RT / Me (((( )))) (((( ))))

    molg720mol

    kg72.0M

    m

    J

    mm

    mN

    m

    NPa10x1.1

    K)50273(KmolJ314.8

    mkg1000x3

    M

    ETR3

    MM

    TR3E

    e

    3227

    3

    e

    ee

    ====

    ============

    ++++

    ====

    ========

    Onset ETg= -64.7 oC

    Maximum ETg =-57.0 oC

    Maximum tandTg = -41.1 oC

    E = 3 RT / Me

    Temp Cel200.0150.0100.050.00.0

    E' (

    Sto

    rage

    Mod

    ulus

    ) M

    Pa

    1.6E+00

    5.5E+03ta

    nD

    3.0000

    2.0000

    1.0000

    0.0000

    E"

    MP

    a

    8.1E-07

    1.8E+02

    111.8Cel10.00Hz1.3E+03MPa

    1 1 3 .2 C e l1 0 . 0 0 H z2 .5 E + 0 2 M P a

    1 3 1 .3 C e l1 0 . 0 0 H z

    Poly(methyl methacrylate) (PMMA)

    Onset of E= 111.8 oCThe max of E= 113.2 oCThe max of tan =131.3 oC

  • 3

    Temp Cel200.0150.0100.050.00.0

    E' P

    a

    1.0E+06

    1.0E+101.0E+10

    tanD

    3.0000

    2.5000

    2.0000

    1.5000

    1.0000

    0.5000

    0.0000

    E" P

    a

    1.0E+05

    1.0E+091.0E+09

    2 2 .7 C e l1 0 .0 0 H z4 .6 E + 0 9 P a

    1 7 9 .7 C e l1 0 .0 0 H z3 .6 E + 0 6 P a

    1 1 8 .9 C e l1 0 .0 0 H z3 .0 E + 0 8 P a

    1 2 8 .1 C e l0 .5 0 0 H z

    1 2 9 .5 C e l1 .0 0 0 H z

    1 3 2 .4 C e l2 .0 0 0 H z

    1 3 5 .3 C e l5 .0 0 0 H z

    1 3 8 .0 C e l1 0 .0 0 H z

    4 3 .1 C e l1 0 .0 0 H z0 .0 9 1 7

    Frequency (Hz)

    Tg (oC)

    0.5 128.1 1.0 129.5 2.0 132.4 5.0 135.3 10.0 138.0

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    0.00242 0.00244 0.00246 0.00248 0.0025

    1/T (1/K)

    ln (

    freq

    uenc

    y), (

    s-1

    )Slope=-EA/R

    Slope = -48526R2 = 0.9928

    EA=403 kJ/mol

    Poly(methyl methacrylate) (PMMA)

    Temp Cel100.050.00.0

    E' (

    Sto

    rage

    Mod

    ulus

    ) M

    Pa

    4.4E+01

    1.5E+04

    tanD

    1.5000

    1.0000

    0.5000

    E"

    MP

    a

    2.8E-03

    3.5E+01B io d e g r a d a b le

    30.8Cel

    1.000Hz5.3E+03MPa

    Biodegradable Polymer (Sample from Erin Bahegl)

  • 4

    ENERGY STORAGEAverage energy stored over a full cycle:

    ENERGY DISSIPATIONEnergy dissipated per cycle:

    (((( )))) (((( )))) G4

    E20

    S ====

    (((( )))) (((( )))) GE 20d ====

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 20 40 60 80 100

    Shear Rate or Frequency (s -1)

    App

    aren

    t or C

    ompl

    ex V

    isco

    sity

    (P

    a.s)

    SteadyDynamic

    VISCOSITY MEASUREMENT (Steady and Dynamic Measureme nt)

    SAMPLE: Powder suspension

    EXAMPLES (Rheometer)

  • 5

    0.1

    1

    10

    100

    0.1 1 10 100

    Shear Rate or Frequency (s -1)

    App

    aren

    t or C

    ompl

    ex V

    isco

    sity

    (P

    a.s)

    SteadyDynamic

    VISCOSITY MEASUREMENT (Steady and Dynamic Measureme nt)

    SAMPLE: Powder suspension

    0.1

    1

    10

    100

    0.01 0.1 1 10 100

    Shear Rate or Frequency (s -1)

    App

    aren

    t or C

    ompl

    ex V

    isco

    sity

    (P

    a.s)

    SteadyDynamic

    =0.56

    &&

    ======== )()(* app

    Modified Cox-Merz

    Modified Cox-Merz Rule

    VISCOSITY MEASUREMENT (Steady and Dynamic Measureme nt)

  • 6

    0.1

    1

    10

    100

    0.1 1 10 100 1000

    Shear Rate (s -1)

    App

    aren

    t Vis

    cosi

    ty (P

    a.s)

    Newtonian Approximation

    Power Law Approximation

    SAMPLE: Powder suspension

    0.1

    1

    10

    100

    0.1 1 10 100 1000

    Shear Rate (s -1)

    App

    aren

    t Vis

    cosi

    ty (P

    a.s)

    Measured

    Model Fitting (Power Law)

    (((( ))))

    (((( ))))62.0app

    n1app

    2.12

    k

    ====

    ====

    &

    &

    MODEL FITTING

  • 7

    0.1

    1

    10

    100

    0.1 1 10 100 1000

    Shear Rate (s -1)

    App

    aren

    t Vis

    cosi

    ty (P

    a.s)

    Newtonian Approximation

    Power Law Approximation

    n=0.38

    SAMPLE: Powder suspension

    0.1

    1

    10

    100

    0.1 1 10 100 1000

    Shear Rate (s -1)

    App

    aren

    t Vis

    cosi

    ty (P

    a.s)

    Newtonian Approximation

    Power Law Approximation

    n=0.10

    SAMPLE: Powder suspension

  • 8

    1

    10

    100

    1000

    0.1 1 10 100

    Frequency (1/s)

    G' (

    Pa)

    ; G''

    (Pa)

    ; *

    (Pa.

    s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    tan

    G' G''

    Complex Viscosity tand

    SAMPLE: Powder suspension

    PDMS

    1

    10

    100

    1000

    10000

    100000

    0.1 1 10 100

    Frequency (1/s)

    G' (

    Pa)

    ; G''

    (Pa)

    ;

    * (P

    a.s)

    0

    1

    2

    3

    4

    5

    6

    tan

    G'G''

    Complex viscosity

    tand

  • 9

    1

    10

    100

    0.01 1 100 10000

    Time (s)

    G (t

    ), (P

    a)

    0

    20

    40

    60

    80

    100

    0 50 100 150 200

    Time (s)

    G (

    t), (

    Pa)

    TRANSIENT MEASUREMENT (STRESS RELAXATION)SAMPLE: Powder suspension

    Frequency = 5 HzStrain amplitude = 20 %Temperature = 25 oC

    timelaxationEwhere

    ttN

    Re

    exp)(

    ========

    ====

    EXAMPLE:A parallel plate geometry was used to measure the d ynamic rheological properties of a polymer melt at 210 oC. A sinusoidal strain with a maximum strain ( o) of 0.05 was applied at an angular frequency ( ) of 5 s -1, and the corresponding stress ( o) and phase angle ( ) were measured as 2.8 MPa and 12 o, respectively. Calculate the following viscoelastic properties of the polymer melt at an angular frequency of 5 s -1.

    a. Storage modulusb. Loss Modulusc. Complex modulusd. Complex viscosity

    (((( ))))

    (((( ))))

    *GitycosvisComplex

    GitycosviscomplexofPartaginaryIm

    GitycosviscomplexofPartalRe

    GG

    tan

    *GModulusComplex

    sinGModulusLoss

    cosGModulusStorage

    0

    0

    0

    0

    0

    0

    ====

    ====

    ====

    ====

    ========

    ========

    ========