Review Cell Bio

52
7/21/2019 Review Cell Bio http://slidepdf.com/reader/full/review-cell-bio 1/52 Review for Lecture 1 Chapter 1 Introduction to Cells • All living creatures are made of Cells.  The simplest forms of life are solitary Cells that propagate by dividing in two. • Higher organisms, such as ourselves, are like Cellular cities derived by growth and division from a single founder cell. • Cells can be very diverse: superficially, they come in various sizes, ranging from bacterial cells such as  Lactobacillus, which is a few micrometers  in length, to larger cells such as a frog’s egg, which has a diameter of about one millimeter.  • Despite the diversity, cells resemble each other to an astonishing degree in their chemistry. For example, the same 20 Amino acids  are used to make proteins. Similarly, the genetic information of all cells is stored in their DNA.  Although Viruses contain the same types of molecules as cells, their inability to reproduce themselves by their own efforts means that they are not considered living matter. • Viruses contain the same types of molecules as cells so they are considered living matter. False (True or false) • A cell reproduced by duplicating its DNA and then dividing in two, passing a copy of the genetic instructions encoded in its DNA to each of its daughter cells. That is why daughter cells resemble the parent cell. However, the copying is not always perfect, and the instructions are occasionally corrupted by mutations  that change the DNA. That is why daughter cells do not always match the parent cell exactly. • Mutations are always bad for the offspring False (True or false)  Evolution - the process by which living species become gradually modified and adapted to their environment in more and more sophisticated ways. Evolution  offers a startling but compelling explanation of why present-day cells are so similar in their fundamentals. A process that can be understood based on the principles of mutation and selection. • A cell’s genome- that is, the principles of mutation and selection – provides a genetic program that instructs the cell how to function, and, for plant and animal cells, how to grow into an organism with hundreds of different cell types. • Match the type of microscopy on the left with the corresponding description provided below. There is one best match for each. A. confocal, B. transmission electron, C. Fluorescence, D. phase-contrast, E. scanning electron, F. bright-field  D uses a light microscope with an optical component to take advantage of the different refractive indices of light passing through different regions of the cell.  employs a light microscope and requires that samples be fixed and stained in order to reveal cellular details.  requires the use of two sets of filters. The first filter narrows the wavelength range that reaches the specimen and the second blocks out all wavelengths that pass back up to the eyepiece except for those emitted by the dye in the sample.  A scans the specimen with a focused laser beam to obtain a series of two-dimensional optical sections, which can be used to reconstruct an image of the specimen in three dimensions. The laser excites a fluorescent dye molecule, and the emitted light from each illuminated point is captured through a pinhole and recorded by a detector.  B has the ability to resolve cellular components as small as 2 nm.  E  requires coating the sample with a thin layer of a heavy metal to produce three-dimensional images of the surface of a sample. • Eukaryotic cells are bigger and more elaborate than prokaryotic cells. By definition, all eukaryotic cells have a  Nucleus,  usually the most prominent organelle. Another organelle found in essentially all eukaryotic cells is the

description

cell bio review

Transcript of Review Cell Bio

Page 1: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 1/52

Review for Lecture 1Chapter 1 Introduction to Cells

• All living creatures are made of Cells. The simplest forms of life are solitary Cells that propagate by dividing in

two.

• Higher organisms, such as ourselves, are like Cellular cities derived by growth and division from a single founder

cell.

• Cells can be very diverse: superficially, they come in various sizes, ranging from bacterial cells such as Lactobacillus, which is a few micrometers in length, to larger cells such as a frog’s egg, which has a diameter of

about one millimeter. 

• Despite the diversity, cells resemble each other to an astonishing degree in their chemistry. For example, the same

20 Amino acids are used to make proteins. Similarly, the genetic information of all cells is stored in their DNA. 

Although Viruses contain the same types of molecules as cells, their inability to reproduce themselves by their own

efforts means that they are not considered living matter.

• Viruses contain the same types of molecules as cells so they are considered living matter. False (True or false)

• A cell reproduced by duplicating its DNA and then dividing in two, passing a copy of the genetic instructions

encoded in its DNA to each of its daughter cells. That is why daughter cells resemble the parent cell. However, thecopying is not always perfect, and the instructions are occasionally corrupted by mutations that change the DNA.

That is why daughter cells do not always match the parent cell exactly.

• Mutations are always bad for the offspring False (True or false)

• Evolution - the process by which living species become gradually modified and adapted to their environment in

more and more sophisticated ways. Evolution offers a startling but compelling explanation of why present-day cells

are so similar in their fundamentals. A process that can be understood based on the principles of mutation and

selection.

• A cell’s genome- that is, the principles of mutation and selection – provides a genetic program that instructs the

cell how to function, and, for plant and animal cells, how to grow into an organism with hundreds of different celltypes.

• Match the type of microscopy on the left with the corresponding description provided below. There is one best

match for each. A. confocal, B. transmission electron, C. Fluorescence, D. phase-contrast, E. scanning

electron, F. bright-field

 D uses a light microscope with an optical component to take advantage of the different refractive indices of

light passing through different regions of the cell.

F  employs a light microscope and requires that samples be fixed and stained in order to reveal cellular

details.

C  requires the use of two sets of filters. The first filter narrows the wavelength range that reaches the

specimen and the second blocks out all wavelengths that pass back up to the eyepiece except for those emitted by the

dye in the sample.

 A scans the specimen with a focused laser beam to obtain a series of two-dimensional optical sections, which

can be used to reconstruct an image of the specimen in three dimensions. The laser excites a fluorescent dye

molecule, and the emitted light from each illuminated point is captured through a pinhole and recorded by a detector.

 B has the ability to resolve cellular components as small as 2 nm.

 E  requires coating the sample with a thin layer of a heavy metal to produce three-dimensional images of the

surface of a sample.

• Eukaryotic cells are bigger and more elaborate than prokaryotic cells. By definition, all eukaryotic cells have a

 Nucleus, usually the most prominent organelle. Another organelle found in essentially all eukaryotic cells is the

Page 2: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 2/52

mitochondrion, which generates the chemical energy for the cell. In contrast, the Chloroplast  is a type of organelle

found only in the cells of plants and algae, and performs photosynthesis. If we were to strip away the plasma

membrane from a eukaryotic cell and remove all of its membrane-enclosed organelles, we would be left with the

Cytosol. which contains many long, fine filaments of protein that are responsible for cell shape and structure and

thereby form the cell’s cytoskeleton. 

• Use the list of structures below to label the schematic drawing of an animal cell

A. plasma membrane = 3

B. nuclear envelope = 5

C. cytosol = 1

D. Golgi apparatus = 2

E. endoplasmic reticulum = 4

F. mitochondrion = 7G. transport vesicles = 6

• Circle the appropriate cell type in which the listed structure or molecule can be found. Note that the structure or

molecule can be found in more than one type of cell

!"#$%"$#& (# )(*&%$*& +&** ,-.&

/ 01/ !"#$!% '%!"( )!*(+,#!%

2 1$%*&$3 !"#$!% '%!"( 45%"&#65*+ 7*53)5 )&)4#58& !"#$!% '%!"( )!*(+,#!%

0 +9*(#(.*53" 586)5* '%!"( 45%"&#65*

: +&** ;5** 586)5* '%!"( )!*(+,#!%

< =-3(3()& !"#$!% '%!"( 45%"&#65*

> ?6"(%9(8@#6(8 !"#$!% '%!"( 45%"&#65*

A >(*B6 5..5#5"$3 !"#$!% '%!"( 45%"&#65*

Page 3: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 3/52

Review 2

!"#$ #$ &'()* +(#),-#.,/ *0( 1($' $'()* '", 203,420#.'5 -,6'(4, .0',$ 7.) '", ',8'900:; <#.) 7.$3,4$ )(4#.= '", 6-7$$

7.) >401 '", ',8'900:;

1. Select the answer that best completes the following statement: Chemical reactions in living systems occur in an

 ______  D ______ environment, within a narrow range of temperatures.

(a) optimal

(b) organic

(c) extracellular

(d) aqueous

2. A covalent bond between two atoms is formed as a result of the _______A_______.

(a) sharing of electrons.

(b) loss of electrons from both atoms.

(c) loss of a proton from one atom.

(d) transfer of electrons from one atom to the other.

3. An ionic bond between two atoms is formed as a result of the ________D______.

(a) sharing of electrons.

(b) loss of electrons from both atoms.

(c) loss of a proton from one atom.

(d) transfer of electrons from one atom to the other.

4. Equal sharing of electrons yields a(n) nonpolar covalent bond. If one atom participating in the bond has a stronger

affinity for the electron, this produces a partial negative charge on one atom and a partial positive charge on the other.

These polar covalent bonds should not be confused with the weaker hydrogen bonds that are critical for the three-

dimensional structure of biological molecules and for interactions between these molecules.

5. Although covalent bonds are 10–100 times stronger than noncovalent interactions, many biological processes depend

upon the number and type of noncovalent interactions between molecules. Which of the noncovalent interactions below

will contribute most to the strong and specific binding of two molecules, such as a pair of proteins?

(a) electrostatic attractions

(b) hydrogen bonds

(c) hydrophobic interactions

(d) Van der Waals attractions

6. The amino acids glutamine and glutamic acid are shown below. They differ only in the structure of their side chains

(circled). At pH 7, glutamic acid can participate in molecular interactions that are not possible for glutamine. What types

of interactions are these?

(a) ionic bonds

(b) hydrogen bonds

Page 4: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 4/52

(c) van der Waals interactions

(d) covalent bonds

7. Proteins are polymers built from amino acids, which each have an amino group and a carboxyl group group attached

to the central central carbon. There are twenty possible 20 that differ in structure and are generally referred to as “R.” In

solutions of neutral pH, amino acids are zwitterionic, carrying both a positive and negative charge. When a protein is

made, amino acids are linked together through peptide bonds, which are formed by condensation reactions between the

carboxyl end of the last amino acid and the amino group end of the next amino acid to be added to the growing chain.

8. As a protein is made, the polypeptide is in an extended conformation, with every amino acid exposed to the aqueous

environment. Although both polar and charged side chains can mix readily with water, this is not the case for nonpolar

side chains. Explain how hydrophobic interactions may play a role in the early stages of protein folding, and have an

influence on the final protein conformation. Form inside to out, trying to protect the hydrophobic side from water

9. A protein chain folds into its stable and unique three-dimensional structure, or conformation, by making many

noncovalent bonds between different parts of the chain. Such noncovalent bonds are also critical for interactions with

other proteins and cellular molecules. From the list provided, choose the class(es) of amino acids that are most important

for the interactions detailed below.

A. forming ionic bonds with negatively charged DNA (basic)

B. forming hydrogen bonds to aid solubility in water (uncharged polar)

C. localizing an “integral membrane” protein that spans a lipid bilayer (nonpolar) 

D. tightly packing the hydrophobic interior core of a globular protein (nonpolar)

Acidic, nonpolar, basic, uncharged polar

Page 5: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 5/52

10. Fill in the blank spaces in the table below. The first row has been completed for you.

11. Indicate whether the following statements are true or false. If it’s false, explain why it is false.

A. A large number of noncovalent interactions is required to hold two regions of a polypeptide chain together in a stable

conformation. TRUE (need 4)

B. A single polypeptide tends to adopt 3–4 different conformations, which all have equivalent free-energy values (G).

False (polypeptides has one form and one function usually, would need more kinds)

12. A newly synthesized protein generally folds up into a stable conformation. All the information required to determine a

 protein’s conformation is contained in its amino acid sequence. On being heated, a protein molecule will become

denatured as a result of breakage of non-covalent bonds.

13. Explain 4 different protein structural levels and name the most important force(s) are involved in maintaining

each structure.

Primary, The amino acid sequence of a protein.

secondary- local folding pattern of a polymeric molecule. In proteins, it refers to ! helices and " sheets.

hydrogen,

tertiary- Complete three-dimensional structure of a fully folded protein. van der waals,

quaternary- formed by multiple, interacting polypeptide chains within a protein molecule. hydrophobic

14. What are the noncovalent bonds held proteins fold?

hydrogen bonding

electrostatic attraction

Van Der Waals interactions

Hydrophobic Interactions 

Amino Acid 3 letter 1 Letter Side-chain char.

Alanine Ala A Nonpolar

Arginine Arg R Basic

Asparagine Asn N Uncharged Polar

Aspartic Acid Asp D Acidic

Cysteine Cys C Nonpolar

Glutamic acid Glu E AcidicGlutamine Gln Q Uncharged Polar

Glycine Gly G Nonpolar

Histidine His H Basic (+) charge

Isoleucine Ile I Nonpolar

Leucine Leu L Nonpolar

Lysine Lys K Basic

Methionine Met M Nonpolar

Phenylalanine Phe F Nonpolar

Proline Pro P Nonpolar

Serine Ser S Uncharged Polar

Threonine Thr T Uncharged Polar

Tyrosine Tyr Y Uncharged PolarTryptophan Trp W Nonpolar

Valine Val V Nonpolar

Page 6: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 6/52

 

**. the sequences for three different tripeptides are written out below. indicate whether you expect to find them in the

inner core or ion the surface of a cytosolic protein, and explain your answer.

A. Serine-Threonine-Tyrosine: Surface because they are hydrophilic; water loving.

B. Alanine-Glycine-Leucine: Inner core because they are hydrophobic water fearing.

C. Proline-Serine-Alanine: Inner core because they are also hydrophobic

**the variations in the physical characteristics between different proteins are influence by the overall amino acid

compositions, but even more important is the unique amino acid ________.

A) number

b) sequence

c) bond

D) orientation

!! #$% &'((%&) *'+,-./ '* 0(')%-.1 -1 .%&%112(3 )' 42-.)2-. $%2+)$3 &%++1 2., )-115%16 7.*'+,%, 0(')%-.1 2(%

(%10'.1-8+% *'( 15&$ .%5(',%/%.%(2)-9% ,-1'(,%(1 21 :+;$%-4%(<1 ,-1%21%= >5.)-./)'.<1 ,-1%21%= 2.,

?(%5);*%,+)@A2B'8 ,-1%21% C)$% 10%&-*-& *25+)3 0(')%-. -1 ,-**%(%.) *'( %2&$ ,-1%21%D6 E$2) -1 )$% 5+)-42)%

*2)% '* )$%1% ,-1%21%@&251-./= 5.*'+,%, 0(')%-.1F "#$% &'() *('"$+, -..($.-"$/ 

Page 7: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 7/52

 Review 3

1. Match the general type of biochemical reaction catalyzed in the left column with the class of enzyme listed in the

column on the right.

 I  removes a phosphate group from a molecule A. ATPase

 A hydrolyzes ATP B. polymerase

F  hydrolyzes bonds between nucleotides C. ligase

 D adds phosphate groups to molecules D. kinase

G  catalyzes reactions in which one molecule is E. isomerase

oxidized and another is reduced F. nuclease

 H  hydrolyzes peptide bonds G. oxido-reductase

C  joins two ends of DNA together H. protease

 B catalyzes the synthesis of polymers such as I. phosphatase

RNA and DNA

 E  rearranges bonds within a single molecule

2. Any substance that will bind to a protein is known as its ligand . Enzymes bind their substrate at the active site.

Enzymes catalyze a chemical reaction by lowering the activation energy. because they provide conditions favorable for

the formation of a high-energy intermediate called the transition state. Once the reaction is completed, the enzyme

releases the enzyme of the reaction.

activation energy, inhibitors, products, active site, isomers, substrates, free energy, ligand, transition state, high-

energy, low-energy

3. The active site of an enzyme usually occupies only a small fraction of the enzyme surface ( True or False)

4. Catalysis by some enzymes involves the formation of a covalent bond between an amino acid side chain and a substrate

molecule. (True or False)

5. Allosteric enzymes have two or more binding sites. (True or False)

6. The specificity of an antibody molecule is contained exclusively in loops on the surface of the folded light-chain

domain. (True or False) Variable portions of heavy and light chain 

7. Affinity chromatography separates molecules according to their intrinsic charge. (True or False)

8. Feedback inhibition

1). The final product, R, will most likely inhibit which reaction?

a. 1 b. 2 c. 3 d. 4 e. 5

2). Which two enzymes would be the most likely ones to regulate if this pathway is freely reversible and can go both

ways?

a. 1 and 2 b. 1 and 3 c. 1 and 5 d. 2 and 4 e. 4 and 5

Page 8: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 8/52

 

9. Fill in the blanks with the labels in the list below to identify various parts of the antibody structure in Figure.

"# $%&'()&( *%+),& %- (./ 0,1.( $.),& 2# $%&'()&( *%+),& %- (./ ./)34 $.),&

5# )&(,1/&67,&*,&1 ',(/ 8# 3)9,)70/ *%+),& %- (./ ./)34 $.),&

:# 3)9,)70/ *%+),& %- (./ 0,1.( $.),&

10. The human immune system produces billions of different immunoglobulins, also called antibodies, which enable the

immune system to recognize and fight germs by specifically binding one or a few related antigens. The hypervariable

structural element that forms the ligand-binding site is comprised of several loops. Purified antibodies are useful for a

variety of experimental purposes, including protein purification using Affinity chromatography.

Affinity, billions, ligands, Antibodies, coiled-coils, loops, Antigens, hundreds, size-exclusion, ! strands, ion-

exchange,

11. Regulation of protein function

•  Amount of protein

•  Location of protein

•  Modification of protein activity (by modifying the protein’s shape)

o  feedback inhibition of allosteric proteins

o   positive regulation of allosteric proteins

o   protein phosphorylation

o  other covalent modifications of proteins

o   binding of GTP

o   binding and hydrolysis of ATP

Page 9: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 9/52

 !"#$"% '() *"+,-)" . 

"# $%& '(& '&)*% +,%'&- '. /,++ ,0 '(& 1+203% ,0 4,56)&#

A. A-T base pair

B. G-C base pair

C. deoxyribose

D. phosphodiester bonds

E. purine baseF. pyrimidine base

7# 8 9:8 %')20- (2% 2 ;.+2),'<

1&=26%& ,'% '>. &0-% =.0'2,0

-,//&)&0' 12%&%# !"#$ .) !"#$% 

?# @AB 12%& ;2,)% 2)& *.)& %'21+& '(20 8A

C 12%& ;2,)%# &'(% .) 42+%& 

D# C(& '>. ;.+<06=+&.',-& =(2,0% ,0 '(& 9:8 -.61+& (&+,E 2)& (&+- '.5&'(&) 1< )*+',-%. 0,.+$ 1&'>&&0 '(& 12%&% .0

'(& -,//&)&0' %')20-%# 8++ '(& 12%&% 2)& '(&)&/.)& .0 '(& (-,/$0"1 1.$1+% ./ '(& -.61+& (&+,EF >,'( '(& %652) ;(.%;(2'&

12=31.0&% .0 '(& ,(2$1+%1 $2/$0"3

G# 8 3%.% ,% ./'&0 -&/,0&- 2% 2 %&5*&0' ./ 9:8 '(2' =.0'2,0% '(& ,0%')6=',.0% /.) *23,05 2 ;2)',=6+2) ;).'&,0 .) H:8

*.+&=6+&#

I# J2=( 9:8 *.+&=6+& ,% ;2=325&- ,0 2 %&;2)2'& 45',6,$,6%7 K '(& '.'2+ 5&0&',= ,0/.)*2',.0 %'.)&- ,0 '(&

=().*.%.*&% ./ 20 .)520,%* ,% %2,- '. =.0%','6'& ,'% -%.,6%#

L# J2=( =().*.%.*& =.0'2,0% 2 %,05+& +.05 9:8 *.+&=6+&# &'(% .) 42+%& 

M# J2=( (6*20 =&++ =.0'2,0% 21.6' 8 6%2%'$ ./ 9:8N <&' '(& =&++ 06=+&6% ,% .0+< 9:; <6 ,0 -,2*&'&)# C6=3,05 2++ '(,%

*2'&),2+ ,0'. %6=( 2 %*2++ %;2=& ,% '(& &O6,P2+&0' ./ ')<,05 '. /.+- DQ3* R7D*,+&%S ./ &E')&*&+< /,0& '()&2- ,0'. 2 '&00,%

12++#

T# C(& *.%' ,*;.)'20' /60=',.0 ./ =().*.%.*&% ,% '. +4))5 ,6" 7"2"/3 8 /60=',.02+ =().*.%.*& )&O6,)&% '()&& 9:8

%&O6&0=& &+&*&0'%U 2' +&2%' .0& ()$7$2/ (' )"89$+4,$(2 '. ;&)*,' '(& =().*.%.*& '. 1& =.;,&-F .0& +"2,)(:")"; '.

/2=,+,'2'& ;).;&) %&5)&52',.0 ./ ,'% '>. =.;,&% 2' *,'.%,%F K '>. ,"9(:")"/ '. 2++.> '(& =().*.%.*& '. 1& *2,0'2,0&-

1&'>&&0 =&++ 5&0&)2',.0%#

"Q# C(& /,P& '<;&% ./ (,%'.0&% /2++ ,0'. '>. *2,0 5).6;%U '(& .(4#%,$,6% =)8>7 )8?7 )@7 )AB (,%'.0&% K '(& )C (,%'.0&%#

""# C>. =.;,&% ./ &2=( ./ V78F V7WF V?F K VD /.)* 2 51$2,.% 2).60- >(,=( '(& -.61+&A%')20-&- 9:8 (&+,E ,% '>,=&#

"7# V,%'.0&% 2)& )&+2',P&+< %*2++ ;).'&,0% >,'( 2 P&)< (,5( ;).;.)',.0 ./ ;.%,',P&+< =(2)5&- 2*,0. 2=,-%U ;.%,',P& =(2)5&(&+;% '(& (,%'.0&% 1,0- ',5('+< '. 9:8# <)-" .) 42+%& 

"?# X0 +,P,05 =&++% 06=+&.%.*&% 2)& ;2=3&- 6;.0 .0& 20.'(&) '. 5&0&)2'& )&56+2) 2))2<% ,0 >(,=( '(& 9:8 ,% *.)& (,5(+<

=.0-&0%&-F 6%62++< ,0 '(& /.)* ./ 2 ?Q0* /,1&)# C)6& .) =49/"3 >-+9"(/(:" +()" 84),$+9"/ 4)" 488)(?$:4,"95 @@ 2: $2

0$4:",")3

"D# W< +,5(' *,=).%=.;< '(&)& 2)& '>. '<;&% ./ =().*2',0 ,0 ,0'&);(2%& 06=+&, ./ (,5(&) &632)<.',= =&++%U 2 (,5(+<

=.0-&0%&- /.)* =2++&- 5%2%',45',6"21. K 2++ '(& )&%'F >(,=( ,% +&%% =.0-&0%&-F =2++&- %(45',6"21. 

Page 10: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 10/52

"G# 96),05 ,0'&);(2%&F '(& =().*.%.*&% 2)& &E'&0-&- 2% +.05F '(,0F '205+&- '()&2-% ./ 9:8 ,0 '(& 06=+&6% K =20'' 1&

&2%,+< -,%',056,%(&- ,0 '(& +,5(' *,=).%=.;&# Y& )&/&) '. =().*.%.*&% ,0 '(,% %'2'& 2% 1.2%'D5"$% 45',6,$,6%#

"I# B().*.%.*&% /).* 0&2)+< 2++ =&++% 2)& P,%,1+& -6),05 *,'.%,%F >(&)& '(&< =.,+ 6; '. /.)* *6=( *.)& =.0-&0%&-

%')6='6)&% F =2++&- 612,214 45',6,$,6% 

"L# X0 &632)<.',= +6)(:(/(:"/F 9:8 ,% =.*;+&E&- >,'( ;).'&,0% '. /.)* 51$2,.%$E C(& ;2'&)02+ K *2'&)02+ =.;,&% ./ 

(6*20 B().*.%.*& " 2)& 5,6,#,-,($F >(&)&2% '(& ;2'&)02+ =.;< ./ B().*.%.*& " K '(& *2'&)02+ =.;< ./

B().*.%.*& ? 2)& .,.F5,6,#,-,($# B<'.5&0&',=,%'% =20 -&'&)*,0& +2)5&A%=2+& =().*.%.*2+ 210.)*2+,',&% 1< +..3,05

2' 2 ;2',&0'Z% G"'*,2*D%#

"M# C(& -,%;+2< ./ '(& DI (6*20 =().*.%.*&% 2' *,'.%,% ,% =2++&- '(& (6*20 G"'*,2*D%

"T# @,P&0 '(& %&O6&0=& ./ .0& %')20- ./ 2 9:8 (&+,E R1&+.>SF ;).P,-& '(& %&O6&0=& ./ '(& =.*;+&*&0'2)< %')20- K +21&+

'(& G[ K ?[ &0-%#

G[A@B8CCB@C@@@C8@A?[

ABCDE<FFEDFDDDF<DCG 

7Q#C(& (6*20 5&0.*& =.*;),%&% 7? ;2,)% ./ =().*.%.*&% /.60- ,0 0&2)+< &P&)< =&++ ,0 '(& 1.-<# 80%>&) '(&

O620','2',P& O6&%',.0% 1&+.> 1< =(..%,05 .0& ./ '(& 06*1&)% ,0 '(& /.++.>,05 +,%'U

7? IT \7QQ DI T7 \"Q]T8# V.> *20< =&0').*&)&% 2)& ,0 &2=( =&++^ Y(2' ,% '(& *2,0 /60=',.0 ./ '(& =&0').*&)&^ AH 

H$/,)$I-,$(2 (' +6)(:(/(:"/ ,( 04-76,") +"99/

W# V.> *20< '&+.*&)&% 2)& ,0 &2=( =&++^ Y(2' ,% '(&,) *2,0 /60=',.0^ I8 

J)(,"+, ,6" "20/ (' +6)(:(/(:"/ K ,( "24I9" +(:89"," )"89$+4,$(2 (' ,6" H>F (' "4+6 +6)(:(/(:" 499 ,6"

%45 ,( $,/ ,$8

B# V.> *20< )&;+,=2',.0 .),5,0% 2)& ,0 &2=( =&++^ Y(2' ,% '(&,) *2,0 /60=',.0^ JCKLI 

H$)"+, ,6" $2$,$4,$(2 (' H>F /52,6"/$/ 2""0"0 ,( )"89$+4," +6)(:(/(:"/

7"# J2=( =().*.%.*& ,% 2 %,05+& *.+&=6+& ./ MN> >(.%& &E')2.)-,02),+< +.05 +&05'( =20 1& =.*;2='&- 1< 2% *6=( 2%

CKKKO2 A/.+- -6),05 P.2%'D5"$% K '&0/.+- *.)& -6),05 612,$1$E C(,% ,% 2==.*;+,%(&- 1< 1,0-,05 '. D',2%1. '(2' (&+;

;2=325& '(& 9:8 ,0 20 .)-&)+< *200&) %. ,' =20 /,' ,0 '(& %*2++ %;2=& -&+,*,'&- 1< '(& .(4#%"' %.Q%#,D%E C(& %')6='6)&

./ '(& 9:8_;).'&,0 =.*;+&EF =2++&- 45',6"21.7 ,% (,5(+< +*."614  .P&) ',*&#

@L;LLL; +6)(:(/(:"; :$,(/$/; +"99 +5+9"; 0524:$+ ; @LL; 0$''")"2,; 2-+9"4) "2#"9(8"; 8)(,"$2/; +"99 %499; @LLL; H>F;

2-+9"(9-/; $2,")864/"; $2,")864/"; +6)(:4,$2; 9$8$0/; /,4,$+; /$:$94)

77#8 =&++ =20 )&56+2'& ,'% =().*2',0 %')6='6)&A '&*;.)2),+< -&A=.0-&0%,05 .) =.0-&0%,05 ;2)',=6+2) )&5,.0% ./ ,'%

=().*.%.*&% _ 6%,05 45',6"21.F'%6,+%#1.- 4,6D#%R%$ K &0`<*&% '(2' 6,+1O*  (,%'.0& '2,+% ,0 P2),.6% >2<%#

7?# C(& +..%,05 ./ =().*2',0 '. 2 *.)& -&A=.0-&0%&- %'2'& 2++.>% ;).'&,0% ,0P.+P&- ,0 MN> '%D"1'7 MN> '%D#14"21,.7 K

%RD'%$$1,. '. 52,0 2==&%% '. '(& 0&=&%%2)< 9:8 %&O6&0=&%#

7D# a.*& /.)*% ./ =().*2',0 (2P& 2 ;2''&)0 ./ (,%'.0& '2,+ *.-,/,=2',.0 '(2' =26%&% '(& 9:8 '. 1&=.*& %. (,5(+<

=.0-&0%&- '(2' ,'% 5&0&% =200.' 1& &E;)&%%&- '. ;).-6=& H:8N %6=( =.0-&0%2',.0 .==6)% .0 2++ =().*.%.*&% -6),05

612,$1$ K ,0 '(& 5%2%',45',6"21. ./ ,0'&);(2%& =().*.%.*&%#

7G# X0'&);(2%& =().*.%.*&% =.0'2,0 1.'( -2)3+< %'2,0,05 5%2%',45',6"21. K *.)& +,5('+< %'2,0,05 %(45',6"21.E @&0&%

'(2' 2)& 1&,05 ')20%=),1&- 2)& '(.65(' '. 1& ;2=325&- ,0 2 #%$$ =.0-&0%&- '<;& ./ &6=().*2',0# :6=+&.%.*& =.)&

;2)',=+&% 2)& %&;2)2'&- /).* &2=( .'(&) 1< %')&'=(&% ./ #1.G%'  9:8# 8 %'),05 ./ 06=+&.%.*&% =.,+% 6; >,'( '(& (&+; ./

51$2,.% )C '. /.)* '(& *.)& =.*;2=' %')6='6)& ./ '(& @K.6 O10%'E 8 S1-S"- *.-&+ -&%=),1&% '(& %')6='6)& ./ '(& ?QA0*

/,1&)# C(& ?Q 0* =().*2',0 /,1&) ,% /6)'(&) =.*;2='&- 1< '(& /.)*2',.0 ./ #,,D$ '(2' &*202'& /).* 2 =&0')2+ "R1$E 

MGLC2: '$I"); 6",")(+6)(:4,$2; 9$2N"); 2=',P&F =().*2',0 ;6$/,(2" O@; 9((8/; 2E,%F (,%'.0& V?F *.)&F 1&2-%A.0A2A%'),05

F(,%'.0& VDF %<02;',= =.*;+&E; "-+6)(:4,$2; 9"//; P$7P47Q

Page 11: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 11/52

7I# 9&%=),1& '(& *&=(20,%* 1< >(,=( (&'&).=().*2',0 =20 %;)&2-F .0=& ,' (2% 1&&0 &%'21+,%(&- ,0 .0& )&5,.0 ./ '(&

=().*.%.*&#

 >.$T%'B U.4% 25% 1.121"# )@ #*$1.% I 6%25*#"21,. 1$ %$2"0#1$5%+ ,. 4,'% 51$2,.% ,42"6%'$ 1. ,.% '%-1,.7 25%

6,+1O14"21,. "22'"42$ " $D%41O14 $%2 ,O D',2%1.$ V ,25%' 51$2,.%F6%25*#"21.- %.S*6%$E &5%$% %.S*6%$ 4'%"2% 25% $"6%

6,+1O14"21,. ,. "+W"4%.2 51$2,.% ,42"6%'$7 T5145 4,.21.(% 2, '%4'(12 6,'% 5%2%',45',6"21.F$D%41O14 D',2%1.$ V

%.S*6%$7 4'%"21.- " T"Q% ,O 5%2%',45',6"21. $D'%"+1.- "#,.- 25% 45',6,$,6%E

7L# b&'(<+2',.0 K 2=&'<+2',.0 2)& =.**.0 =(205&% *2-& '. (,%'.0& V?F K '(& %;&=,/,= =.*1,02',.0 ./ '(&%& =(205&% ,%

%.*&',*&% )&/&))&- '. 2% '(& c(,%'.0& =.-&#d Y(,=( ./ '(& /.++.>,05 ;2''&)0% >,++ ;).121+< +&2- '. 5&0& %,+&0=,05^="B #*$1.% I 6%25*#"21,.

R1S +<%,0& D *&'(<+2',.0 K +<%,0& T 2=&'<+2',.0

R=S +<%,0& "D 2=&'<+2',.0

R-S +<%,0& T 2=&'<+2',.0 K +<%,0& "D 2=&'<+2',.0

7M# C(& ;).=&%% ./ %.)',05 (6*20 =().*.%.*& ;2,)% 1< %,`& K *.);(.+.5< ,% =2++&- 32)<.'<;,05# 8 *.-&)0 *&'(.-

&*;+.<&- /.) 32)<.'<;,05 ,% =2++&- =().*.%.*& ;2,0',05# V.> 2)& ,0-,P,-62+ =().*.%.*&% c;2,0'&-d^

F2/%")Q X5',6,$,6% D"1.21.- '%#1%$ ,. 25% $D%41O1412* ,O MN> 4,6D#%6%.2"'12*E ?%4"($% (.1Y(% $%Y(%.4%$ O,' %"45

45',6,$,6% "'% G.,T.7 $5,'2 MN> 6,#%4(#%$ 6"2451.- " $%2 ,O 25%$% $12%$ 4". 0% +%$1-.%+ O,' %"45 45',6,$,6%E

Z"45 $%2 1$ #"0%#%+ T125 " $D%41O14 4,601."21,. ,O O#(,'%$4%.2 +*%$ V 25%. "##,T%+ 2, 5*0'1+1S% =O,'6 0"$% D"1'$B T125

25% 2T, 5,6,#,-,($ 45',6,$,6%$ 25"2 4,.2"1. 25% (.1Y(% $%Y(%.4%$ 0%1.- 2"'-%2%+

7T# e0& ./ '(& '>. f =().*.%.*&% ,% ,02=',P2'&- ,0 '(& =&++% ./ *2**2+,20 /&*2+&% 1< 5%2%',45',6"21. /.)*2',.0#

J2=( /&*2+& =&++ =.0'2,0% '>. f =().*.%.*&%F >(&)&2% *2+& =&++% =.0'2,0 .0& f K .0& g# W&=26%& 2 -.61+& -.%& ./ fA

=().*.%.*& ;).-6='% >.6+- 1& +&'(2+F .0& ./ '(&%& '>. =().*.%.*&% 1&=.*&% =.0-&0%&- ,0'. 5%2%',45',6"21. &2)+<

,0 &*1)<.0,= -&P&+.;*&0'# C(&)&2/'&)F '(& =.0-&0%&- K ,02=',P& %'2'& ./ '(2' f =().*.%.*& ,% ,0(&),'&- ,0 2++ ./ '(&

*20< -&%=&0-20'% ./ '(.%& =&++%#

Page 12: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 12/52

Review 5

1. The instructions specified by the DNA will ultimately specify the sequence of

proteins. This process involves DNA, made up of 4 different nucleotides, which gets

transcribed into RNA, which is then translated into proteins, made up of 20 different

amino acids. In eukaryotic cells, DNA gets made into RNA in the nucleus, while

proteins are produced from RNA in the cytoplasm. The segment of DNA called a

Gene is the portion that is copied into RNA; this process is catalyzed by RNApolymerase.Gene, 4, proteasome, exported, nucleus, 20, Golgi, replisome, polymerase , transferase, 109, kinase, sugar-phosphate,

translated, 128, nuclear pore, transcribed, cytoplasm 

2. use the numbers in the choices below to indicate where in the schematic diagram of

a eukaryotic cell those processes take place.

1. transcription   nucleus 

2. translation cytoplasm 

3. RNA splicing   nucleus 

4. polyadenylation   nucleus 

5. RNA capping   nucleus 

3. Which of the following are required for the DNA-dependent RNA polymerase

reaction to produce a unique RNA transcript?a) ATP b) CTP c) GTP   d)dTTP e) UTP   f) DNA  g)RNA h) Promoter sequence 

I)operator sequence J) terminator sequence 

4. Unlike DNA, which typically forms a helical structure, different molecules of RNA can

fold into a variety of 3-D shapes. This is largely because

(a) RNA contains uracil and uses ribose as the sugar.

(b) RNA bases cannot form hydrogen bonds with each other.

(c)RNA nucleotides use a different chemical linkage between nucleotides compared toDNA.

(d) RNA is single-stranded.

Page 13: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 13/52

5. For a cell’s genetic material to be used, the information is first copied from the DNA

into the nucleotide sequence of RNA in a process called transcription. Various kinds

of RNA are produced, each with different functions. mRNA molecules code for

proteins, tRNA molecules act as adaptors for protein synthesis, rRNA molecules are

integral components of the ribosome, miRNA molecules regulate gene expression, and

other noncoding RNAs molecules are important in the splicing of RNA transcripts,

gene regulation, telomere maintenance, and many other processes. (pg. 228)

6. Imagine that an RNA polymerase is transcribing a segment of DNA that contains the

following sequence:

5!-AGTCTAGGCACTGA-3! 

3!-TCAGATCCGTGACT-5! 

A. If the polymerase is transcribing from this segment of DNA from left to right, which

strand (top or bottom) is the template? bottom

B. What will be the sequence of that RNA (be sure to label the 5! and 3! ends of your

RNA molecule)? AGUCUAGGCACUGA

7. List three ways in which the process of eukaryotic transcription differs from the

process of bacterial transcription.

1) Multiple types of RNA polymerases in eukaryotes,

2) eukaryotes deal with nucleosomes,

3) bacteria can initiate transcription on its own.

8.Name three covalent modifications that can be made to an RNA molecule ineukaryotic cells before the RNA molecule becomes a mature mRNA.

1) 5' cap added: G-P-P-P

2) Polly A tail added A-A-A-A-A-A-A

3) exon junction complex

9.Match the following types of RNA with the main polymerase that transcribes them.

Types of RNAs Polymerases

A most rRNA genes 1 RNA polymerase I

B tRNA genes 2 RNA polymerase II

C 5s rRNA genes 3 RNA polymerase III

D protein-coding genes

E miRNA genes

Page 14: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 14/52

8. In eukaryotic cells, general transcription factors are required for the activity of all

promoters transcribed by RNA polymerase II. The assembly of the general

transcription factors begins with the binding of the factor TFIID  to DNA, causing a

marked local distortion in the DNA. This factor binds at the DNA sequence called the

TATA box, which is typically located 25 nucleotides upstream from the transcription

start site. Once RNA polymerase II has been brought to the promoter DNA, it must be

released to begin making transcripts. This release process is facilitated by the additionof phosphate groups to the tail of RNA polymerase by the factor TFIIH.

9. The length of a particular gene in human DNA, measured from the start site for

transcription to the end of the protein-coding region, is 10,000 nucleotides, whereas the

length of the mRNA produced from this gene is 4000 nucleotides. What is the most

likely reason for this difference? The introns got sliced out 

Page 15: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 15/52

!"#$"% '() *"+,-)" .

/0 12" 3"4",$+ +(5" 67"+$'$"6 %2$+2 89$4( 8+$56 8)" "4+(5"5 :; ,2" +(5(46 (4 ,2" 9!<=0 >, $6 "#$%&$'&( 

:"+8-6" 6(9" 89$4( 8+$56 28#" 9()" ,284 (4" +(5(40 )(*+ +(5(46 5( 4(, 67"+$'; 84 89$4( 8+$50

?0 @6" ,2" 3"4",$+ +(5" 62(%4 ,( $5"4,$'; %2$+2 (' ,2" '(AA(%$43 4-+A"(,$5" 6"B-"4+"6 %(-A5 +(5" '() ,2"

7(A;7"7,$5" 6"B-"4+" 8)3$4$4"C3A;+$4"C8678),8,"D

!" EFC=G=CGG=CG=@CHF I $%&'()*'$+,

-" EFC=J=CJJJC=J@CHF I ./%'0%1'./% 

2" EFCGGGC===C@@@CHF I ()*'3*+'0/4 

5" EFCJGGCGG@CG=JCHF I $%&'()*'$+, 

H0 K2$+2 (' ,2" '(AA(%$43 $6 4(, 8 L"; 85#84,83" (' %(::A" $4

,2" +(5(4C84,$+(5(4 )"8+,$(4M

!" >, 8AA(%6 '() '"%") ,!<=6 $4 ,2" +"AA0

,- .( '//*01 2*" 3'45&6 3*"# (7'& *&# +"*(#5& 2"*3 87#

 1'3# 9*$5&6 1#:%#&9#-

2" >, 8AA(%6 '() 8 +"),8$4 89(-4, (' 9-,8,$(4 $4 ,2" 9!<=

%$,2(-, 8''"+,$43 ,2" 7)(,"$4 6"B-"4+"0

5" =AA (' ,2"6" 8)" 85#84,83"6 (' %(::A"0

N0 12" '&(5;9*$*& $4 8 ,!<= 9(A"+-A" $6 5"6$34"5 ,( :86"C78$) %$,2 8 +(97A"9"4,8); 6"B-"4+" (' ,2)""

4-+A"(,$5"6O ,2" 9*$*&< $4 84 9!<= 9(A"+-A"0

E0 K(::A" :86"C78$)$43 (++-)6 :",%""4 ,2" '$)6, 7(6$,$(4 $4 ,2" +(5(4 845 ,2" ,2$)5 7(6$,$(4 $4 ,2"

84,$+(5(40 P1)-" () 2'/1#Q

.0 >4 8AA +"AA6O 8 67"+$8A 678$ 9(A"+-A"O )"+(34$R$43 ,2" +6!%6 +(5(4 =@G 845 +8));$43 ,2" 89$4( 8+$5

946/:1;:;4< 7)(#$5"6 ,2" 89$4( 8+$5 ,28, :"3$46 8 7)(,"$4 +28$40

S0 K2$+2 (' ,2" '(AA(%$43 78$)6 (' +(5(46 9$32, ;(- "T7"+, ,( :" )"85 :; ,2" 689" ,!<= 86 8 )"6-A, (' 

%(::A"M

=!> J@@ 845 @@@ =-> G=@ 845 G== =9> ?@? '&$ ?@A   =5> ==@ 845 =G@

U0 12" 7$"+" (' !<= :"A(% $4+A-5"6 ,2" )"3$(4 ,28, +(5"6 '() ,2" :$45$43 6$," '() ,2" $4$,$8,() ,!<=

4""5"5 $4 ,)846A8,$(40 ECG@@@JJJG@=@=J $?(?BA GJJGGGGGJCH′ 

K2$+2 89$4( 8+$5 %$AA :" (4 ,2" ,!<= ,28, $6 ,2" '$)6, ,( :$45 ,( ,2" = 6$," (' ,2" )$:(6(9"M

=!> 9",2$(4$4" =-> '"65&5&#  =2> +;6,"$4" =5> #8A$4"

Page 16: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 16/52

V0 = 9-,8,$(4 $4 ,2" ,!<= '() ,2" 89$4( 8+$5 A;6$4" )"6-A,6 $4 ,2" 84,$+(5(4 6"B-"4+"

EFC@=@CHF P$46,"85 ('EFC@@@CHFQ0 K2$+2 (' ,2" '(AA(%$43 8:"))8,$(46 $4 7)(,"$4 6;4,2"6$6 9$32, ,2$6 ,!<=

+8-6"M

=!> )"85C,2)(-32 (' 6,(7 +(5(46

=,> 1%,1(5(%(5*& *2 /C15&# 2*" 51*/#%95&#

=2> 6-:6,$,-,$(4 (' A;6$4" '() ,;)(6$4" 

=5> 6-:6,$,-,$(4 (' A;6$4" '() 72"4;A8A84$4" 

/W0 X4+" 84 9!<= $6 7)(5-+"5O $,6 9"6683" +84 :" 5"+(5"5 (4 )$:(6(9"60 12" )$:(6(9" $6 +(97(6"5 (' 

,%( 6-:-4$,6D ,2" )!%&4 6-:-4$,O %2$+2 +8,8A;R"6 ,2" '()98,$(4 (' ,2" 7"7,$5" :(456 ,28, A$4L ,2" 89$4(

8+$56 ,(3",2") $4,( 8 7(A;7"7,$5" +28$4O 845 ,2" +9!)) 6-:-4$,O %2$+2 98,+2"6 ,2" ,!<=6 ,( ,2" +(5(46 ('

,2" 9!<=0 Y-)$43 ,2" +28$4 "A(438,$(4 7)(+"66 (' ,)846A8,$43 84 9!<= $4,( 7)(,"$4O ,2" 3)(%$43

7(A;7"7,$5" +28$4 8,,8+2"5 ,( 8 ,!<= $6 :(-45 ,( ,2" 0 6$," (' ,2" )$:(6(9"0 =4 $4+(9$43 89$4(8+;AC,!<=

+8));$43 ,2" 4"T, 89$4( 8+$5 $4 ,2" +28$4 %$AA :$45 ,( ,2" $ 6$," :; '()9$43 :86" 78$)6 %$,2 ,2" "T7(6"5

+(5(4 $4 ,2" 9!<=0 12" ,4,6:5*) 6%!;+@4%!+4 "4R;9" +8,8A;R"6 ,2" '()98,$(4 (' 8 4"% 7"7,$5" :(45

:",%""4 ,2" 3)(%$43 7(A;7"7,$5" +28$4 845 ,2" 4"%A; 8))$#$43 89$4( 8+$50 12" "45 (' 8 7)(,"$4 C +(5$43

9"6683" $6 6$348A"5 :; ,2" 7)"6"4+" (' 8 6,(7 +(5(4O %2$+2 :$456 ,2" ,%164:; +8AA"5 )"A"86" '8+,()0

Z#"4,-8AA;O 9(6, 7)(,"$46 %$AA :" 5"3)85"5 :; 8 A8)3" +(97A"T (' 7)(,"(A;,$+ "4R;9"6 +8AA"5 ,2"

,%164!+1940

P $O 9"5$-9O ,%164:;O +"4,)8AO 0O !<=O Y<=O ,4,6:5*) 6%!;+@4%!+4O +9!))O ZO 7(A;9")86"O 1O )!%&4O

,%164!+194O -:$B-$,$4Q

Page 17: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 17/52

!"#$"% '

()*+,)- ). /"*" 012,"33$)*

45 6-- ),78*$39:3 !"#$%" "*;)<"3 8-- ). +=" !>6 8*< 2,)+"$* 9)-";?-"3 +=8+ 8," *""<"< +) 98@" $+3 ;"--5

>"8-A 8-- +=" ;"--3 ). 8 9?-+$;"--?-8, ),78*$39 ;)*+8$* +=" 389" !"#$%"& 

B5 !"#" "()*"++,$# $3 8 ;)92-"1 2,);"33 CA %=$;= ;"--3 3"-";+$#"-A <$,";+ +=" 3A*+="3$3 ). +=" 98*A

+=)?38*<3 ). 2,)+"$*3 8*< !>63 "*;)<"< $* +="$, 7"*)9"5 ("-- <$..","*+$8+$)* $3 8;=$"#"< CA ;=8*7"3 $* 

 !"#" "()*"++,$#& 

!"## "% &'( )#*%+, "% &'( -.##./"%0 ,&*&(1(%&, *%2 3#*4( &'( &53(, .- 4.%&6.# #",&(2 )(#./

D -*.#+/*,)-,$#.0  ;)*+,)- <"+",9$*"3 %="* 8*< =)% ).+"* 8 7$#"* 7"*" $3 +,8*3;,$C"<5

E5 123 )*$/"++,#! ;)*+,)- <"+",9$*"3 =)% +=" 2,$98,A !>6 +,8*3;,$2+3 $3 32-$;"< ), )+=",%$3"

2,);"33"<5

F5 %123 -*.#+)$*- .#4 0$/.0,5.-,$# ;)*+,)- <"+",9$*"3 %=$;= ;)92-"+"< 9!>63 $* +=" ;"-- *?;-"?3

"12),+"< +) +=" ;A+)2-8395

G5 -*.#+0.-,$# ;)*+,)- <"+",9$*"3 %=$;= 9!>63 $* +=" ;A+)2-839 8," +,8*3;,$C"< CA ,$C)3)9"35

'5 %123 4"!*.4.-,$# ;)*+,)- 3"-";+$#"-A <"3+8C$-$H"3 ;",+8$* 9!>6 9)-";?-"3 $* +=" ;A+)2-8395

I5 )*$-",# ./-,6,-7  ;)*+,)- 8;+$#8+"3J $*8;+$#8+"3J ), ;)928,+9"*+8-$H"3 32";$.$; 2,)+"$* 9)-";?-"3 8.+",

+="A =8#" C""* 98<"5

K5 L* 2,$*;$2-"J 7"*" "12,"33$)* ;8* C" ;)*+,)--"< 8+ 8*A ). +=" 3+"23 C"+%""* 8 7"*" 8*< $+3 ?-+$98+"

.?*;+$)*8- 2,)<?;+5 M), +=" 98N),$+A ). 7"*"3J =)%"#",J +=" 8*.#+/*,)-,$#.0 /$#-*$0  $3 +=" 9)3+

$92),+8*+ 2)$*+ ). ;)*+,)-5 O";8?3" +=$3 ;)*+,)- 2)$*+ ;8* "*3?," +=8+ *) ?**";"338,A $*+",9"<$8+"3 8,"

3A*+="3$H"<5

4P5 Q=" 7"*"3 ). 8 C8;+",$8- $)"*$# 8," +,8*3;,$C"< $*+) 8 3$*7-" 9!>65 R8*A C8;+",$8- 2,)9)+",3

;)*+8$* 8 ,"7$)* @*)%* 83 8* $)"*.-$*9 +) %=$;= 8 32";$.$; +,8*3;,$2+$)* ,"7?-8+), C$*<35

Page 18: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 18/52

445 S)% 8," 9)3+ "?@8,A)+$; +,8*3;,$2+$)* ,"7?-8+),3 8C-" +) 8..";+ +,8*3;,$2+$)* %="* +="$, C$*<$*7 3$+"3

8," .8, .,)9 +=" 2,)9)+",T :7 0$$),#! $;- -<" ,#-"*6"#,#! =23 ><,0" .- -<" +.%" -,%" ?,#4,#!9 6,. -<"

@"4,.-$*9 -$ )*$-",#+ -<.- A$*% -<" ,#,-,.-,$# /$%)0"( .- -<" )*$%$-"*&

4B5 U8C"- +=" .)--)%$*7 3+,?;+?,"3 $* M$7?,"5

65 8;+$#8+), 2,)+"$* V B 

O5 !>6 2)-A9",83" V C

(5 7"*",8- +,8*3;,$2+$)* .8;+),3 V D

W5 R"<$8+), V E 

4D5 M,)9 +=" 3"X?"*;$*7 ). +=" =?98* 7"*)9"J %" C"-$"#" +=8+ +="," 8," 822,)1$98+"-A B4JPPP 2,)+"$*V

;)<$*7 7"*"3 $* +=" 7"*)9"J ). %=$;= 4FPPYDPPP 8," +,8*3;,$2+$)* .8;+),35 L. "#",A 7"*" =83 8 +$33?"V

32";$.$; 8*< 3$7*8-V<"2"*<"*+ +,8*3;,$2+$)* 28++",*J './ 4*% ,74' * ,1*## %71)(6 .- &6*%,46"3&".%*#

6(07#*&.65 36.&("%, 0(%(6*&( * 174' #*60(6 ,(& .- &6*%,46"3&".%*# 3*&&(6%,8 8*.#+/*,)-,$#

*"!;0.-$*+ .*" !"#"*.007 ;+"4 ,# /$%?,#.-,$#+9 -<"*"?7 ,#/*".+,#! -<" )$++,?0" *"!;0.-$*7

*")"*-$,*" $A !"#" "()*"++,$# >,-< . 0,%,-"4 #;%?"* $A )*$-",#+&

4E5Q=" +,8*39$33$)* ). $*.),98+$)* $92),+8*+ .), 7"*" ,"7?-8+$)* .,)9 28,"*+ +) <8?7=+", ;"--J %$+=)?+ 

8-+",$*7 +=" 8;+?8- *?;-")+$<" 3"X?"*;"J $3 ;8--"< F),!"#"-,/  $*=",$+8*;"5 Q=$3 +A2" ). $*=",$+8*;" $3 3""*

%$+= +=" $*=",$+8*;" ). +=" ;)#8-"*+ 9)<$.$;8+$)*3 )* <,+-$#" 2,)+"$*3 C)?*< +) W>6Z +="3" 9)<$.$;8+$)*3

8," $92),+8*+ .), ,""3+8C-$3=$*7 +=" 28++",* ). ;=,)98+$* 3+,?;+?," .)?*< )* +=" 28,"*+ ;=,)9)3)9"56*)+=", %8A +) $*=",$+ ;=,)98+$* 3+,?;+?," $*#)-#"3 W>6 %"-<70.-,$#9 8 ;)#8-"*+ 9)<$.$;8+$)* +=8+

);;?,3 )* ;A+)3$*" C83"3 +=8+ +A2$;8--A +?,*3 ).. +=" +,8*3;,$2+$)* ). 8 7"*"5 /"*" +,8*3;,$2+$)* 28++",*3

;8* 8-3) C" +,8*39$++"< 8;,)33 7"*",8+$)*3 +=,)?7= 2)3$+$#" A""4?./G  -))23 +=8+ ;8* $*#)-#" 8

+,8*3;,$2+$)* ,"7?-8+), 8;+$#8+$*7 $+3 )%* +,8*3;,$2+$)* $* 8<<$+$)* +) )+=", 7"*"35 Q="3" 9";=8*$393 8--

8--)% .), ;"-- %"%$*79 8 2,)2",+A $*#)-#$*7 +=" 98$*+"*8*;" ). 7"*" "12,"33$)* 28++",*3 $92),+8*+ .),

;"-- $<"*+$+A5

Page 19: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 19/52

4F5 R$;,)!>63 8," *)*;)<$*7 !>63 +=8+ 8," $*;),2),8+"< $*+) 8 2,)+"$* ;)92-"1 ;8--"< 1HIJ J %=$;=

3"8,;="3 +=" %123+ $* +=" ;A+)2-839 .), 3"X?"*;" ;)92-"9"*+8,A +) +=8+ ). +=" 9$!>65 [="* 3?;= 8

9)-";?-" $3 .)?*<J $+ $3 +="* +8,7"+"< .), 4"+-*;/-,$#5 !>6$ $3 +,$77","< CA +=" 2,"3"*;" ). .),"$7* 4$;?0"K

 +-*.#4"4 123 9)-";?-"3J %=$;= 8," <$7"3+"< CA +=" =,/"*  "*HA9" $*+) 3=),+", .,879"*+3 822,)1$98+"-A

BD *?;-")+$<" 28$,3 $* -"*7+=5

6 *"?,)* 8*< 8 %=$+" C-))< ;"-- =8#" #",A <$..","*+ .?*;+$)*35 M), "1892-" 8 *"?,)* ;8* ,";$#" 8*<

,"32)*< +) "-";+,$;8- 3$7*8-3 %=$-" 8 %=$+" C-))< ;"-- <"."*<3 +=" C)<A 878$*3+ $*.";+$)*5 9.&' .- &'(,(

4(##, 4.%&*"% &'( ,*1( 0(%.1( .6 2"--(6(%& 0(%.1(8 8<" 6.*,$;+ /"00 -7)"+ $A .# $*!.#,+% 4,AA"*

#$- ?"/.;+" -<"7 /$#-.,# 4,AA"*"#- !"#"+9 ?;- ?"/.;+" -<"7 "()*"++ -<"% 4,AA"*"#-07&

Page 20: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 20/52

"#$%#& '

()#*+# ,-.#/+0*-. #*12 +0#3 %- 456 1)7-%-89 6)+7: ;*<# =7,/ 7&- /#$%#& >*+#. 7- &2*0 &# )#*/-#.

.,/%-8 1)*++9

456 ?)7-%-8

@/*-+A7/;*0%7-

!"# %"&'(

)*+ ,-./0/1 B (/7.,10%7- 7A ;*-= %.#-0%1*) 173%#+ 7A * 456 +#C,#-1#9

2"(3&0,30./ /4,-"5("( B D-E=;# 02*0 1*- 1)#*$# * 456 ;7)#1,)# *0 * +3#1%A%1: +27/0 +#C,#-1# 7A

-,1)#70%.#+9 DF0#-+%$#)= ,+#. %- /#17;>%-*-0 456 0#12-7)78=9

6"- "-",3&.78.&"(0( 9 @#12-%C,# A7/ +#3*/*0%-8 * ;%F0,/# 7A 3/70#%-+ 7/ 456 A/*8;#-0+ >= 3)*1%-8

02#; 7- * 37)=;#/ 8#) *-. +,>G#10%-8 02#; 07 *- #)#10/%1 A%#).9 @2# ;7)#1,)#+ ;%8/*0# 02/7,82 02# 8#) *0

.%AA#/#-0 +3##.+ .#3#-.%-8 7- 02#%/ +%E# *-. -#0 12*/8#9

Page 21: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 21/52

"#$%#& '

:#;&0<0=530./ 9 DF3#/%;#-0*) 0#12-%C,# %- &2%12 0&7 17;3)#;#-0*/= -,1)#%1 *1%. +0/*-.+ 17;#

078#02#/ *-. A7/; 2=./78#- >7-.+ 07 3/7.,1# * .7,>)# 2#)%FH ,+#. 07 .#0#10 +3#1%A%1 -,1)#70%.#

+#C,#-1#+ %- #%02#/ 456 7/ "569

)*+ -015(" 9 D-E=;# 02*0 /#+#*)+ -%1<+ 02*0 */%+# %- 02# >*1<>7-# 7A * 456 ;7)#1,)#H %- 02# )*>7/*07/=:

1*- ># ,+#. 07 G7%- 078#02#/ 0&7 456 A/*8;#-0+9

2",.';0/5/3 )*+ 9 6 456 ;7)#1,)# 02*0 %+ 17;37+#. 7A 456 +#C,#-1#+ A/7; .%AA#/#-0 +7,/1#+9

>-5('0< 5( ,-./0/1 ?",3.& 9 @2%+ 1%/1,)*/: .7,>)#I+0/*-.#. 456 ;7)#1,)# &*+ 02# A%/+0 3)*+;%. A7/ 456

1)7-%-8H %0 17-0*%-+ *>7,0 -%-# 027,+*-. -,1)#70%.# 3*%/+9 @2# +0*%-%-8 3/71#.,/# ,+#. 07 ;*<# 02# 456

$%+%>)# %- 02%+ #)#10/7- ;%1/78/*32 1*,+#+ 02# 456 07 *33#*/ ;,12 02%1<#/ 02*- %0 *10,*))= %+9

%&5/(@.&'530./ 9 (/71#++ >= &2%12 1#))+ 0*<# ,3 456 ;7)#1,)#+ A/7; 02#%/ +,//7,-.%-8+ *-. 02#-

#F3/#++ 8#-#+ 7- 02*0 4569

>.-#'"&5(" ,850/ &"5,30./ A>B2C 9 , @#12-%C,# A7/ *;3)%A=%-8 +#)#10#. /#8%7-+ 7A 456 >= ;,)0%3)#

1=1)#+ 7A 456 +=-02#+%+H 1*- 3/7.,1# >%))%7-+ 7A 173%#+ 7A * 8%$#- +#C,#-1# %- * ;*00#/ 7A 27,/+9

,)*+ AB.'7-"'"/35&# )*+C 9 456 ;7)#1,)# +=-02#+%E#. A/7; *- ;"56 ;7)#1,)# *-. 02#/#A7/#

)*1<%-8 02# %-0/7-+ 02*0 */# 3/#+#-0 %- 8#-7;%1 4569

2"?"&(" 3&5/(,&0735(" 9 D-E=;# 02*0 ;*<#+ * .7,>)#I+0/*-.#. 456 173= A/7; * +%-8)#I+0/*-.#. "56

0#;3)*0# ;7)#1,)#9 (/#+#-0 %- /#0/7$%/,+#+ *-. *+ 3*/0 7A 02# 0/*-+37+%0%7- ;*12%-#/= 7A

/#0/70/*-+37+7-+9

6"/.'0, )*+ -0;&5&# 9 ?7))#10%7- 7A 1)7-#. 456 ;7)#1,)#+ 02*0 /#3/#+#-0+ 02# #-0%/# 8#-7;# 7A * 1#))9

,)*+ -0;&5&# 9  ?7))#10%7- 7A 456 A/*8;#-0+ +=-02#+%E#. ,+%-8 *)) 7A 02# ;"56+ 3/#+#-0 %- * 3*/0%1,)*/

0=3# 7A 1#)) *+ * 0#;3)*0#9

Page 22: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 22/52

Review 9 for Chapter 11 Membrane Structure

1. Lipids are compounds that are insoluble in water and but soluble in nonpolar

organic solvents.

2. Classified according to their chemical nature, lipids fall into two main groups. One

group, which consists of open-chain compounds with polar head groups and longnonpolar tails, includes fatty acids, phospholids. The second major group consists of

fused ring compounds, the steroids; an important representative of this group is

cholesterol.

3. Lipid molecules in biological membranes are arranged as a continuous double layer

called the Lipid Bilayer , which is about 5 nm thick.

4. All the lipids found in membranes are said to be amphipathic  because they have

one hydrophilic end and one hydrophobic end.

5. When amphipathic molecules are placed in an aqueous environment, they tend to

aggregate so as to bury their hydrophobic ends and expose their hydrophilic ends to

water, giving rise to two different kinds of structures, either spherical micelles or planar

bilayers with the hydrophobic tails sandwiched between the hydrophilic head groups.

6. Cell membranes consist mainly of Lipids  and Proteins, also contain carbohydrates

that are linked to lipids and proteins.

7. Unsaturated fatty acids usually have several  double bonds.

8. Eukaryotic plasma membranes contain especially large amounts of Cholesterol,

which enhances the mechanical stability of the lipid bilayer.

9. The most useful agents for disrupting hydrophobic associations and destroying the

bilayer are Detergents, which are small amphipathic molecules that tend to formmicelles in water.

10. Sugar containing lipids called glycolipid are found only in the outer half of the

bilayer and their sugar groups are exposed at the cell surface.

Page 23: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 23/52

11. The association of membrane proteins with lipids in the membrane bilayer always

involves

(a) electrostatic interactions (b) hydrophobic interactions  

(c) covalent linkages (d) all of the above

12. Biosynthetic enzymes bound to the cytosolic monolayer of the ER membrane

produce new phospholipids from free fatty acids and insert them into the cytosolicmonlayer. Enzymes called scramblases  then randomly transfer phospholipid

molecules from one monolayer to the other, allowing the membrane to grow as a

bilayer. When membranes leave the ER and are incorporated in the Golgi, they

encounter enzymes called flippases , which selectively remove phosphatidylserine and

phosphatidylethanolamine from the noncytosolic monolayer and flip them to the

cytosolic side. This transfer leaves phosphatidylcholine and sphingomyelin

concentrated in the noncytosolic monolayer.

13. We can estimate the relative mobility of a population of molecules along the

surface of a living cell by fluorescently labeling the molecules of interest, bleaching the

label in one small area, and then measuring the speed of signal recovery as molecules

migrate back into the bleached area. What is this method called? What does the

abbreviation stand for?

(a)SDS (b) SPT (c)GFP (d)FRAP  

14. Cell membranes are fluid, and thus proteins can diffuse laterally within the lipid

bilayer. However, sometimes the cell needs to localize proteins to a particularmembrane domain. Name three mechanisms that a cell can use to restrict a protein to

a particular place in the cell membrane. Proteins can be tethered to the cell cortex

inside the cell,

to extracellular matrix molecules outside the cell, or to proteins on the surface of

another cell. Diffusion barriers can restrict proteins to a particular membrane

domain.

15. There are several ways that membrane proteins can associate with the cellmembrane. Membrane proteins that extend through the lipid bilayer are called Integral/

transmembrane proteins and have hydrophobic, regions that are exposed to the

interior of the bilayer. On the other hand, membrane-associated proteins do not span

the bilayer and instead associate with the membrane through an ! helix that is 

amphipathic. Other proteins are covalently attached to lipid molecules that are

inserted in the membrane. peripheral Membrane proteins are linked to the membrane

through non-covalent interactions with other membrane-bound proteins.

Page 24: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 24/52

16. Please understand Common Features of Biological Membranes.

http://www.ks.uiuc.edu/Services/Class/BIOPHYS490M/02-biological-membranes.pdf 

17. Plant membranes have a higher percentage of unsaturated fatty acids than animal

membranes. Animal membranes are (less  or more) fluid than plant membranes.

18. Membrane Fluidity is controlled by fatty acid composition and cholesterol content.

The membranes of prokaryotes, which contain no appreciable amounts of steroids are

the most fluid. (True  or false)

19. Glycolipids on the surface of cells are especially important as cell markers. (True  or

false)

20. Membranes are transported by the process of vesicle budding and fusing. Here, a

vesicle is shown budding from the Golgi apparatus and fusing with the plasma

membrane. Note that the orientations of both the membrane lipids and proteins are

preserved during the process: the original cytosolic surface of the lipid bilayer (green)

remains facing the cytosol, and the non-cytosolic surface (red) continues to face away

from the cytosol, toward the lumen of the Golgi or transport vesicle—or toward the

extracellular compartment. Similarly, the glycoprotein shown here remains in the same

orientation, with its attached sugar facing the non-cytosolic side.

Page 25: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 25/52

Review for Membrane Transport I & II

1. Cells use membranes to help maintain set ranges of ion concentrations inside & outside the cell. Which of the

following ions is the most abundant inside a typical mammalian cell?

(a) Na+ (b) K+  (c) Ca2+ (d) Cl–

2. Specific proteins called Membrane Transport  proteins must be present in order for cell membranes to be

 permeable to small polar molecules such as ions, sugars, & amino acids.

3. There are two classes of membrane transport proteins: Transporter  proteins, which bind specific solutes &

change conformation to transfer the solute across the membrane; & Channel   proteins which form water-filled

 pores that allow specific solutes to cross the membrane down their electro-chemical gradients.

4. Two general transport processes control the entry of solutes into cells: passive transport requires no energy

input by the cell, whereas Active transport pumps specific solutes across a membrane against an electrochemical

gradient.

5. A molecule moves down its concentration gradient by passive transport, but requires active transport to move

up its concentration gradient. Transporter proteins & ion channels function in membrane transport by providing

a hydrophilic pathway through the membrane for specific polar solutes or inorganic ions. Transporters are

highly selective in the solutes they transport, binding the solute at a specific site & changing conformation so as

to transport the solute across the membrane. On the other hand,  Ion channels discriminate between solutes

mainly on the basis of size & electrical charge. 

6. designate whether the transporter works by uniport, symport, or antiport mechanisms.Transporter Type of Transport Energy Source Function

 Na+ K 

-Antiport(ATP-driven)

ATP Keeps high concentration of Na+ outside thecell. Maintain gradient across membrane

 Na+ Glucose Symport

(coupled pump) Na

+  Import of glucose across plasma membrane

Ca+ pump uniport

(ATP-driven)ATP Keep cytosolic Ca

+ low inside the cell

 bacteriorhodopsin (Light driven pump) Light energy Generate cellular energy independently ofchlorophyll

7. For an uncharged molecule, the direction of passive transport across a membrane is determined solely by its

concentration gradient. On the other hand, for a charged molecule, the membrane potential must also be

considered. The net driving force for a charged molecule across a membrane therefore has two components & is

referred to as the Electrochemical  gradient. Active transport allows the movement of solutes against this

gradient. The transporter proteins called coupled  transporters use the movement of one solute down its gradient

to provide the energy to drive the uphill transport of a second solute. When this transporter moves both ions in

the same direction across the membrane, it is considered a(n) Symport ; if the ions move in opposite directions,

the transporter is considered a(n) Antiport. 

Page 26: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 26/52

8. channel  proteins form hydrophilic pores across membranes; almost all such proteins in eukaryotic plasma

membranes are concerned with inorganic ion transport & are therefore referred to as Ionic channels. 

9. Three kinds of perturbation that can cause gated ion channels to open or close are voltage-gated channel ,

ligand-gated channel , & mechanically-gated channel .

10. The uneven distribution of ions on either side of the plasma membrane gives rise to a voltage across the

membrane known as the Resting membrane potential . This voltage depends crucially on the existence of  k+

selective leak channels, which make most animal cells much more permeable to K+ than to Na+.

11. The action potential is a wave of Depolarization that spreads rapidly along the neuronal plasma membrane.

This wave is triggered by a local change in the membrane potential to a value that is Less negative than the

resting membrane potential. The action potential is propagated by the opening of Voltage -gated  channels.

During an action potential, the membrane potential changes from Negative to positive. The action potential

travels along the neuron’s axon to the nerve terminals. Neurons chiefly receive signals at their highly branched

 Dendrites.

12. Neurons communicate with each other through specialized sites called Synapses. Many neurotransmitter 

receptors are ligand-gated ion channels that open transiently in the  postsynaptic cell membrane in response to

neurotransmitters released by the presynaptic cell. Ligand-gated ion channels in nerve cell membranes convert

chemical signals into electrical ones. Neurotransmitter release is stimulated by the opening of voltage-gated

Ca2+

channels in the nerve-terminal membrane.

13. In nerve & skeletal muscle cells a depolarizing stimulus causes voltage-gated Na + channels to open,

allowing a small amount of Na+ to enter the cell down its electrochemical gradient.

14. In many nerve cells Voltage-gated K+ channels help bring the activated plasma membrane back to its

original negative potential by allowing an efflux of K+. 

15. Which statements does not accurately describe the events involved in the propagation of an action potential?

(a) An initial influx of Na+ through a small cluster of channels causes local depolarization of the membrane.

(b) Local depolarization causes nearby Na+

channels to open.

(c) Channels in depolarized regions of the membrane are inactivated until the resting membrane potential is

reestablished.

(d) The opening of transmitter-gated K +

channels helps to repolarize the membrane.

Page 27: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 27/52

16. Figure illustrates changes in membrane potential during the formation of an action potential. What

membrane characteristic or measurement used to study action potentials is indicated by the arrow?

Resting membrane potential

Action Potential

Membrane potential

Threshold potentialDepolarizing

stimulus

17. Indicate whether the statements below are true or false. If a statement is false, explain why it is false.

(A.) Neurotransmitters are small molecules released into the synaptic cleft after the fusion of synaptic vesicles

with the presynaptic membrane.(True)

(B.) Action potentials are usually mediated by voltage-gated Ca2+ channels.(False action potentials are

usually mediated by voltage-gated Na+ channels) 

(C.) Voltage-gated Na+ channels become automatically inactivated shortly after opening, which ensures that the

action potential cannot move backward along the axon.(True)(D.) Voltage-gated K+ channels also open immediately in response to local depolarization, reducing the

magnitude of the action potential. (False) they do not open immediately 

Page 28: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 28/52

!"#$"% '() *+"),-

./ 0$#$+, (),1+$232 1)" 145" 6( "7$26 4"8192" (' 1 8(+6$+915 $+:96 (' "+"),-/ ;1)6 (' 6<$2 "+"),- $2 92"= 6(

81))- (96 "22"+6$15 )"186$(+2 6<16 29::()6 8"55 3"614(5$23> ,)(%6< 3(#"3"+6> 1+= )":)(=986$(+? 6<"

)"31$+=") $2 5(26 $+ 6<" '()3 (' <"16/

@/ A<" "+"),- 92"= 4- 6<" 8"55 6( ,"+")16" 2:"8$'$8 4$(5(,$815 3(5"895"2 1+= <$,<5- ()=")"= 26)9869)"2 $2

26()"= $+ 6<" '()3 (' !"#$%&'( *+,-./

B/ C9)$+, )"2:$)16$(+> "+"),- $2 )"6)$"#"= ')(3 6<" <$,<D"+"),- 4(+=2 '(9+= $+ 8")61$+ (),1+$8 3(5"895"2/

E<$8< (' 6<" '(55(%$+,> $+ 1==$6$(+ 6( "+"),-> 1)" 6<" 956$316" :)(=9862 (' )"2:$)16$(+F

/'0!123 421 G4HIJB> J@K  G8HIJ@KJ> K@  G=HIK@> K@ 

!"## %&#"'( )* + ,(-.#/

ΔL M N 2:(+61+"(92 "7"),(+$8D"+"),- )"5"12"=

ΔLO N *P9$5$4)$93

ΔL Q N R(+2:(+61+"(92 "+="),(+$8D"+"),- )"P9$)"=

S/ T88()=$+, 6( 6<")3(=-+13$82> '1#()"= :)(8"22"2 1)" (+"2 6<16 G )"P9$)"U 5#(#'.#0 "+"),-/

V/ T 2:(+61+"(92 )"186$(+ $2

'6 #7#58+,%&6   4/ "+="),(+$8/ 8/ 16 "P9$5$4)$93/ =/ +(+" (' 6<" 14(#"/

W/ A<" 1=#1+61," 6( 6<" 8"55 (' 6<" ,)1=915 (7$=16$(+ (' ,598(2"

=9)$+, 8"55951) )"2:$)16$(+ 8(3:1)"= %$6< $62 8(34926$(+ 6( IK@

1+= J@K $+ 1 2$+,5" 26": $2 6<16 XXXXXXXXXXXXXXXX/

G1H 3()" ')"" "+"),- $2 )"5"12"= '() 1 ,$#"+ 13(9+6 (' ,598(2" (7$=$Y"=/

G4H +( "+"),- $2 5(26 12 <"16/

/&0 #,#589 &', :# #7;5'&;#- %, <.':(# '$+<,;./

G=H 3()" IK@ $2 :)(=98"= '() 1 ,$#"+ 13(9+6 (' ,598(2" (7$=$Y"=/

0)1234&' )* 5")617.4)& +&6 8-# )* %&#"'(

ZA<" 8(9:5$+, (' "+"),-D:)(=98$+, 1+= "+"),-D)"P9$)$+, )"186$(+2 $2 1 8"+6)15 6<"3" $+ 6<" 3"614(5$23

(' 155 (),1+$232

Z*+"),- 81++(6 4" 92"= =$)"865-> 3926 4- 2<9665"= $+6( "12$5- 188"22$45" '()32 (' 8<"3$815 "+"),-

Z[J$,< *+"),-\ 4(+=2D4(+=2 6<16 )"P9$)" () )"5"12" 8(+#"+$"+6 13(9+62 (' "+"),-> =":"+=$+, (+ 6<"

=$)"86$(+ (' 6<" )"186$(+

ZTA; $2 "22"+6$15 <$,< "+"),- 4(+=D8(+61$+$+, 8(3:(9+=

Z;<(2:<()-516$(+ (' TC; 6( TA; )"P9$)"2 "+"),-

ZJ-=)(5-2$2 (' TA; 6( TC; )"5"12"2 "+"),-

Page 29: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 29/52

]/ *+"),- 81++(6 4" 8)"16"= () ="26)(-"=> 496 $6 81+ 4" 8(+#")6"= $+6( (6<") 6-:"2 (' "+"),-/ I"552 92"

:(6"+6$15 ^$+"6$8 "+"),- 6( ,"+")16" 26()"= 8<"3$815 "+"),- $+ 6<" '()3 (' 186$#16"= 81))$") 3(5"895"2>

%<$8< 1)" ('6"+ "3:5(-"= 6( _($+ 6%( 3(5"895"2 6(,"6<") $+ XXXXXXXXXXXXX )"186$(+2/

G1H (7$=16$(+

G4H <-=)(5-2$2

/&0 &+,-#,.';%+,

G=H )"=986$(+

`/ A<" :(6"+6$15 "+"),- 26()"= $+ <$,<D"+"),- 4(+=2 $2 8(33(+5- <1)+"22"= %<"+ 6<" 4(+=2 1)" 2:5$6 4-

6<" 1==$6$(+ (' XXXXXXXXXXX $+ 1 :)(8"22 8155"= XXXXXXXXXXXXX/

G1H TA;> :<(2:<()-516$(+/

/:0 =';#53 "9-5+(9.%.6

G8H <-=)(7$="> <-=)16$(+/

G=H 18"616"> 18"6-516$(+/

a/ A<" "+"),- )"5"12"= =9)$+, 3"614(5$23 (' +96)$"+62 81+ 4" 92"= 6( 2-+6<"2$Y" TA; ')(3 TC; 1+=

:<(2:<16"/

'6 >5<# 4/ b152"

9#.+:)34-/c 6<" 8<"3$815 )"186$(+2 (' 4$(3(5"895"2/ d6 $2 6<" 4$(8<"3$815 412$2 (' 5$'" :)(8"22"2

Z7+.+:)34-/c 6<" :"#+;6)<& (' 51),") 3(5"895"2 $+6( 23155") (+"2? 1+ )=46+.4># 2")7#-- 6<16 

"#3#+-#- #&#"'( 

Z+&+:)34-/c 6<" -(&.?#-4- (' 51),") 3(5"895"2 ')(3 23155") (+"2? + "#617.4># 2")7#-- 6<16 

"#@14"#- #&#"'( 

Page 30: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 30/52

.N/ d+ ,"+")15> 81614(5$23

'6 %. ', +7%-';%?# @5+&#.. ;"'; 5#(#'.#. #,#589 

4/ $2 1 )"=986$#" :)(8"22 6<16 )"5"12"2 "+"),-

8/ $2 1+ (7$=16$#" :)(8"22 6<16 )"P9$)"2 "+"),-

=/ $2 1 )"=986$#" :)(8"22 6<16 )"P9$)"2 "+"),-

../ C9)$+, )"=986$(+

1/ "5"86)(+2 1)" 5(26/

:6 #(#&;5+,. '5# 8'%,#-6

8/ "5"86)(+2 31- "$6<") 4" 5(26 () ,1$+"=/

=/ <-=)(,"+ $2 '()3"=/

.@/ b$,9)" )":)"2"+62 1 8"55 5$+$+, 6<" ,96/ C)1% +934")"=> 514"5"= 5$+"2 6( $+=$816" "71865- %<")" $+2$=" 1

8"55 6<" '(55(%$+, :)(8"22"2 61^" :518"/

.B/ e"5"86 6<" 4"26 (:6$(+ 6( '$55 $+ 6<" 451+^2 (' 6<" '(55(%$+, 2616"3"+6c b")3"+616$(+ $2 1U1+ XXXXXXXXXXX

:)(8"22 6<16 8(+#")62 XXXXXXXXXXXXX $+6( 81)4(+ =$(7$=" 1+= XXXXXXXXXXXXXXXXX/

/'0 ','#5+:%&3 @95<?';#3 #;"',+(

G4H 1+1")(4$8> 518616"> "6<1+(5

G8H "9^1)-(6$8> ,5-8")15="<-=" BD:<(2:<16"> "6<1+(5

G=H :)(^1)-(6$8> 518616"> :)(:1+(5

Page 31: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 31/52

Page 32: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 32/52

.V/ A<" 8$6)$8 18$= 8-85" $2 (965$+"= $+ b$,9)"/ e(3" (' 6<"2" )"186$(+2 :)(=98" 23155 3(5"895"2 6<16 1)"

92"= $+ 6<" "5"86)(+D6)1+2:()6 8<1$+ () 12 "+"),- '() (6<") )"186$(+2/ e"5"86 ')(3 6<" 5$26 4"5(% 6( '$55 $+

6<" "3:6- 4(7"2/ g"": $+ 3$+= 6<16 2(3" 8<($8"2 31- 4" 92"= 3()" 6<1+ (+8" 1+= (6<")2 +(6 92"= 16 155/

RTCJ h J

RTCJ h J

RTCJ h J

bTCJ@

LA;

E()= 41+^

TA;> TC;> LA;> LC;> RTCh> RTCJ> bTCJ> bTCJ@

Page 33: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 33/52

!"#$"% '() *"++ ,$-./+$.-

0.1%")1 %$++ .(2 3" 4)(#$5"56 7(8 9812 1285: 2;" +"<28)" .(2"1 = 2">23((?@

A@ !"-/)5+"11 (' 2;" ./28)" (' 2;" 1$-./+B 2;" 2/)-"2 <"++ )"14(.51 3: 9"/.1 (' / 14"<$'$< 4)(2"$. </++"5 /

!"#"$%&'( %;$<; 3$.51 2;" 1$-./+$.- 9(+"<8+" 2;". $.$2$/2"1 / )"14(.1" $. 2;" 2/)-"2 <"++@

C@ ,$-./+$.- 9(+"<8+"1 2;/2 / <"++ 1"<)"2"1 9$-;2 /<2 /1 *&#+* ,"-.+%&'/( /''"<2$.- (.+: <"++1 $. 2;"

$99"5$/2" ".#$)(.9".2 (' 2;" 1$-./+$.- <"++B $. / 4)(<"11 </++"5 $+'+#'.0" /.10+*.012 

D@ E;". / .")#" $948+1" )"/<;"1 2;" .")#" 2")9$./+1 /2 2;" ".5 (' 2;" />(.B $2 12$98+/2"1 2;" 2")9$./+1 2(

1"<)"2" / <;"9$</+ 1$-./+ </++"5 / 0"3'&%'+0/,.%%"'B %;$<; $1 5"+$#")"5 )/4$5+: 2( 2;" 4(121:./42$< 2/)-"2

<"++ $. / 4)(<"11 2")9"5 /40+$%.# /.10+*.01@

F@ "0-&#'.0" <"++1 1"<)"2" 2;"$) 1$-./+$.- 9(+"<8+"1B </++"5 5&',&0"/B $.2( 2;" 3+((512)"/9B %;$<;

</))$"1 2;" 1$-./+ 2( 2/)-"2 <"++1 2;)(8-;(82 2;" 3(5:@

G@ *"++1 </. 1".5 1$-./+1 2( (2;") <"++1 (' 2;" 1/9" 2:4" = 2( 2;"91"+#"1 $. / 4)(<"11 </++"5 +3%&#'.0"

/.10+*.01

H@ 0<"2:+<;(+$." $.5$)"<2+: </81"1 19((2; 981<+" <"++1 $. 3+((5 #"11"+ %/++1 2( )"+/> 3: $.58<$.- 2;"

"4$2;"+$/+ <"++1 2( 9/?" = )"+"/1" 2;" -/1 67( %;$<; 2;". 1$-./+1 2;" 19((2; 981<+" <"++1 2( )"+/>@

I@ !/.? 2;" '(++(%$.- 2:4"1 (' <"++ 1$-./+$.- ')(9 A 2( FB %$2; A )"4)"1".2$.- 2;" 2:4" (' 1$-./+$.- $.

%;$<; 2;" 1$-./+ 9(+"<8+" 2)/#"+1 2;" +"/12 5$12/.<" = F 2;" 2:4" (' 1$-./+$.- $. %;$<; 2;" 1$-./+ 9(+"<8+"

2)/#"+1 2;" +/)-"12 5$12/.<"@

8*&/"/%

9 <(.2/<2J5"4".5".2 1$-./+$.- : 4/)/<)$." 1$-./+$.-

; ."8)(./+ 1$-./+$.- < ".5(<)$." 1$-./+$.-

K@ !"<"$42 (' ">2)/<"++8+/) 1$-./+1 </. <;/.-" <"++ 3";/#$() L8$<?+: M'() ">/94+"B $. 1"<(.51 () +"11N ()

98<; 9()" 1+(%+: M'() ">/94+"B $. ;(8)1N@

0@ E;/2 ?$.5 (' 9(+"<8+/) <;/.-"1 <(8+5 </81" L8$<? <;/.-"1 $. <"++ 3";/#$()O '"/$&0/"/ /3#5 +/

#5+01"/ .0

#"** ,&=","0%( /"#'"%.&0( &' ,"%+>&*./, 0""- 0&% .0=&*=" #5+01"/ .0 1"0" "?$'"//.&0 @ %5"'"A&'"

&##3' ,&'" B3.#C*42

P@ E;/2 ?$.5 (' 9(+"<8+/) <;/.-"1 <(8+5 </81" 1+(% <;/.-"1 $. <"++ 3";/#$()O '"/$&0/"/ /3#5 +/ #"**

-.AA"'"0%.+%.&0 &' .0#'"+/"- #"** 1'&D%5 @ -.=./.&0 .0=&*=" #5+01"/ .0 1"0" "?$'"//.&0 @ %5"

/40%5"/./ &A 0"D $'&%".0/E %5"4 %5"'"A&'" &##3' '"*+%.="*4 /*&D*42

Page 34: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 34/52

Q@ *$)<+" 2;" 4;)/1" $. "/<; 4/$) 2;/2 $1 +$?"+: 2( (<<8) 9()" )/4$5+: $. )"14(.1" 2( /.

">2)/<"++8+/) 1$-./+@

0@ 85+01"/ .0 #"** /"#'"%.&0 R $.<)"/1"5 <"++ 5$#$1$(.

P@ 85+01"/ .0 $'&%".0 $5&/$5&'4*+%.&0 R <;/.-"1 $. 4)(2"$.1 3"$.- 1:.2;"1$S"5

*@ *;/.-"1 $. 9!T0 +"#"+1 R #5+01"/ .0 ,",>'+0" $&%"0%.+* 

AU@ V$#". 2;" -".")$< 1$-./+$.- 4/2;%/: $. W$-8)" XAHJACB %)$2" 2;" .893") <())"14(.5$.- 2( 2;" $2"9 (.

2;" +$." .">2 2( 2;" 5"1<)$42() 3"+(%@

AN +$-/.5R">2)/<"++8+/) 4)(2"$.

CN )"<"42() 4)(2"$.

DN $.2)/<"++8+/)

FN "''"<2()

AA@ */. 1$-./+$.- #$/ / 12")($5 ;()9(." )"<"42() +"/5 2( /94+$'$</2$(. (' 2;" ()$-$./+ 1$-./+O Y' 1(B ;(%O

F.0#" %5" .0%"'+#%.&0/ &A %5" /.10+* ,&*"#3*" D.%5 .%/ '"#"$%&' @ &A %5" +#%.=+%"- '"#"$%&' D.%5 %5"

'"13*+%&'4 '"1.&0 &A + %+'1"% 1"0" +'" >&%5 &0"G%&G&0"( %5"'" ./ 0& +,$*.A.#+%.&0 .0 %5./ $+'% &A %5"

/.10+*.01 $+%5D+42 H5" /.10+* #+0( 5&D"="'( >" +,$*.A."- D5"0 %5" %+'1"% 1"0" ./ %'+0/#'.>"-(

/.0#" ,3*%.$*" #&$."/ &A ,!6I +'" 3/3+**4 $'&-3#"- A'&, + 1"0" &0#" .% 5+/ >""0 /D.%#5"- &0( @

,3*%.$*" #&$."/ &A $'&%".0 #+0 >" ,+-" A'&, "+#5 ,!6I ,&*"#3*"2 

AC@ T/9" 2;" 2;)"" 9/$. <+/11"1 (' <"++J18)'/<" )"<"42()@

92 J&0G#5+00"*G*.0C"- '"#"$%&'/

:2 KG$'&%".0 *.0C"- '"#"$%&'/

;2 L0M4,"G*.0C"- '"#"$%&'/

AD@ Z/2<; 2;" <+/11 (' <"++J18)'/<" )"<"42() %$2; 2;" 3"12 5"1<)$42$(. (' $21 '8.<2$(.@ T(2 /++ %$++ 3" 81"5@

VJ4)(2"$.J<(84+"5 )"<"42()1 N 

$(.J<;/.."+J<(84+"5 )"<"42()1  I 

".S:9"J<(84+"5 )"<"42()1 L 

0@ /+2") 2;" 9"93)/." 4(2".2$/+ 5$)"<2+: 3: <;/.-$.- 2;" 4")9"/3$+$2: (' 2;" 4+/19/ 9"93)/."

P@ 1$-./+ 3: (4".$.- = <+(1$.- $. / +$-/.5J$.5"4".5".2 9/..")

*@ 9812 3" <(84+"5 %$2; $.2)/<"++8+/) 9(.(9")$< V[\J3$.5$.- 4)(2"$.1

]@ /++ )"<"42()1 (' 2;$1 <+/11 /)" 4(+:4"42$5"1 %$2; 1"#". 2)/.1J9"93)/." 5(9/$.1

^@ 5$1<(#")"5 '() 2;"$) )(+" $. )"14(.5$.- 2( -)(%2; '/<2()1 $. /.$9/+ <"++1

Page 35: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 35/52

Page 36: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 36/52

CC@ 0. /5)"./+$." /<2$#/2"1 / V\*!B %;$<; 28).1 (. / V 4)(2"$. MV1N 2;/2 /<2$#/2"1 +-.-.#*" #4#*+/" 2(

3((12 2;" 4)(58<2$(. (' <:<+$< 0Z\@ [;" $.<)"/1" $. <:<+$< 0Z\ /<2$#/2"1 &%5"' $'&%".0 C.0+/"/B %;$<;

4;(14;():+/2"1 = /<2$#/2"1 /. ".S:9" </++"5 4;(14;():+/1" ?$./1"@ [;$1 ?$./1" /<2$#/2"1 -+:<(-".

4;(14;():+/1"B 2;" ".S:9" 2;/2 3)"/?1 5(%. -+:<(-".@ P"</81" 2;"1" )"/<2$(.1 5( .(2 $.#(+#" <;/.-"1 $.

-"." 2)/.1<)$42$(. () ."% 4)(2"$. 1:.2;"1$1B 2;": (<<8) A+/%2 

CD@ P$.5$.- (' /. /5)"./+$." 9(+"<8+" 2( $21 V\*! </. +"/5 2( 2;" /<2$#/2$(. (' /5".:+:+ <:<+/1" = / )$1" $.

2;" <(.<".2)/2$(. (' 84%&/&*.# #4#*.# ISP2 [;" $.<)"/1" $. <:<+$< 0Z\ /<2$#/2"1 $'&%".0 C.0+/" IB %;$<;

2;". 9(#"1 $.2( 2;" 03#*"3/ = 4;(14;():+/2"1 14"<$'$< 2)/.1<)$42$(. )"-8+/2()1@ e.<" 4;(14;():+/2"5B

2;"1" 4)(2"$.1 12$98+/2" 2;" 2)/.1<)$42$(. (' / %;(+" 1"2 (' 2/)-"2 -"."1@ [;$1 2:4" (' 1$-./+$.- 4/2;%/:

<(.2)(+1 9/.: 4)(<"11"1 $. <"++1B )/.-$.- ')(9 ;()9(." 1:.2;"1$1 $. ".5(<)$." <"++1 2( 2;" 4)(58<2$(. ('

4)(2"$.1 $.#(+#"5 $. +(.-J2")9 9"9(): $. 2;" 3)/$.@ P"</81" 2;"1" )"/<2$(.1 $.#(+#" <;/.-"1 $. -"."

">4)"11$(.B 2;": (<<8) /*&D*42 0<2$#/2"5 $'&%".0 C.0+/" I </. /+1( 4;(14;():+/2" = 2;")"3: )"-8+/2"

(2;") 4)(2"$.1 = ".S:9"1 $. 2;" <:2(1(+@

CF@ 02 2;" 12/)2 (' 2;" 4/2;%/:B 3(2; 2;"α 1838.$2 = 2;"βγ 1838.$2 (' 2;" V 4)(2"$. VL /)" $.#(+#"5 $.

/<2$#/2$.- $5&/$5&*.1+/" 82 [%( 19/++ 9"11".-") 9(+"<8+"1B JP; = NI8H /)" 4)(58<"5@ E;". /

9"93)/." J0&/.%&* $5&/$5&*.$.- $1 ;:5)(+:S"5 3: /<2$#/2"5 4;(14;(+$4/1" *B Y.(1$2(+ ABFBGJ

2)$14;(14;/2" MY\DN 5$''81"1 2;)(8-; 2;" <:2(1(+ = 2)$--")1 2;" )"+"/1" (' 8+:V ')(9 2;" ^! 3: 3$.5$.- 2(

= (4".$.- 14"<$/+ 8+:V <;/.."+1 $. 2;" ^! 9"93)/."@ [;" +/)-" "+"<2)(<;"9$</+ -)/5$".2 '() 8+:V

/<)(11 2;$1 9"93)/." </81"1 8+:V 2( )81; (82 (' 2;" ^! = $.2( 2;" <:2(1(+@ N.+#4*1*4#"'&* )"9/$.1 $. 2;"

4+/19/ 9"93)/." =B 2(-"2;") %$2; */CfB ;"+41 /<2$#/2" 2;" ".S:9" $'&%".0 C.0+/" 8 QPT8R( %;$<; $1

)"<)8$2"5 ')(9 2;" <:2(1(+ 2( 2;" <:2(1(+$< '/<" (' 2;" 4+/19/ 9"93)/."@ PT8 2;". 4;(14;():+/2"1 $21

(%. 1"2 (' $.2)/<"++8+/) 4)(2"$.1B '8)2;") 4)(4/-/2$.- 2;" 1$-./+@

CG@ [;" ".S:9" /<2$#/2"5 3: 5$/<:+-+:<")(+ $1 </++"5 $'&%".0 C.0+/" 8 QPT8R 3"</81" $2 $1 */Cf J

5"4".5".2@

CH@ */Cf </. 2)$--") 3$(+(-$</+ "''"<21 $. <"++1 3"</81" /. 8.12$98+/2"5 <"++ ;/1 /. ">2)"9"+: *&D

<(.<".2)/2$(. (' ')"" */Cf $. 2;" <:2(1(+B <(94/)"5 %$2; $21 <(.<".2)/2$(. $. 2;" "?%'+#"**3*+' 14/<" = $.

2;" L!( <)"/2$.- / 12""4 "+"<2)(<;"9$</+ -)/5$".2@ E;". */Cf ".2")1 2;" <:2(1(+B $2 $.2")/<21 %$2; */Cf J

)"14(.1$#" 4)(2"$.1 18<; /1 $'&%".0 C.0+/" 8 QPT8R( %;$<; /+1( 3$.51 5$/<:+-+:<")(+B = #+*,&-3*.0 

%;$<; /<2$#/2"1 */ZJ?$./1"1@

CI@ [;" /<2$(. (' */Cf $. / 1"<(.5 9"11".-") 1<;"9"

/@ $.#(+#"1 2;" </+<$89J3$.5$.- 4)(2"$. </+9(58+$. /1 2;" /<28/+ 1"<(.5 9"11".-")

3@ )"+$"1 ".2$)"+: (. $.2")<"++8+/) )"1")#($)1 (' */Cf $. 2;" ".5(4+/19$< )"2$<8+89

<@ 5("1 .(2 $.#(+#" 2;" V 4)(2"$.

-2 $'&-3#"/ /3/%+.0"- '"/$&0/"/ >4 #&0%'&**.01 %5" A*&D &A 8+:V .0%& %5" #"**

Page 37: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 37/52

CK@ */+9(58+$. ;/1 / 58933"++ 1;/4"B %$2; 2%( -+(38+/) ".51 <(.."<2"5 3: / +(.-α ;"+$>@ ^/<; ".5 ;/1

: */Cf J3$.5$.- 5(9/$.1@ *(.'()9/2$(./+ <;/.-"1 $. */CfR </+9(58+$. 2;/2 (<<8) %;". $2 3$.51 2( /.

$1(+/2"5 1"-9".2 (' / 2/)-"2 4)(2"$.@ Y. 2;$1 <(.'()9/2$(.B 2;"α;"+$> a/<??.$'"1 2( 18))(8.5 2;" 2/)-"2@

CQ@ #+*,&-3*.0 W8.<2$(.1 /1 / 98+2$48)4(1" $.2)/<"++8+/) */Cf )"<"42()B 9"5$/2$.- 9/.: */Cf g

)"-8+/2"5 4)(<"11"1@

DU@ 0 </+9(58+$.J)"-8+/2"5 ?$./1" M*/ZJ?$./1"YYN $1 1")$."R2;)"(.$."J14"<$'$< 4)(2"$. ?$./1" 2;/2 $1

)"-8+/2"5 3: 8+:V2 */ZJ?$./1"YY $1 $.#(+#"5 $. 14/2$/+ +"/).$.- = 9"9():@ [;$1 ?$./1" $1 /3+" 2(

4;(14;():+/2" $21"+' Q+3%&$5&/$5&'4*+%"R 18<; 2;/2 $21 ?$./1" /<2$#$2: $1 .(% .0-"$"0-"0% (' 2;"

$.2)/<"++8+/) <(.<".2)/2$(. (' */Cf@ [;81B 2;" ?$./1" 12/:1 +#%.=" /'2") */Cf +"#"+1 ;/#" 5)(44"5@

DA@ [:4$</++:B 2;" 3$.5$.- (' / 1$-./+ 9(+"<8+" 2( 2;" ">2)/<"++8+/) 5(9/$. (' / )"<"42() 2:)(1$." ?$./1"1

M![hN </81"1 2%( )"<"42() 9(+"<8+"1 2( /11(<$/2" $.2( / -.,"'@ [;" 1$-./+ 9(+"<8+" $1 $21"+' / -.,"' =

2;81 </. 4;:1$</++: <)(11J+$.? 2%( )"<"42() 9(+"<8+"1i (2;") 1$-./+ 9(+"<8+"1 $.58<" / <(.'()9/2$(./+

<;/.-" $. 2;" ![h1B </81$.- 2;" )"<"42()1 2( 5$9")$S"B 2((@ Y. "$2;") </1"B -.,"' A&',+%.&0 3)$.-1 2;"

?$./1" 5(9/$.1 (' "/<; <:2(1(+$< )"<"42() 2/$+ $.2( <(.2/<2 %$2; 2;" (2;")i 2;$1 /<2$#/2"1 2;" ?$./1"1 2(

$5&/$5&'4*+%" 2;" /5a/<".2 2/$+ (. 1"#")/+ %4'&/.0"/2 ^/<; 4;(14;():+/2"5 2:)(1$." 1")#"1 /1 / 14"<$'$<

5(<?$.- 1$2" '() / 5$''")".2 $.2)/<"++8+/) 1$-./+$.- 4)(2"$.B %;$<; 2;". ;"+41 )"+/: 2;" 2( 2;" <"++j1 $.2")$()@

DC@ 0. /5/42() 4)(2"$. 5(<?1 (. / 4/)2$<8+/) 4;(14;(2:)(1$." (. 2;" /<2$#/2"5 )"<"42()@ [;" /5/42()

)"<)8$21 / !+/ 13+0.0" 03#*"&%.-" "?#5+01" A+#%&' Q!+/GKLWR 2;/2 12$98+/2"1 !/1 2( "><;/.-" $21

3(8.5 V]\ '() V[\@ [;" /<2$#/2"5 !/1 4)(2"$. </. .(% 12$98+/2" 1"#")/+ 5(%.12)"/9 1$-./+$.-

4/2;%/:1@ [;" !/1 4)(2"$. <(.2/$.1 / <(#/+".2+: /22/<;"5 +$4$5 -)(84 2;/2 ;"+41 /.<;() 2;" 4)(2"$. 2( 2;"

$.1$5" (' 2;" $*+/,+ ,",>'+0"@

DD@ [;" !+/ $'&%".0 ;"+41 )"+/: 1$-./+1 ')(9 )"<"42() 2:)(1$." ?$./1"1 2( 2;" .8<+"81 2( 12$98+/2" <"++

4)(+$'")/2$(. () 5$''")".2$/2$(.@

DF@0<2$#/2"5 !/1 4)(2"$. $.$2$/2"1 2;" $5&/$5&'4*+%.&0 #+/#+-"( %;$<; /<2$#/2"1 / 2;)""J?$./1" 1$-./+$.-

9(58+"B %;$<; )"+/:1 2;" 1$-./+@ [;" '$./+ ?$./1" $. 2;" 9(58+"B ,.%&1"0G+#%.=+%"- $'&%".0 C.0+/"

QSIP C.0+/"RB 4;(14;():+/2"1 #/)$(81 5(%.12)"/9 1$-./+$.- () "''"<2() 4)(2"$.1@

Page 38: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 38/52

DG@ ![h1 /<2$#/2" 2;" \YJDJ?$./1"J0?2 1$-./+$.- 4/2;%/:@ 0. ">2)/<"++8+/) 18)#$#/+ 1$-./+B 18<; /1 YVWB

/<2$#/2"1 /. ![hB %;$<; )"<)8$21 = /<2$#/2"1 PJ ;GC.0+/"@ [;$1 ".S:9" 2;". 4;(14;():+/2"1 /. .0&/.%&*

$5&/$5&*.$.- 2;/2 $1 "93"55"5 $. 2;" <:2(1(+$< 1$5" (' 2;" 4+/19/ 9"93)/."@ [;" )"18+2$.-

4;(14;():+/2"5 $.(1$2(+ 4;(14;(+$4$5 2;". /22)/<21 $.2)/<"++8+/) 1$-./+$.- 4)(2"$.1 2;/2 ;/#" / 14"<$/+

5(9/$. 2;/2 )"<(-.$S"1 $2@ e." (' 2;"1" 1$-./+$.- 4)(2"$.1B IC%( $1 / 4)(2"$. ?$./1" 2;/2 $1 /<2$#/2"5 /2 2;"

9"93)/." 3: 4;(14;():+/2$(. 9"5$/2"5 3: 2%( (2;") 4)(2"$. ?$./1"1 M;")" </++"5 4)(2"$. ?$./1"1 A =

CNi 4)(2"$. ?$./1" A $1 /+1( )"<)8$2"5 3: 2;" 4;(14;():+/2"5 +$4$5 5(<?$.- 1$2"1@ e.<" /<2$#/2"5B IC%  $1

)"+"/1"5 ')(9 2;" 4+/19/ 9"93)/." = 4;(14;():+/2"1 #/)$(81 5(%.12)"/9 4)(2"$.1 (. 14"<$'$< 1")$."1

= 2;)"(.$."1@

DH@ 0<2$#/2"5 0?2 4)(9(2"1 <"++ 18)#$#/+@ e." %/: $2 5("1 1( $1 3: 4;(14;():+/2$.- =

$./<2$#/2$.- / 4)(2"$. </++"5 X+-2 Y. $21 8.4;(14;():+/2"5 12/2"B X+- 4)(9(2"1 /4(42(1$1 M/ '()9 (' <"++

5"/2;N 3: 3$.5$.- 2( = $.;$3$2$.- / 4)(2"$.B </++"5 P<+CB %;$<; (2;")%$1" 1844)"11"1 /4(42(1$1@ E;". P/5

$1 4;(14;():+/2"5 3: 0?2B P/5 )"+"/1"1 P<+CB %;$<; .(% 3+(<?1 /4(42(1$1B 2;")"3: 4)(9(2$.- #"**

/3'=.=+*2 

DI@ 0?2 12$98+/2"1 <"++1 2( -)(% $. 1$S" 3: /<2$#/2$.- 2;" 1")$."R2;)"(.$." ?$./1" [()@ [;" 3$.5$.- (' /

-)(%2; '/<2() 2( /. ![h /<2$#/2"1 2;" PJG;GC.0+/"YIC% 1$-./+$.- 4/2;%/:@ 0?2 2;". $.5$)"<2+: /<2$#/2"1

[() 3: 4;(14;():+/2$.- = $.;$3$2$.- / 4)(2"$. 2;/2 ;"+41 2( ?""4 [() 1;82 5(%.@ [() 12$98+/2"1 4)(2"$.

1:.2;"1$1 = $.;$3$21 4)(2"$. 5"-)/5/2$(. 3: 4;(14;():+/2$.- ?": 4)(2"$.1 $. 2;"1" 4)(<"11"1@ [;"

/.2$</.<") 5)8- !+$+,4#.0 1+(%1 <"++ -)(%2; 3: $.;$3$2$.- [()@ Y. '/<2B 2;" [() 4)(2"$. 5")$#"1 $21 ./9"

')(9 2;" '/<2 2;/2 $2 $1 / 2/)-"2 (' !+$+,4#.02 

DK@ 0 4)(2"$. ?$./1" </. /<2 /1 /. $.2"-)/2$.- 5"#$<" $. 1$-./+$.- $' $2 ```````````````````@

M/N 4;(14;():+/2"1 9()" 2;/. (." 18312)/2"@

M3N </2/+:S"1 $21 (%. 4;(14;():+/2$(.@

Q#R ./ +#%.=+%"- >4 %D& &' ,&'" $'&%".0/ .0 -.AA"'"0% /.10+*.01 $+%5D+4/2

M5N $.$2$/2"1 / 4;(14;():+/2$(. </1</5" $.#(+#$.- 2%( () 9()" 4)(2"$. ?$./1"1@

Page 39: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 39/52

Review for Energy

1. Living organism are able to exist because of a continual input of energy. Part of this

energy is used to carry out essential reactions that support cell metabolism, growth

movement, and reproduction; the remainder is lost in the form of heat.

2. The energy used by the cell to generate specific biological molecules and highlyordered structures is stored in the form of chemical bonds.

3. During respiration, energy is retrieved from the high-energy bonds found in certain

organic molecules. Which of the following, in addition to energy, are the ultimate

products of respiration?

(a)CO2, H2O

(b)CH3, H2O

(c) CH2OH, O2

(d) CO2, O2

Free Energy of a System

!G < 0 spontaneous exergonic-energy released

!G= 0 Equilibrium

!G > 0 Nonspontaneous endergonic-energy required

4. According to thermodynamics, favored processes are

a. ones that require energy.b. ones that release energy. 

5. A spontaneous reaction is

a. exergonic.

b. endergonic.

c. at equilibrium.

d. none of the above.

6. The advantage to the cell of the gradual oxidation of glucose during cellular

respiration compared with its combustion to CO2 and H2O in a single step is that

________________.

(a) more free energy is released for a given amount of glucose oxidized.

(b) no energy is lost as heat.

(c) energy can be extracted in usable amounts.

(d) more CO2 is produced for a given amount of glucose oxidized.

Page 40: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 40/52

Coupling of Production and Use of Energy

•The coupling of energy-producing and energy-requiring reactions is a central theme in

the metabolism of all organisms

• Energy cannot be used directly, must by shuttled into easily accessible forms of

chemical energy

•“High Energy” bonds: bonds that require or release convenient amounts of energy,

depending on the direction of the reaction• ATP is essential high energy bond-containing compound

• Phosphorylation of ADP to ATP requires energy

• Hydrolysis of ATP to ADP releases energy

7. Energy cannot be created or destroyed, but it can be converted into other types of

energy. Cells use potential kinetic energy to generate stored chemical energy in the

form of activated carrier molecules, which are often employed to join two molecules

together in ______ reactions.

(a) oxidation (b) hydrolysis (c) condensation  (d) reduction

8. The potential energy stored in high-energy bonds is commonly harnessed when the

bonds are split by the addition of _______________ in a process called

_____________.

(a) ATP, phosphorylation. (b) water, hydrolysis.

(c) hydroxide, hydration. (d) acetate, acetylation.

9. The energy released during metabolism of nutrients can be used to synthesize ATP

from ADP and phosphate.

a. True / False

Page 41: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 41/52

Page 42: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 42/52

13. Select the best option to fill in the blanks of the following statement: Fermentation is

a/an _____________ process that converts__________ into carbon dioxide and

_____________________.

(a) anaerobic, pyruvate, ethanol

(b) anaerobic, lactate, ethanol

(c) eukaryotic, glyceraldehyde 3-phosphate, ethanol

(d) prokaryotic, lactate, propanol

14. It can be useful to analyze the steps of glycolysis with respect to the four basic

types of enzymes required by this central catabolic pathway and to consider whether

each enzyme produces or harvests the energy of an activated carrier. For each step of

glycolysis (see Figure 13–5 or Panel 13-1), indicate which type of enzyme. Also,

indicate whether an activated energy carrier is involved, and, if so, how.

Step 1 ___________

Step 2 ___________

Step 3 ___________

Step 4 ___________

Step 5 ___________

Step 6 ___________

Step 7 ___________

Step 8 ___________

Step 9 ___________

Step 10 ___________

15. The citric acid cycle is outlined in Figure. Some of these reactions produce small

molecules that are used in the electron-transport chain or as energy for other reactions.

Select from the list below to fill in the empty boxes. Keep in mind that some choices

may be used more than once and others not used at all.

Page 43: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 43/52

 

GTP! DNADH!B, C, GFADH2! E

ONE TURN OF THE CYCLEPRODUCES THREE NADH,

ONE GTP, ANDONE FADH2, AND RELEASESTWO MOLECULES OF CO2

Page 44: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 44/52

Review for Intracellular transport II (April 07)

Entry into the ER lumen or membrane is usually only the first step on a pathway to

another destination. That destination, initially at least, is generally the Golgi apparatus;

there, proteins and lipids are modified and sorted for shipment to other sites. Transport

from the ER to the Golgi apparatus - and from the Golgi apparatus to other

compartments of the endomembrane system - is carried out by the continual buddingand

fusion of transport vesicles. This process is called vesicular transport.

• A major outward secretory pathway starts with the synthesis of proteins on the ER

membrane and their entry into into the ER, and it leads through the Golgi apparatus to

the cell surface. 

 A major inward endocytic pathway, which is responsible for the ingestion anddegradation of extracellular molecules, moves materials from the plasma membrane,

through endosomes, to lysosomes.

• Vesicles that bud from membranes usually have a distinctive protein coat on their

cytosolic surface and are therefore called coated vesicles.

• The coat serves two functions

1. helps shape the membrane into a bud 

2. captures molecules for onward transport. 

• The clathrin – coated vesicles bud from both the Golgi apparatus on the outward

secretory pathway and from the plasma membrane on the inward endocytic pathway.

At the plasma membrane, the cargo receptors, with their bound cargo molecules, are

captured by adaptins, which also bind clathrin molecules to the cytosolic surface of the

budding vesicles.

• A small GTP-binding protein called dynamin assembles as a ring around the neck of

each deeply invaginated coated pit, pinch off the vesicle. After the budding is complete,the coat proteins are removed, and the naked vesicle can fuse with its target

membrane.

• How does a transport vesicle select its particular cargo?

This is the function of a second class of coat proteins called adaptins: Secure

the clathrin coat to the vesicle membrane and elp select cargo molecules for

transport

Page 45: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 45/52

•After a transport vesicle buds from a membrane, coated vesicle rapidly lose its protein

coat and then it must find its way to its correct destination to deliver its contents. HOW?

Docking and fusion are mediated by proteins on the surface of the vesicle and

target membrane,

• Name two types of protein modification that can occur in the ER but not in the

cytosol.

Glycolysation & disulfide bond formation

• For each of the following sentences, choose one of the two options to make a correct

statement.

•  New plasma membrane reaches the plasma membrane by the

[regulated/ constitutive] exocytosis pathway.

•  Insulin is secreted from pancreatic cells by the [regulated/constitutive]

exocytosis pathway.

•  The interior of the trans Golgi network is [acidic/alkaline].

•  Proteins that are constitutively secreted [aggregate/ do not aggregate] in the

trans Golgi network.

• Eukaryotic cells are continually taking up materials from the extracellular space by

the process of endocytosis. One type of endocytosis is pinocytosis, which uses

clathrin proteins to form small vesicles containing fluids and molecules. After thesevesicles have pinched off from the plasma membrane, they will fuse with the

endosomes, where materials that are taken into the vesicle are sorted. A second type

of endocytosis is phagocytosis, which is used to take up large vesicles that can

contain microorganisms and cellular debris.

• Name three possible fates for an endocytosed molecule that has reached the

endosome. Recycling, Degradation, Transcytosis

Page 46: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 46/52

!"#$"% '() *+,)-."//0/-) 1)-+23(), * 453)$/ 678

9:; 5: <9*=;>*?;@?A1 *?B>9:*C;D

•;0E-)F(,$. ."//2 .(+,-$+ G-+F G"GH)-+"@"+./(2"I ()J-+"//"2K $+./0I$+J - +0./"02K -+ "+I(3/-2G$.

)",$.0/0G 4;!8K - <(/J$ -33-)-,02K /F2(2(G"2K "+I(2(G"2K G$,(.L(+I)$-K .L/()(3/-2,24$+ 3/-+, ."//28K -+I

3")(M$2(G"2N 1L" ;!K <(/J$ -33-)-,02K 3")(M$2(G"2K "+I(2(G"2K -+I /F2(2(G"2 -)" -// 3-), (' ,L"

"+I(G"GH)-+" 2F2,"GN

ON P(2, ()J-+"//" 3)(,"$+2 -)" G-I" $+ ,L" !"#$%$& -+I ,)-+23(),"I $+,( ,L" ()J-+"//" %L")" ,L"F

'0+.,$(+N '()*+& %-./-*!-% $+ ,L" -G$+( -.$I 2"Q0"+." J0$I" ,L" 3)(,"$+2 ,( ,L" .())"., ()J-+"//"R

3)(,"$+2 ,L-, '0+.,$(+ $+ ,L" !"#$%$& L-#" +( 20.L 2$J+-/2 -+I )"G-$+ %L")" ,L"F -)" G-I"N

7N ?-G" ,L" G"GH)-+"@"+./(2"I .(G3-),G"+,2 $+ - "0E-)F(,$. ."// %L")" "-.L (' ,L" '0+.,$(+2 /$2,"I

H"/(% ,-E"2 3/-."N

3L(,(2F+,L"2$2S !0&$1$2&+%#

,)-+2.)$3,$(+S */!&-/%

(M$I-,$#" 3L(23L()F/-,$(+S 3(#$!0$*41(+ 

G(I$'$.-,$(+ (' 2".)","I 3)(,"$+2S )$&)( +22+1+#/% 

2,")($I L()G(+" 2F+,L"2$2S %3$$#0 56 

I"J)-I-,$(+ (' %()+@(0, ()J-+"//"2S &"%$%$3- 

+"% G"GH)-+" 2F+,L"2$2S 56 

H)"-EI(%+ (' /$3$I2 -+I ,(M$. G(/".0/"2S 2-1$7(%$3-% 

TN U)(,"$+2 -)" ,)-+23(),"I $+,( ()J-+"//"2 HF ,L)"" G".L-+$2G2N 5// (' ,L"2" 3)(."22"2 )"Q0$)" "+")JFN

U/"-2" 0+I")2,-+I "-.L G".L-+$2G $+ I",-$/N

O8 8/!&-+1 21$#-(*% .(+,-$+ +0./"-) /(.-/$V-,$(+ 2$J+-/2 ,L-, L"/3 I$)"., ,L"$) -.,$#" ,)-+23(), ')(G ,L"

.F,(2(/ $+,( ,L" +0./"02 ,L)(0JL */!&-+1 2$1-%K %L$.L 3"+",)-," ,L" I(0H/"@G"GH)-+" +0./"-)

-*9-&$2-N 1L" 3)(,"$+2 -)" ,)-+23(),"I $+ ,L"$) '0//F :$&4-4 .(+'()G-,$(+N

78 P(2, G$,(.L(+I)$-/ -+I .L/()(3/-2, 3)(,"$+2 -)" G-I" $+ ,L" .F,(2(/ -+I -)" ,L"+ ,)-+23(),"I $+,( ,L"

()J-+"//"2 HF 21$#-(* #1+*%&$!+#$1% $+ ,L"$) G"GH)-+"2N 1L" 3)(,"$+2 -)" /*:$&4-4 I0)$+J ,L"

,)-+23(), 3)(."22N W-.,")$- L-#" 2$G$/-) 21$#-(* #1+*%&$!+#$1% $+ ,L"$) 3/-2G- G"GH)-+"K %L$.L ,L"F

02" ,( "M3(), 3)(,"$+2 ')(G ,L" .F,(2(/ ,( ,L" ."// "M,")$()N

T8 U)(,"$+2 G(#$+J (+%-)I ')(G ,L" ;!@ -+I ')(G (+" .(G3-),G"+, (' ,L" "+I(G"GH)-+" 2F2,"G ,(

-+(,L")X-)" ,)-+23(),"I HF #1+*%2$1# 9-%(!&-%; %L$.L 3$+.L ('' ')(G ,L" G"GH)-+" (' (+" .(G3-),G"+,

-+I ,L"+ '02" %$,L ,L" G"GH)-+" (' - 2".(+I .(G3-),G"+,N *+ ,L$2 3)(."22K #1+*%2$1# 9-%(!&-% I"/$#")

2(/0H/" .-)J( 3)(,"$+2K -2 %"// -2 ,L" 3)(,"$+2 -+I /$3$I2 ,L-, -)" 3-), (' ,L" #"2$./" G"GH)-+"N 

Page 47: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 47/52

YN >-H"/ ,L" 2,)0.,0)"2 (' ,L" ."// $+I$.-,"I HF ,L" /$+"2 $+ Z$J0)"S

[N \L$.L (' ,L" '(//(%$+J 2,-,"G"+,2 -H(0, 3")(M$2(G"2 $2 '-/2"]

<+= >$%# 2-1$7(%$3+& 21$#-(*% +1- %"*#0-%(?-4 (* #0- 56@

4H8 U")(M$2(G"2 2F+,L"2$V" 3L(23L(/$3$I2 '() ,L" GF"/$+ 2L"-,LN A6B5 

4.8 U")(M$2(G"2 3)(I0." LFI)(J"+ 3")(M$I"N A6B5 

4I8 C"2$./"2 ,L-, H0I ')(G ,L" ;! .-+ G-,0)" $+,( 3")(M$2(G"2N A6B5 

^N 1L")" -)" ,%( 2"3-)-," 3(30/-,$(+2 (' )$H(2(G"2 $+ ,L" .F,(2(/N >-3C1+*- C$/*4 1(C$%$3-% -)"

-,,-.L"I ,( ,L" .F,(2(/$. 2$I" (' ,L" ;! G"GH)-+" -+I -)" G-E$+J 3)(,"$+2 ,L-, -)" ,)-+2/(.-,"I $+,( ,L"

;!N !$H(2(G"2 ,L-, -)" ,)-+2/-,$+J 3)(,"$+2 .(+,-$+$+J -+ ;! 2$J+-/ 2"Q0"+." (+ ,L" J)(%$+J 3(/F3"3,$I"

.L-$+ %$// H" I$)".,"I ,( ,L" 56@ P-+F )$H(2(G"2 H$+I ,( "-.L G!?5 G(/".0/"K '()G$+J - 2$&"1(C$%$3-@

D1-- 1(C$%$3-% -)" 0+-,,-.L"I ,( -+F G"GH)-+" -+I -)" G-E$+J -// (' ,L" (,L") 3)(,"$+2 "+.(I"I HF

,L" +0./"-) =?5N !$H(2(G"2 ,L-, -)" ,)-+2/-,$+J 3)(,"$+2 %$,L +( ;! 2$J+-/ 2"Q0"+." )"G-$+ !"#$%$&@ 

Page 48: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 48/52

_N P-,.L ,L" .(G3(+"+,2 $+#(/#"I %$,L ;! ,)-+23(), %$,L ,L" -33)(3)$-," ."//0/-) /(.-,$(+N >(.-,$(+2 .-+

H" 02"I G()" ,L-+ (+."K () +(, -, -//N

B(G3(+"+,2S 5N .F,(2(/ WN ;! /0G"+ BN ;! G"GH)-+"

>(.-,$(+

ON 2$J+-/@)".(J+$,$(+ 3-),$./"  E 

7N 3)(,"$+ ,)-+2/(.-,() F 

TN G!?5  E 

YN :!U )"."3,() F 

`N -.,$#" 2$," (' 2$J+-/ 3"3,$I-2" G 

aN 1L$2 '$J0)" 2L(%2 ,L" ()J-+$V-,$(+ (' - 3)(,"$+ ,L-, +()G-//F )"2$I"2 $+ ,L" 3/-2G- G"GH)-+"N

1L" H(M"2

/-H"/"I O -+I 7

)"3)"2"+,

G"GH)-+"@

23-++$+J 2"Q0"+."2 -+I ,L" -))(% )"3)"2"+,2 - 2$," (' -.,$(+ (' 2$J+-/ 3"3,$I-2"N <$#"+ ,L$2 I$-J)-GK

%L$.L (' ,L" '(//(%$+J 2,-,"G"+,2 G02, H" ,)0"]

4-81L" ?@ ,")G$+02 (' ,L$2 3)(,"$+ $2 .F,(3/-2G$.N

<C= A0- FH #-13(*/% $: #0(% 21$#-(* (% !"#$2&+%3(!@

4.8 1L" G-,0)" #")2$(+ (' ,L$2 3)(,"$+ %$// 23-+ ,L" G"GH)-+" ,%$."K %$,L H(,L ,L" ?@-+I B@ ,")G$+02 $+

,L" .F,(3/-2GN

4I8 ?(+" (' ,L" -H(#"N

Page 49: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 49/52

Review for Mitochondria and Chloroplasts

1. In which of the compartments of a mitochondrion are each of the following located?

A. porin: outer membrane 

B. the mitochondrial genome: matrix

C. citric acid cycle enzymes: matrix 

D. proteins of the electron-transport chain: inner membraneE. ATP synthase: inner membrane

F. membrane transport protein for pyruvate:  inner membrane

2. fill in the blanks with the best word or phrase selected from the list below. Not all

words or phrases will be used; each word or phrase should be used only once.

Mitochondria can use both pyruvate and glucose directly as fuel. NADH produced in

the citric acid cycle donates electrons to the electron-transport chain. The citric acid

cycle oxidizes acetyl groups and produces carbon dioxide as a waste product.

Oxygen acts as the final electron acceptor in the electron-transport chain. The

synthesis of ATP in mitochondria is also known as chemiosmosis. 

(acetyl groups, NADH, NAD+, carbon dioxide, NADP+,

pyruvate, chemiosmosis, NADPH, Glucose, oxygen) 

3. Which of the following terms describes ATP synthesis in mitochondria?

a. substrate-level phosphorylation

b. oxidative phosphorylation

c. photophosphorylation

4. The pH in the mitochondrial matrix is higher than the pH in the intermembrane

space. True or False

5. Which of the components of the electron-transport chain is required to combine the

pair of electrons with molecular oxygen? Cytochrome C oxidase

6. In chloroplasts,a. the light reactions take place in the thylakoid disks, whereas the dark reactions occur

in the stroma

b. the dark reactions take place in the thylakoid disks, whereas the light reactions occur

in the stroma

c. the light reactions take place in the thylakoid space, whereas the dark

reactions occur in the stroma

d. the dark reactions take place in the thylakoid space, whereas the light reactions

occur in the stroma

Page 50: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 50/52

 

7. Stage 1 of oxidative phosphorylation requires the movement of electrons along the

electron-transport chain coupled to the pumping of protons into the intermembrane

space. What’s the final result of these electron transfers?

(a)OH is oxidized to O2 

(b)pyruvate is oxidized to CO2

(c) O2 is reduced to H2O(d)H is converted to H2 

8. Photosynthesis is a process that takes place in chloroplasts and uses

light energy to generate high-energy electrons, which are passed along an electron-

transport chain. Where are the proteins of the electron-transport chain located in

chloroplasts?

(a) thylakoid space

(b) stroma

(c) inner membrane

(d) thylakoid membrane

9.The process of ATP synthesis in chloroplasts is referred to as

a. oxidative phosphorylation.

b. photophosphorylation

c. reductive phosphorylation

d. substrate-level phosphorylation.

10. During cyclic electron transport

a. only Photosystem II is involved.

b. only Photosystem I is involved.

c. both photosystems are involved.

d. neither photosystem is involved.

•In the carbon fixation process in chloroplasts, carbon dioxide is initially added to the

sugar ribulose 1,5-bisphosphate. The final product of carbon fixation in chloroplasts isthe three-carbon compound glyceraldehyde 3-phosphate. This is converted into

pyruvate (which can be used directly by the mitochondria), into sucrose (which is

exported to other cells), and into starch (which is stored in the stroma). The carbon-

fixation cycle requires energy in the form of ATP and reducing power in the form of

NADPH.

Page 51: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 51/52

1. Plant, algae, and photosynthetic bacteria such as cyanobacteria use electrons from

water and the energy of sunlight to convert atmospheric CO2 into organic

compounds. In the course of these reactions, water molecules are split, releasing vast

quantities of O2 gas into the atmosphere.

2. Where does the light reaction take place? Thylakoid 

3.Where does the dark reactions take place? stroma 

4. Circle the right reactions

• (light reactions /dark reactions) produces molecular oxygen (O2)

• (light reactions / dark reactions)requires ATP

• (light reactions /dark reactions)produces NADPH

• (light reactions / dark reactions) produces three-carbon sugars

 (light reactions / dark reactions)requires CO2

 

5. Reduction of oxygen which forms water occurs during

A) photosynthesis.

B) respiration.

C) both photosynthesis and respiration.

D) neither photosynthesis nor respiration.

E) photorespiration.

6. Reduction of NADP+ occurs duringA) photosynthesis.

B) respiration.

C) both photosynthesis and respiration.

D) neither photosynthesis nor respiration.

E) photorespiration.

7. In the electron-transport chain in chloroplasts, ________-energy electrons are taken

from __________.(a) high; H2O.

(b) low; H2O. 

(c) high; NADPH.

(d) low; NADPH.

Page 52: Review Cell Bio

7/21/2019 Review Cell Bio

http://slidepdf.com/reader/full/review-cell-bio 52/52

8. Indicate whether the following statements are true or false. If a statement is false,

explain why it is false.

A. Carbon fixation can be described as a process by which gaseous carbon-containing

molecules are captured and incorporated into biological hydrocarbon molecules. (T/F)

B. The electron-transport proteins, utilized in stage 1 of photosynthesis, reside in the

inner membrane of the chloroplast. (T/ F) 

C. Similar to oxidative phosphorylation, the electrons passed along the chloroplastelectron-transport chain are ultimately passed on to a molecule of O2, to produce H 2O.

(T/ F) 

D. Stage 2 of photosynthesis involves a cycle of reactions that does not directly

depend on energy derived from sunlight. (T/F)