Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1....

72
Reynold stress model (RSM) Rixin Yu, 2017 1

Transcript of Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1....

Page 1: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress model (RSM)

Rixin Yu, 2017

1

Page 2: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress model (RSM)

• Part 1.1 • Characterize the Reynold stress “anisotropy”. • Lumley triangle

• Part 1.2 – Reynold stress equations.

• Derivation • Brief examination

2

Page 3: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

What we plan to do now!• Reynold stresses contain information more than k

– k is only the isotropic part of Reynold stress!

• To characterize the Reynold stress “anisotropy”– Using Lumley triangle to represent “anisotropy”.

• Tensor “invariant” concept– It is related to Eigenvalue (Linear algebra) concept.

3

Page 4: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Characterization of Reynold-stress anisotropy

= − 232 = − 23 /2

1: 2nd order tensor 2: symmetrical 2: real valued3: zero trace4: realizable, e.g. ≤ ( + ) +….

Tensor invariant for ?

= ( + + )

( ) ≤ ⋅

Page 5: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Recap: Tensor element values change at a different coordinate

5

#

# #

= 1, 0, 0# = 0, 1, 0

= 0 0 00 0 00 0# = 0 00 0 00 0 0

1st order tensor(vector)

2nd order tensor

Note: such a is NOT realizable, but we just use here for simple demonstration

Page 6: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Characterize of Reynold-stress anisotropy Recap: Tensor elements change values at different coordinate:

6In coordinate

#

# #

= 100

Example: a 2nd order tensor ( ) formed as the product of two 1st order tensor (vector) : and .

In # coordinate

# = 010≡ = 0 0 00 0 00 0

=001 # ≡ # # = 0 00 0 00 0 0

#=100A rotated coordinate #

Original coordinate

Page 7: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Tensor invariants• Tensor elements change values as coordinate changes (kept to be orthogonal)

• Can we find some expressions formed using the tensor element values, those expressions will keep constant under coordinate changes ?

– For 1st order tensor, i.e. = ( , , )• Length of the vector: = + + = # + # + #

– For 2nd order tensor ,• ( ,… , ) = ( # ,… , # )– forexample, ( ,… , ) ≡ + 2 +⋯• ,… , = ( # ,… , # )

• ???7

≡ = 0 0 00 0 00 0 # ≡ # # = 0 00 0 00 0 0#

# #= 100 # = 010

Page 8: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Tensor invariants for 2nd order symmetrical tensor • Yes, we can!

– Treat as matrix, find its 3 eigenvalues

8

= − /2 = ×

= − = 0 | − | = 0 + ⋅ + ⋅ + = 0= + += + += ( − )( − )( − ) = 03 principle

invariants to coordinate change!

Characteristic polynomial

Page 9: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Characterization of Reynold-stress anisotropy-The Lumley triangle

(Real, symmetrical, zero trace tensor)

= + + = = 0= + + = −= = 16 − 12 + 13

33

22

36

26

iib

iib

bIII

bII

==

=−=

ξ

η

Tensor*Tensor Tensorcollapse index low order tensor If reach to first order tensor, scalar (invariant)

= ≠ Compact notation

Page 10: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

10

NOT realizable if outside the triangle

Page 11: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Lumley triangle

= + + = 0= + + = −3= = 2

= ⇒ = / − / − /

= / / / b=

= / / b=/ / − /

Page 12: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Two-equations models vs. RSM

12

= −1 ̅ + −= 0

= ( ) + −

= ( ) + −− 23 = − ( + )= 12

Mean continuity:

Mean momentum:

Eddy-viscosity-assumption.

= + Π + −

= ( ∗ ) + −

RSM : 6 transport equations1 transport equations+5 relations

23 +. .

Page 13: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Derive Reynold stress equations

13

Denote = + + − = 0( + ) + ( + ) + 1 − = 0⋅ = ( + ) + ( + ) + 1 − = 0⋅ = ( + ) + ( + ) + 1 − = 0

+ = + + + + ++1 + − ( + ) = 0

Expand first two terms:

Not expand yet

Non-conservative form

Page 14: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Expand then take average: + = 0

14

+ + + + + + 1 ++ + = 0( + )+ + + +

+1 + − 2 + = 0

= 0

+ = −2 +

0

Page 15: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress equations

15

+ = − + Π − +

Π = − += + − += −

= − +Production tensor

Dissipation tensor = 2Velocity-pressure-gradient tensor

Viscous diffusionTurbulent

transport

Pressure-rate-of-strain tensor Pressure

transport tensor

Which terms need modelling ?

Page 16: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress equations contain the (= ) equation

16

+ = − + Π − +

+ = − − ′ − 12 +Take half trace (collapse j to i )

Standard k-eq

Π = + − += 0 − 2 ′

= 12 = 22 == 12 = −12 += −

Page 17: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

How those RS terms looks like in a turbulent boundary layer?

17

+ = − + Π − + 000 0

+ = − + Π − +

Mean Convection Turb. conv Vis. diff.PressureDissp.Prod.

+ = − + Π − +

+ = − + Π − + + = − + Π − +

+ = − − ′ − 12 +

Page 18: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Distribution of Reynold stres

18

< > < > 0< > < > 00 0 < >000 0

Page 19: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Budget of k equation

19

+ = − − ′ − 12 +Mean Convection Turb. conv Vis. diff.PressureDissp.Prod.

Normalized by∑ = 1

12

Page 20: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Put together

20

Π ΠΠ

Π ΠΠ

000 0

Page 21: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Dissipation rate

Simplification: use Kolmogorov’s local isotropy hypothesis:

Accurate dissipation tensor = 2 =

= 23 = 23 0 00 00 0

= = 32 + +3

+ = − + Π − +

Page 22: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

The dissipation equation

22

= + −= + −= 23

= 12 = −12 += −

= − 2 ( + )equation

In k − = ⋯

Page 23: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

A note for dissipation• Near wall ( y+<20)( = is not valid anymore )

23

Π Π

Π Π

Π ΠΠ Π

Page 24: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress models-part 2

24

Page 25: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress equations

• Model the pressure-rate-of-strain term:

• Contribution by the slow pressure• Contribution by the rapid pressure

– Rapid Distortion Theory (RDT)• Contribution by the harmonic pressure

25

Page 26: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Reynold stress equations

26

+ = − + Π − +

Π = − += + − += −

= − +Production tensor

Dissipation tensor = 2Velocity-pressure-gradient tensor

Viscous diffusionTurbulent

transport

Pressure-rate-of-strain tensor Pressure

transport tensor

Which terms need to be modeled?

Page 27: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

The redistribution role of

Π ΠΠ

Π ΠΠ

Reynolds stress at a certain direction( , ) is produced and consumed by a joint contriubtions from three terms: the production term , the disspation term and the Π term (or ) .

The contribution by the last term is signficant, it servers to redistribing the reynolds stresses among different directions.

Indeed summation of over all direction gives zero, i.e = 0.

+. . = − + Π … .000 0

Page 28: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Pressure-rate-of-strain tensor

Responsible for redistribition of fluctuations beween different directions

For pressure fluctuations:

Decompose pressure

28Rapid: Slow: Harmonic:

= +

1 ′ = −2 − −

( ) ( ) ( )

= ⋯ ∉ , = 0 = 0+ = −1 +⋯

Page 29: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Pressure-rate-of-strain tensor

rapid

slow

harmonic

The same can be done for the pressure-rate-of-strain tensor

only important close to walls

29

1 ′ + ′ + ′ = −2 − −1 = −21 = − −

= 0( ) = ( ) + ( ) = ( ) +

∞→ 0

Page 30: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

First: turn to the ”slow” pressure

30

1 ′ + ′ + ′ = −2 − −

( ) = ( ) +

Consider homgeneous decaying turbulence ( = 0, but anistropy is still present):

+ = − + Π − + Π = ( ( )+ ( ) + ( )) −

= ( ) −Slow pressure rate-of-strain

A greatly-simplified Reynold stress equation for homogenous turbulence

Slow velocity press-gradient

Page 31: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Understand the slow pressure-rate-of-strain- in decaying homgeneous anistropic turbulence

31

reformulated in terms of anisotropy tensor

= ( ) −= 2 − 13

= 12 ⋅ − 12 ⋅= −2 − + 13 −= − + 2 + 232 Kolmogorov local

isotropy hypothesis

ijij εδε 32=

= −

= + 2

Homogenous flow, no production

Page 32: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Model the slow pressure-rate-of-strain

32

= + + 2 = + ⋅ ⇒ =If term is zero, all 6 elements of anisotropy tensor will increase exponently in time

Rotta(1951) :

A modelling Ideal: assume that turbulence has a natural tendency to become less anisotropic as it decays.

= −2 = − − 23= − − 1 Linear, return-to-isotropy

33

22

6

6

ii

ii

b

b

=

=

ξ

η

We need this term in Reynolds stress eq.

Page 33: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

(Nonlinear) Model of slow pressure-rate-of-strain

33

Linear: c ⋅

Rotta(1951) :

= − − 1Nonlinear: C ⋅

= 1 + 12 ( ) + 12 − 13…can be (linearly) expressed by

and ; due to Cayley-Hamilton theoremfor 2nd order tensor .Characteristically polynomial: + ⋅ + ⋅ + = 0Plug into the characteristic polynomail+ ⋅ + ⋅ + = 0

(Sakar & Speziale, 1990)( ) = −3.4; = 4.2

Although is zero trace, is not nessary zero trace.

?

Page 34: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Now turn to rapid pressure : Rapid distortion theroy(RDT)What is Rapid distortion?

Turbulence-to-Mean strean time scale ratio is large! 1/ = / ≫ 1Rapid mean-flow distortion:→ −∞ ; → +∞satisfy continuity,+ + = 0

turbulent velocity fluctuations ( )

Page 35: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Rapid distortion theroy(RDT) for homogenous turbulenceThe governing equations for fluctuating velocity and pressure reduce to a set of linear P.D.E.s.

1 ′ + ′ = −2 − −+ + + + 1 + ′ − ′ = 0

Eq. for pressure

There is no nonlinear term anymore (powerful assumption), analytical results can be found. How? Firstly lets start from a single Fourier wave.

Eq.s for the fluctuating velocity

Page 36: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

A 1D example“Rapid distortion” of a almostly frozen “scalar fluctuation”

+

-

+

-

++- -

The wave number| ( )|increases with time for this particular “distortion”

A kind of elastic process

After a while

Initially

Page 37: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

A glimpse of rapid distortion theroy in 2D

37

“rapid” deformation of 2D “frozen” fluctuating scalar field

+

+

+

-

-

-

-

++

+--

--

Mean strain( ⇐ / =0 Same area after distortion)Through , ( ) rotates, changes magnitude | |

+

+

+

-

-

-

-

+

+

+

--

-

-

evolve as ( )⋅( )

“Initially” a single flutuating wave ⋅

Page 38: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Rapid distortion theroy: single-wave result

38

′ = − ′ ( − 2 ̂ ̂ )̂ = − ̂ ( − ̂ ̂ )

Following this “single” time-evolving wave (t), the fluctuation amplitude ( )evolves independent of length of wave-vector | |, only on its orientation .

=Rotate direction

Actual turbulence fluctuations should be summed for all possible wave vectors. Since RDT equations is linear, allowing each wave to evolve independently(then to be summed)

′ ⋅

Page 39: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Rapid distortion theroy: Linearly-summed-all-waves

39

is a fourth order tensor, depends on direction of Fourier mode (partially contained in the velocity-spectrum) , which is not contained in the Reynolds-stress ( ).

′ ⋅= + ( )

Rapid-straining turbulence in a periodic domain :

( ) = 2 ( + )= ∗ ̂ ̂

Two turbulence states may start with thesame but different , their temporal evolutions are not uniquely determined by . This can be a limitation for modelling ( ), same applies to ( ). Two routes return-

to-isotropy for ( )

Page 40: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

An example: shear rapid distortion

40Initial, isotropic turbulence

= + ( )Evolve in time due to combined effect of ( )

= − 232 Later, anisotropy ++

t=0

direction 1

direction 2

t>0

Page 41: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

RDT model for rapid pressure ( )Initial, isotropic turbulence under rapid, mean distortion :

( ) = 45 = −35= − −= −23 + Ω −⋯= −( ) = −35 ( − 23 ) = ,zero trace

RDT

Anisotropy production

= + ( )

Counteracts 60% of production

Only valid for

Page 42: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Part 3• Reynolds stress models

– Combined models for the pressure-rate-of-strain terms• Slow pressure model + rapid pressure model

– Model the turbulence and pressure transport terms• Gradient diffusion

– Model dissipation• Isotropic model • Non-isotropic model (Near wall consideration)

• A hierarchy of other turbulence models– Algebraic RS models

• Simple but effective approaches inspired from RS-models

– Nonlinear eddy-viscosity models– Elliptical relaxation model

42

Page 43: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Put things together A basic combined model for pressure-rate-of-strain term

= ( ) + ( ) = − − 23 − ( − 23 )

= −2 = − − 23( ) = −35 ( − 23 )

(Launder, Reece, Rodi , 1975)

Simply, widely used, resonable-performence

Linear Rotta model for slow pressure :

Isotropization of Production for rapid pressure

LRR-IP

Page 44: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Other “advanced” pressure-rate-of-strain modelsAll these ”advanced” models can be described in a general form:

=== − 13== + − 23= Ω − Ω= + − 23= Ω − Ω= − 13

Key modelling ingredients:

1: Input tensor: ,

Tensor requirement1.1 Symmetry (antisymmetric)Ω1.2 deviatric (zero trace)−231.3 Normalize (non-dimentional)= ⋅

2: Linear / nonlinearLinear:

slow: c ⋅rapid: c ⋅ or c ⋅ Ω

Nonlinear: slow: C ⋅rapid: none ( Mijkl is linear)

…….

Page 45: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Other “advanced” pressure-rate-of-strain modelssome examples with given coeffcients

=LRR-IPLaunder et al 1975

LRR-QILaunder et al 1975

SSGSpeziale et al 1991−2 −2 − − ∗

0 043 45 − 6 ∗2 611 2 + 32 211 10 − 7

0 0 0

0 0 0

0 0 0

Note that only SSG has non-linear return to isotropy.

Page 46: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Part 3• Reynolds stress models

– Combined models for the pressure-rate-of-strain terms• Slow pressure model + rapid pressure model

– Model the turbulence and pressure transport terms• Gradient diffusion

– Model dissipation• Isotropic model • Non-isotropic model (Near wall consideration)

• A hierarchy of other turbulence models– Algebraic RS models

• Simple but effective approaches inspired from RS-models

– Nonlinear eddy-viscosity models– Elliptical relaxation model

46

Page 47: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Modelling Reynold stress equations

47

+ = − + Π − +

Π = − += + − += −

= − +Production tensor

Dissipation tensor = 2Velocity-pressure-gradient tensor

Viscous diffusionTurbulent

transport

Pressure-rate-of-strain tensor Pressure

transport tensor

Page 48: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Inhomogenous tubulence(Model turbulent-transport term)

ikj

jki

kjit

ijkpupuuuuT δρ

δρ

′′+

′′+′′′=)(

Normally the pressure transport is neglected (or implicitly included in the modelling of the turbulent transport) on the basis of the energy budget.

Turbulent transport

Pressure transport

Gradient diffusion models:

k

jis

tijk x

uukCT∂

′′∂−=

ε

2)( Shir (1971)

l

jilks

tijk x

uuuukCT

′′∂′′−=

ε)( Daly & Harlow (1970)

⎟⎟⎠

⎞⎜⎜⎝

′′∂+

∂′′∂

+∂

′′∂−=′′′

k

ji

j

ki

i

kjskji x

uuxuu

xuukCuuu

ε

2

⎟⎟⎠

⎞⎜⎜⎝

⎛∂

′′∂′′+

∂′′∂′′+

′′∂′′−=′′′

l

jilk

l

kilj

l

kjliskji x

uuuu

xuuuu

xuu

uukCuuuε

Mellor & Herring (1973)

Hanjalic & Launder (1972) 48

Page 49: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Part 3• Reynolds stress models

– Combined models for the pressure-rate-of-strain terms• Slow pressure model + rapid pressure model

– Model the turbulence and pressure transport terms• Gradient diffusion

– Model dissipation• Isotropic model • Non-isotropic model (Near wall consideration)

• A hierarchy of other turbulence models– Algebraic RS models

• Simple but effective approaches inspired from RS-models

– Nonlinear eddy-viscosity models– Elliptical relaxation model

49

Page 50: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Dissipation rate

Simplification: use Kolmogorov’s local isotropy hypothesis:

Accurate dissipation tensor = 2 =

= 23 = 23 0 00 00 0

= = 32 + +3

+ = − + Π − +

Page 51: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Dissipation rate

Hence, dissipation can be anisotropic close to walls, but also in moderate Reynolds number flow and for large mean rate of strain.

Near wall effects:• Low Reynolds number• High shear rate• Two-component turbulence ( fluctuaiton in direction is grealty inhibited)• Wall blocking (pressure reflections)

Page 52: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

A demonstration of anisotropic dissipation near wall using DNS

• Near wall ( y+<20), = does not hold.

52

Π Π

Π Π

Π ΠΠ Π

(To be isotropic, it should be ≈ ≈ and ≈ 0)

Page 53: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Dissipation rate

Near walls region(anisotopic)

53

Two component behavior when approching wall → 0(Exact analysis: series expansion)

= ′ ′ ≠ 2 ≠ 2= 2 ′ ′ ≠ 2= 4 ′ ′

∗ = ′ ′ Using a blending function

= 23a simple model by Rotta (1951)

= ∗ + (1 − ) 23

Far from wall (isotropic)

(Not very accurate!, but not very far off)

= 1aty = 0and → 0 → ∞

Note: the isotropic part of disspation is not zero at the wall = 0!

Note: All 6 Reynold stresses(containing ) will always be zero at wall.

For all regions:

Page 54: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Dissipation rate

A more accurate model accounting for the two-component behaviour closeto the wall:

∗ = ′ ′ + ′ ′ + ′ ′ + ′ ′ ⁄1 + 52 ′ ′

= ∗ + 1 − 23

: Wall normal direction vector

Simiarly blend this near-wall model with the isotropic model

For all regions:

Page 55: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

55

The harmonic pressure

At y=0 the pressure fluctuations are:′ = ′Now consider the Poisson equation for pressure fluctuations:

( )jijijii

j

j

i

kkuuuu

xxxu

xu

xxp ′′−′′

∂∂∂

−∂

′∂∂∂

−=∂∂′∂ 22

21ρ

This is independent of viscous effects. Hence for the rapid and slow parts one uses the inviscid boundary condition and for the harmonic part the viscous boundary condition, i.e.:

= ′= 0 = 0Note that p(h) does not affect beyond y+=15

Page 56: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Part 3• Reynolds stress models

– Combined models for the pressure-rate-of-strain terms• Slow pressure model + rapid pressure model

– Model the turbulence and pressure transport terms• Gradient diffusion

– Model dissipation• Isotropic model • Non-isotropic model (Near wall consideration)

• A hierarchy of other turbulence models– Algebraic RS models

• Simple but effective approaches inspired from RS-models

– Nonlinear eddy-viscosity models– Elliptical relaxation model

56

Page 57: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

57

Can Reynold-stress equations be reduced?

In previous slides, ”modeling” of all nessary terms in 6-Reynold Stress equations and 1 disspation equaiton are presented.

However solving 7 RS model equations are more expensive than standard 2-equation models , is there other simplficaton to avoid solving 5 extra equations while retaining some benefits of RS models in terms of better describing RS anistropy. (It should be better than those models based on Boussineq eddy-viscosity assmption).

Yes, that is algerbric stress model.

Page 58: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Compare Reynold stress and k-equations

+ + = + − 23Six eqs.

+ + = − j=i , take halfone k-eq.

Let’s call it , then this must be called

contains time/spatial-derivative for the unknown ,can we simplify 6-elemement- by represented it using the single-element- without derivative ?

+ = − + Π − + Regroup R-S equation

Page 59: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Algebraic stress model

+ + = + − 23Six eqs.

+ + = − × ×Gained Benefits:(Simple Algebraic relations to compute , no need to solve P.D.E.s)

Rodi’s Ideal 1972

Whatever pressure-models:LRR-IP ; LRR-QI ;SSG , etc…

Price to pay: (Weak equilibrium assumption)

Approximation ≈ × = ,may not be accurate.

Isotropic dissipation

Six Reynolds stress multiply one k-eq

Page 60: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Algebraic stress modelsWeak-equilibrium assumption (Rodi, 1972)

⎥⎥⎥

⎢⎢⎢

⎟⎟⎟

⎜⎜⎜

⎛ ′′

∂∂

+⎟⎟⎟

⎜⎜⎜

⎛ ′′

∂∂

+⎥⎥⎦

⎢⎢⎣

∂∂

+∂∂′′

=∂

′′∂+

′′∂

kjuiu

kxkuk

juiu

tk

kxk

kutk

kjuiu

kxjuiu

kut

juiu

=≈ × 12= 2 + 23

Page 61: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Algebraic stress model

+ + = + − 23

+ + = − ×

Whatever pressure-models:LRR-IP ; LRR-QI ;SSG , etc…

Isotropic dissipation

1: Solve one expensive transport equation for k

− = + − 233: Solve five light weight algebraic relations to compute the remained

The Algebraic stress model replaces boussineqassumption. − = − + = −2 to be used in the (A) Three averaged momentum eq. (B) Production terms ( )

2: Solve another expensive transport equation for

Page 62: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Algebraic stress models vs. k-e model

62

Page 63: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Non-linear eddy viscosity model

63

Match the unit dimension

Linear: c ⋅ , or c ⋅ ΩNonlinear: C ⋅ Ω , or C ⋅− 23 = −2

Nonlinear model with possible combinations of tensor product of 2nd order,

+ + + Ω + Ω + Ω Ω + Ω Ω

and Ω are the symmetrical and antisymmertical part of mean velocity strain tensor

Page 64: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Elliptical relaxation model

64

Motivation: “Non-local” model of the anisotropic redistribution term ( ( ) ≡ Π − Π ) for inhomogeneous turbulence (Wall bounded flow)

Previous "local" model (note: neglect the difference − = − )∗, = ∗, , ∗, , ∗, , | ∗Desired model ( ∗, ) = (.., ∗,..) + remote effects

+ + # = + ( ) −+ + ∗ = + ( ) +

( ) ≡ ( ) − ( − )Use this particular form of eq. is to (i) avoid extra model for , (ii) ( ) = 0 at wall, easy to handle

Page 65: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

(x, y, z, t) − L ( , , , ) + + = ( , , , )( , , , )

Elliptical relaxation model

65

6 simple relations: , , , = , , , x, y, z, t6EllipticalrelaxationPoissonequationstosolve .+ + ∗ = + ( ) +

, , , = − − 1 − 23 − ( − 23 )

− =

= max( , )Time scale: = max( , 6 )

If this 1 is removed, it is standard LRR-IP model for the term (different than )

∗ = Now ( ) is able to receive non-local, remote contributions, it also recovers the original model if L = 0 and ?

Page 66: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

66

Π = (Π − Π ) +( Π )= ( ) − ( )= ( ) − ( )(13Π ) = − 13 +

− 13 2 −− 23= − 23( ) = 23

Eq. 11.140, page 429

Eq. 11.6, p.389

Eq. 11.3, page 388Π = −1 +

compare eq. (11.138) in page 429 with eq. (7.187) in page 315, pope’s book.

Π = −1 + 1 + − 1 += −

Decomposition 1:

Decomposition 2:

This slide summarizes the relations between and ( ); and

Eq. 11.3, p. 388

( ) = (1 + )

Eq. 11.5, p. 389

Eq. 7.187, p.317

Eq. 7.186, p.317Eq. 7.192, p.319

Eq. 7.193, p. 319

Page 67: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Additional slides

67

Page 68: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

68

A) ( , )B) , ≡ , , , , ,C) , ≡ , ∗ ∗, , ∗, , ,D) , ≡ = ( , )

Transport equation of in general P.D.E. form : (Be aware of boundary conditions)

Select ( , ) from this set

, + , + ( , ∗ ) = , ∗ − , ∗

Reynold stress models

Page 69: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

When Reynolds stress model equations are solved, we will get all 6 elements of Reynold stress at our disposal, our interests goes to

characterize the Reynold stress anisotropy.

69

, =23 0 00 23 00 0 23

Perfect isotropy: , ≡ ∗ ∗∗

23 − 0 00 23 − 00 0 23 + ( + )23 023 00 0 23

some tentative examples of deviation from perfect isotropy base on “tensor structure”

23 − 023 − 00 0 23 + ( + )

a) unequal diagonal terms” b): nonzero off-diagonal term” c): combined a & b

Page 70: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

To characterize the Reynold stress anisotropy, it naturally goes with (i) first remove from the all diagonal terms and(ii) then normalize by 2 , that gives us the anisotropic tensor :

70

23 − 0 00 23 − 00 0 23 + ( + )23 023 00 0 23

23 − 023 − 00 0 23 + ( + )

= − 232 = − 23 /2

− ∗ 0 00 − ∗ 00 0 ∗ + ∗ 0 ∗ 0∗ 0 00 0 0 − ∗ ∗ 0∗ − ∗ 00 0 ∗ + ∗Superscript * represented division by 2

a) unequal diagonal terms” b): nonzero off-diagonal term” c): combined

Page 71: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Using tensor invariants (i.e. expression formed by eigenvalues of ) is a better way to characterize the anisotropic tensor than a simple tensor-structure based classification of anisotropy

71

− ∗ 0 00 − ∗ 00 0 ∗ + ∗ 0 ∗ 0∗ 00 0 − ∗ ∗ 0∗ − ∗ 00 0 ∗ + ∗a) unequal diagonal terms” b): nonzero off-diagonal term” c): combined

− = − ∗ 0∗ −0 − = − ∗ = 0 = ∗, = − ∗, = 0+ ∗ 0 00 − ∗ 00 0 0

Choosing another coordinate, the (b) “non-zero off-diagonal” problem is equivalent to (a) “unequal diagonal terms”

Tensor invariants gives a coordinate-independent description of anisotropy

Page 72: Reynold stress model (RSM) - Lunds tekniska högskolaReynold stress model (RSM) Rixin Yu, 2017 1. Reynold stress model (RSM) • Part 1.1 • Characterize the Reynold stress “anisotropy”.

Plot the resolved 5 anisotropic Reynolds stresses into the Lumley triangles of 2-dimentions

72

= + + = 0= + + = −3= = 2

= − 23 /2