Retrieval of Atmospheric Ozone Concentrations from ... · PDF fileRetrieval of Atmospheric...

35
Retrieval of Atmospheric Ozone Concentrations from Satellite Based Limb Data Sheng Bo Chen College of Geoexploration Science and Technology, Jilin University [email protected]

Transcript of Retrieval of Atmospheric Ozone Concentrations from ... · PDF fileRetrieval of Atmospheric...

Retrieval of Atmospheric Ozone Concentrations from Satellite Based Limb Data

Sheng Bo Chen

College of Geoexploration Science and Technology, Jilin [email protected]

Outline

1. Introduction2. SCHIMACHY Data3. Inversion Method4. Inversion Error Analysis5. Inversion Validation6. Conclusions

1. Introduction

Atmospheric Sounding experienced ground-based detection, balloon soundings and rockets and other space technology , since the satellite- based atmospheric sounding instruments there.

Ground-based Measurement

Invented in 1924 Dobson detector

1973 Brewer foundation VIS spectrometer NO2

Balloon Soundings

Detect height 30-35 km

1988 McElroy limb spectrometer NO2

Plane and Rockets

70 s the stratosphere and interface layer

Satellite-based Measurement

Worldwide

Satellite Measurement

Observatory Geometry

Nadir Measurements

Occultation Measurements

Limb Measurements

-72 -70 -68 -66 -64 -62 -60 -5836

37

38

39

40

41

42

43

44

45

Limb Based Instruments

Limb Measurements

1973 Cunnold step one proposed limb scattering techniques, used in aircraft. Wavelength UV-VIS 6.

2010 CAS Changchun Institute of Optics, limb imaging spectrometer prototype. UV 270-390 nm and VIS 540-780 nm

Instruments Aircraft Launch time Main science mission

UVS SME 1981.10.6 Study the Earth's upper atmosphere ozone production and loss processes

SOLSE/LORE STS-87 1997.10 Experiment with limb scattering observations of ozone profile technology

OSIRIS Odin 2001.2.20 Identify the number density of important trace atmospheric constituents, such as O3 ,NO2 ,OClO and BrO Etc

SAGE Ⅲ Meteor3M/ISS 2001.12.10/2004 Provide long-term global atmospheric important composition and temperature observations

SCIAMACHY ENVISAT 2002.3.1 Detecting the concentration and distribution of atmospheric composition and surface phenomena

OMPS NPOESS Plan 2013 Detect the total amount and vertical distribution of O3 ,NO2 ,OClO,HCHO and SO2.

2. SCIAMACHY Data

SCIAMACHY is one of 10 instruments equipped with the ESA satellite ENVISAT. It is used to observe UV-VIS-NIR-SWIR range of passive remote sensing of solar radiation absorption spectrum of atmosphere.

SCIAMACHY is designed to a double imager and divided into eight channels, the instrument records the reflection and scattering of solar radiation spectrum range through 214-2386 nm wavelength, with moderate spectral resolution 0.24-1.48 nm.

< 1000 nm, 2350 nm

Select data:Determine the wavelength

200 300 400 500 600 700 800 900 1000 11000

5

10

15

20

25

212.5855 213.1905 (1)213.3414 239.9363 (2)

240.0656 281.923 (3)282.0343 313.939 (4)

314.05 333.821 (5)333.9349 334.3908 (6)

411.7432 412.1773 (7)404.0723 411.6347 (8)

320.1644 403.9647 (9)309.4543 320.0517 (10)

301.1927 309.339 (11)300.6049 301.0752 (12)

383.517 385.7903 (13)386.0426 391.5754 (14)391.8261 605.4468 (15)

605.6889 627.1788 (16)627.4251 628.4114 (17)

595.3128 596.2095 (18)596.4335 597.3292 (19)597.5531 789.8091 (20)

790.0212 811.2286 (21)811.4452 812.3121 (22)

773.192 774.4019 (23)774.704 775.9122 (24)776.214 1056.1941(25)

Wavelength(nm)

Clu

ster

ID

SCIAMACHY L1C Cluster Spectrum Band

3. Inversion Algorithm

Atmospheric limb-scattering inversion

Vector of inversion + Inversion of concentration

Theory Method Application

Direct methodRadiation

normalization

In 2002 Auvinen inversion O3 and NO2 by OSIRIS VISIn 2006 Rohen inversion O3 by SCIAMACHY UVIn 2008 Tukiainen inversion O3 by OSIRIS VIS

Spectrometry

DOAS

In 2002 McDade proposed Limb scrttering inversionIn 2002 Strong inversion O3 by OSIRIS VISIn 2003 and 2004 Sioris inversion NO2 by OSIRIS和SCIAMACHY VISIn 2004 Haley inversion O3 and NO2 by OSIRIS VIS

Wavelengthpairs

In 2000 Flittner proposed wavelength pair methodIn 2000 McPeterr used successfully in SOLSE inversionIn 2003 von Savigny inversion O3 by OSIRIS VISIn 2009 Degenstein inversion O3 by OSIRIS UV-VISIn 2009 Sonkaew inversion O3 by SCIAMACHY UV-VIS

Inversion algorithm

Newton iterative

Simple

Each iteration needed to calculate weight function

A large amount of calculation

Optimal estimation

Wide range

Easy to estimate error covariance

Improved Onion-peeling

May not need a priori contour line and not needed to calculate information weight function

The same concentration of fixed value, the local horizontal uniform

Chahine relaxation iteration

Simple and easy to implement

Weighted multiplicative algebraic reconstruction technique (WMART)

The simultaneous use of multiple wavelength and multiple tangent height data for the inversion of concentration at a height

According to the meteorological data assuming an initial target of ozone profiles, using SCIATRAN model to simulate the limb radiation and compared with SCIAMACHY satellite radiation.The radiation difference value is feedback information to adjusting the ozone profile. Then we use this profile simulation new radiation value in order to better to match the observed value iteration processing.The result is the ozone profile.

Weighted multiplicative algebraic reconstruction inversion method (WMART)

wavelength Inversion target Inversion method

Hartley and Chappuis

ozone vertical profile

Wavelength pairs +Weighted multiplicative algebraic reconstruction

UV-VIS Limb data

Radiation normalization

Wavelength pairs

Weighted multiplicative algebraic reconstruction SCIATRAN

Ozone profile

Radiation normalizationThe limb radiation normalization to the reference tangent height

Wavelength pairIn order to make the aerosol scattering effect be minimized, the inversion

will be multiple wavelength normalization radiation value combinations instead of the direct radiation value as the amount of reflection.

Ozone inversion parameters

Inverse vector HPV1 HPV2 HPV3 HPV4 CTV

λobs (nm) 267.5 286.5 287.5 305.1 599

λref,1 (nm) 307.5 307.5 307.5 307.5 525

λobs,2 (nm) - - - - 668

href (km) 71 67 67 58 41

hbt (km) 51 44 44 35 10

htp (km) 68 64 64 54 38

Wavelength pairs effect

0 2 4 6 8

x 1013

0

10

20

30

40

50

60

λ = 525 nm

0 1 2 3 4 5

x 1013

0

10

20

30

40

50

60

Tang

ent a

ltitu

de (k

m)

λ = 599 nm

0 50 100 150 2000

10

20

30

40

50

60

Normalized radiance

λ = 668 nm

0 20 40 60 80 1000

10

20

30

40

50

60

λ = 525 nm

0 20 40 60 80 1000

10

20

30

40

50

60

λ = 599 nm

0 2 4 6

x 1013

0

10

20

30

40

50

60

Radiance (photons s-1 cm-2 nm-1 sr-1)

λ = 668 nm

A=0.0A=0.2

A=0.4

A=0.6

A=0.8A=1.0

A=0.0A=0.2

A=0.4

A=0.6

A=0.8A=1.0

A=0.0

A=0.2

A=0.4A=0.6

A=0.8

A=1.0

A=0.0A=0.2

A=0.4

A=0.6

A=0.8A=1.0

A=0.0

A=0.2

A=0.4A=0.6

A=0.8

A=1.0

A=0.0A=0.2

A=0.4

A=0.6

A=0.8A=1.0

Tang

ent a

ltitu

de (k

m)

cloud Surface albedo

aerosol

Aerosol sensitivity

= 267.5 nm

0 0035 0 004

0.004

0.00450 005 0 0055

0.006

0.00650.007

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 90

55

60

65

= 286.5 nm0.004

0.0040.004

0.005

0.005

0.0050.006

0.006

0.007

0.0070.0080.009

30 40 50 60 70 80 9045

50

55

60

= 305.1 nm0.004

0 0040.004

0.005

0 005

0.005

0.006

0 006

0.006 0.007

0.007

0.008

0.0080.0090.01

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 9035

40

45

50

= 599.0 nm-0.05

-0.05-0.05

0

00

0.05

0.050.05

0.1

0.10.1

0.15

0.15

0.2

0.20.2

0.25

0.250.25

0.3

0.2

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

HPV1

-0 0035-0 003-0 0025-0 002-0.0015-0.001-0.0005

00

0.0005

0.0005

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 90

55

60

65

HPV20.0045

-0.0045

0.004

-0.004-0.004

0.0035

-0.0035

0.003

-0.003

0.0025

-0.0025

0.002

-0.002

0.0015

-0.0015

0.001

-0.001

0.0005

-0.0005

0

00

30 40 50 60 70 80 9045

50

55

60

0.0006

-0.00060 0006

0.0005

-0.0005

0 0005

0.0004

-0.0004

0.0003

-0.0003

0.0002

-0.0002

0.0001-0.0001

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

HPV3

30 40 50 60 70 80 9035

40

45

50

CTV-0.07

-0.07-0.07

-0.06

-0.06-0.06

-0.05

-0.05-0.05

-0.04

-0.04-0.04

-0.03

-0.03-0.03

-0.02

-0.02-0.02

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

The radiation relative deviation under the influence of aerosol

The inversion vector relative deviation under the influence of aerosol

1. Before processing: Hartley band along with the change of SZA ↑↑;Chappuis band is insensitive to SZA, but depend on TH and in 21 km reach the maximum peak.

2. After processing: Two bands are not sensitive to SZA and along with rising TH reduced↑↓.0 influence lines, negative influence

Cloud sensitivity

= 305.1 nme 005

2e-005

2e-005

e 005

4e-005

4 005

6e 005

6e-005

6 005

8e 005

8e-005

8 005

0.0001

0 0001

0.00012

0 00012

0.00014

0.00014

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 9035

40

45

50

= 599.0 nm

00

0

0

0 0

0.01

0.01

0.01 0.01 0.02

0.02

0.02

0.02

0.02

0.02

0.03

0.030.03

0.03

0.03

0.04

0.04

0.04

0.04

0.04

0.05

0.05

0.05

0.05

0.06

0.06

0.06

0.06

0.07

0.07

0.08

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

HPV1

-2e-005

-2e-005

-1 5e-005

-1.5e-005

-1.5e-005

-1e-005-1e-005

5e 006

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 90

55

60

65

HPV21.8e 005 1.8e 005

-1.8e-005

1.6e 005 1.6e 005

-1.6e-005

1.4e 005 1.4e 005

-1.4e-005

1.2e 005 1.2e 005

-1.2e-005

-1.2e-005

-1.2e-005-1.2e-005

1e 005

-1e-005

-1e-005

-1e-005

8e 006

-8e-006

-8e-006

6e 006

-6e-006

-6e-006-6e-006

4e 006

-4e-006

-4e-006-4e-006

2e 006-2e-006

-2e-006

-1.2e-005

-1.4e-005

-1e-005

00 0

-8e-00630 40 50 60 70 80 90

45

50

55

60

HPV45e 006 5e 006

5e 0065e 006

0

00

-5e-006

-5e-006

5e-006

5e 006

1e-005

1 5e 005

0

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 9035

40

45

50

HPV4-0.04 -0.04

-0.04-0.04

-0.035 -0.035

-0.035-0.035

-0.03 -0.03

-0.03-0.03

-0.025 -0.025

-0.025-0.025

-0.02 -0.02

-0.02

-0.02

-0.015 -0.015

-0.015

-0.015

-0.01-0.01

-0.01

-0.01

-0.005 -0.005

-0.005

0

0

0

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

The radiation value relative deviationunder the influence of cloud

The inversion vector relative deviation under the influence of cloud

1. Before processing : <300 nm no effect ,SZA ↑↓

2. After processing :TH ↑↓, negative effect; HPV negative peak around SZA 60,CTV Negative peak in SZA 80

Surface albedo sensitivity

= 305.1 nm0 0005

0.0005

0.00050 0005

0 00

0.001

0.001

0 001

0.0015

0.0015

0 0015

0 00

0.002

0 002

0.0025

0 0025

0.003

0 003

0.0035

0.0035.004

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 9035

40

45

50

= 599.0 nm0.05 0.05

0.05

0.050.050.05

0.1 0.1

0.1

0.1

0.10.1

0.150.15

0.15

0.150.15

0.2

0.2

0.20.2

0.25

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

HPV15e 005 5e-005

5e-005

0 000

0.0001

0 0001

0.00015

0.000150 00015

0.0002

0.0002

0 0002

0.00025

0 00025

0.0003

0 0003

0.000350.0004

0.00045

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 90

55

60

65

HPV20 0

00

5e-005

5e-005

5e-0055e-005

0.0001

0.00010.0001

0.00015

0.00015

0.00015

0.0002

0.0002

0.00025

0.000250.0003

0.0003

0.00035

30 40 50 60 70 80 9045

50

55

60

HPV40.00035 0.00035

0 000350 00035

0.0003 0.0003

0 00030 0003

0.00025 0.00025

0 00025-0.00025

0.0002 0.0002

0 0002-0.0002

0.00015 0.00015

0 00015

-0.00015

0.0001 0.0001

0 0001

-0.0001

5e 005 5e 005

5e 005

-5e-005

0 0

00

0

5e 0055e-005

5e-005

5e-005

0.0001

0.0001

Solar zenith angle (°)

Tang

ent a

ltitud

e (k

m)

30 40 50 60 70 80 9035

40

45

50

CTV0.005 0.005

0.0050.005

0.01

0.01

0.010.01

0.015

0.015

0.0150.015

0.02

0.02

0.020.02

0.0250.025

0.025

0.03

0.030.03

0.035

0.0350.035

0.04

0.040.040.045

0.0450.045 0.050.050.055

Solar zenith angle (°)30 40 50 60 70 80 90

15

20

25

30

35

The radiation relative deviation under the influence of surface albedo without processing

The inversion vector relative deviation under the influence of surface albedo

1. Before processing :SZA↑↓2. After processing :HPV with SZA↑↓ , dependent on TH;

CTV along with rising SZA and TH reduced ↑↓

Sensitivity summary

Before processing After processing

wavelength Three factors increase with wavelength increaseing; Chappuis

band >Hartley bandChappuis band >Hartley band

SZA The three factors are dependent on the SZA

The three factor is not entirely dependent on the SZA

After processing:The influence of three factors are reduced to a lower magnitude

The influence degree of the value of radiationAerosol> cloud > surface albedo

WMART

A number of bands and tangent radiation

obs

modkj

ki jij kj

yW

y

obs,( 1) ( )

modk jn n

i i ki jik j kj

yx x W W

y

tangent height

bands

i – inversion height,k – Wavelength combination,j – tangent height radiation

step1 Band correction factor

step2 Height correction factor

step3 Density correction

i ki kik

W

( 1) ( )n ni i ix x

Band combination weight factors

Ozone weight factors

Weight function has a different range and has different combinations at different height.

Smooth

Start 0 ,end 0

0 0.5 10

10

20

30

40

50

60

70

Weighting Factor

Tang

ent A

ltitu

de (k

m)

HPV1HPV2HPV3HPV4CTV

Inversion Implementation

SCIATRAN

SCIAMACHY L1B

SCIAMACHY L1C

Calibrate

Extract

Observed radiance

Radiance normalization

Wavelength pairing

Observed vector

Annotation parameters

Model radiance by SCIATRAN

Modeled vector

Retrieve by WMART

Input tracegas profiles

Modeled radiance

Trace gas profiles

Meet condition

Yes

End

No

SCIA_JLUAutomatic batch processing multi-track SCIAMACHY dataO3 (30 min/26prf)and NO2(15min/104prf)

4. Inversion Error Analysis

The main error source

Tangent positioning

AerosolBoundary layer visibilityStratospheric aerosol loadExtinction coefficient

Surface albedo

Cloud parametersCloud heightCloud optical thickness

Analysis method

Parameters deviation,SCIATRAN

4.1 Tangent height positioning error

Ozone inversion error

-30 -20 -10 0 10 20 30 4010

30

50

70

Relative percent error (%)

Altit

ude

(km

)

(1) SZA = 30° TH=[0.25-1.00]

-30 -20 -10 0 10 20 30 4010

30

50

70

Relative percent error (%)

(2) SZA = 40° TH=[0.25-1.00]

-30 -20 -10 0 10 20 30 4010

30

50

70

Relative percent error (%)

(3) SZA = 50° TH=[0.25-1.00]

-30 -10 10 30 5010

30

50

70

Relative percent error (%)

Altit

ude

(km

)

(4) SZA = 60° TH=[0.25-1.00]

-20 -10 0 10 20 30 40 5010

30

50

70

Relative percent error (%)

(5) SZA = 70° TH=[0.25-1.00]

-20 0 20 4010

30

50

70

Relative percent error (%)

(6) SZA = 80° TH=[0.25-1.00]

-20 -10 0 10 20 3010

30

50

70

Relative percent error (%)

Altit

ude

(km

)

(7) SZA = 90° TH=[0.25-1.00]

-10 -5 0 5 10 1510

30

50

70

Relative percent error (%)

(8) SZA = [30-90]° TH=0.25

TH0.25TH0.50TH1.00

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

subplot (1) - (7) subplot (8)

dTH∈{0.25, 0.5, 1} km

dTH↑error↑,0.25 km (10 %)

positive and negative,58 km maximum error

SZA haveLittle effect,SZA=70 maximum error

Altit

ude

(km

)

(1) SZA - H

30 40 50 60 70 80 9010

20

30

40

50

60

70

Tang

ent a

ltitud

e bi

as

(2) H = 20 km

30 40 50 60 70 80 900.25

0.50

1.00

Solar zenith angle (°)

Tang

ent a

ltitud

e bi

as(3) H = 40 km

30 40 50 60 70 80 900.25

0.50

1.00

Solar zenith angle (°)

Tang

ent a

ltitud

e bi

as

(4) H = 60 km

30 40 50 60 70 80 900.25

0.50

1.00

-5

0

5

10

-20

-15

-10

-5

2

4

6

8

5

10

15

20

25

30

4.2 Aerosol - stratospheric aerosol load

Ozone inversion error

-50 0 5010

30

50

70(1) SZA = 30° AER=[MOD HIG EXT]

Relative percent error (%)

Altit

ude

(km

)

-50 0 50 10010

30

50

70(2) SZA = 40° AER=[MOD HIG EXT]

Relative percent error (%)-50 0 50 100

10

30

50

70(3) SZA = 50° AER=[MOD HIG EXT]

Relative percent error (%)

-50 0 50 10010

30

50

70(4) SZA = 60° AER=[MOD HIG EXT]

Relative percent error (%)

Altit

ude

(km

)

-50 0 50 10010

30

50

70(6) SZA = 80° AER=[MOD HIG EXT]

Relative percent error (%)

-50 0 50 10010

30

50

70(7) SZA = 90° AER=[MOD HIG EXT]

Relative percent error (%)

Altit

ude

(km

)

MODHIGEXT

-50 0 50 10010

30

50

70(5) SZA = 70° AER=[MOD HIG EXT]

Relative percent error (%)

-10 0 10 20 30 40 5010

30

50

70SZA = [30-90]°AER=MOD

Relative percent error (%)

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

-1-0.5 0 0.540

50

60

70

-1 -0.5 0 0.540

50

60

70

-1 -0.5 0 0.540

50

60

70

-1 0 140

50

60

70

-2 -1 0 140506070

-2 -1 0 140506070

-2 -1 0 140506070

MODHIGEXT

-1.5 -1 -0.5 0 0.540

50

60

70

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

subplot (8)subplot (1) - (7)

STAER∈{BK, MOD, HIG, EXT}

STAER↑error↑。MOD AER SZA<60 (15 %),70-90°(20 %,30 % and 45 %); higher

than 20 km(15 %), higher than 40 km (1 %)

Height↑error↓

SZA ↑ error ↑

Solar zenith angle (°)

Altit

ude

(km

)

30 40 50 60 70 80 9010

20

30

40

50

60

70

0

10

20

30

40

Solar zenith angle (°)

Stra

tosp

heric

aer

osol

load

ing

30 40 50 60 70 80 90MOD

HIG

EXT

0

50

100

150

200

4.3 Aerosol-extinction coefficient

Ozone inversion error

-10 0 10 2010

30

50

70(1) SZA = 30° AER=[2-4]

Relative percent error (%)

Altit

ude

(km

)

-20 0 20 4010

30

50

70(2) SZA = 40° AER=[2-4]

Relative percent error (%)-20 0 20 40

10

30

50

70(3) SZA = 50° AER=[2-4]

Relative percent error (%)

-20 0 20 4010

30

50

70(4) SZA = 60° AER=[2-4]

Relative percent error (%)

Altit

ude

(km

)

-20 0 20 4010

30

50

70(5) SZA = 70° AER=[2-4]

Relative percent error (%)-20 0 20 40

10

30

50

70(6) SZA = 80° AER=[2-4]

Relative percent error (%)

-20 0 20 4010

30

50

70(7) SZA = 90° AER=[2-4]

Relative percent error (%)

Altit

ude

(km

)

-10 0 10 2010

30

50

70(8) SZA = [30-90]° dAER=1

Relative percent error (%)

AER2AER3AER4

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

subplot (1) - (7) subplot (8)

Multiple∈{2, 3, 4}●

Multiple↑error↑●

2 times ,10-68 km(12 %);higher than 22 km (5 %)●

Height↑error first↑ then↓●

SZA ↑error↑

Solar zenith angle (°)

Altit

ude

(km

)

30 40 50 60 70 80 9010

20

30

40

50

60

70

Solar zenith angle (°)

Aero

sol s

calin

g pa

ram

eter

30 40 50 60 70 80 902

3

4

4

6

8

10

12

14

16

18

0

5

10

4.4 Surface albedo

Ozone inversion error

-15 -10 -5 0 5 10 1510

30

50

70

Altit

ude

(km

)

(1) SZA = 30° ALB=[0.0-1.0]

-15 -10 -5 0 5 10 1510

30

50

70(2) SZA = 40° ALB=[0.0-1.0]

-15 -10 -5 0 5 10 1510

30

50

70

Altit

ude

(km

)

(3) SZA = 50° ALB=[0.0-1.0]

-10 -5 0 5 1010

30

50

70(4) SZA = 60° ALB=[0.0-1.0]

-5 -3 -1 1 3 510

30

50

70

Altit

ude

(km

)

(5) SZA = 70° ALB=[0.0-1.0]

-4 -2 0 2 410

30

50

70(6) SZA = 80° ALB=[0.0-1.0]

-2 -1 0 1 210

30

50

70

Relative percent error (%)

Altit

ude

(km

)

(7) SZA = 90° ALB=[0.0-1.0]

-3 -2 -1 0 1 2 310

30

50

70

Relative percent error (%)

(8) SZA = [30-90]° dALB=±0.1

ALB0.0ALB0.1ALB0.2ALB0.3ALB0.4ALB0.6ALB0.7ALB0.8ALB0.9ALB1.0

SZA30SZA40SZA50SZA60SZA70SZA80SZA90SZA30SZA40SZA50SZA60SZA70SZA80SZA90

solid line: dALB = -0.1dot line: dALB = 0.1

subplot (1) - (7)

subplot (8)

ALB∈{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

dALB↑error↑,Symmetric distribution

dALB=0.1,35-68 km(0.5 %), under 35 km (3 %)

height↑error↓

SZA ↑error↓

Solar zenith angle (°)

Altit

ude

(km

)

30 40 50 60 70 80 9010

20

30

40

50

60

70

Solar zenith angle (°)

Albe

do

30 40 50 60 70 80 900.0

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

0

0.5

1

1.5

2

-10

-5

0

5

10

4.5 Cloud height

Ozone inversion error

CLD∈{[2.4-3], [0.6-3], [0.3-1], [5- 10], [8-15]} km

Troposphere cloud small( within 2 %); stratosphere cloud error is the largest (50 %)

height ↑error↓

Insensitive to SZA

-0.2 0 0.2 0.4 0.6 0.810

30

50

70

Relative percent error (%)

Altit

ude

(km

)

-0.2 0 0.2 0.4 0.6 0.810

30

50

70

Relative percent error (%)

-0.5 0 0.5 110

30

50

70

Relative percent error (%)

Altit

ude

(km

)

-0.5 0 0.5 1 1.510

30

50

70

Relative percent error (%)

-0.5 0 0.5 1 1.5

20

40

60

Relative percent error (%)

Altit

ude

(km

)

-0.5 0 0.5 1 1.5 210

30

50

70

Relative percent error (%)

-0.5 0 0.5 1 1.510

30

50

70

Relative percent error (%)

Altit

ude

(km

)

Solar zenith angle (°)

30 40 50 60 70 80 9010

30

50

70

0

0.5

1

ASCUST

ASCUST

ASCUST

ASCUST

ASCUST

ASCUST

ASCUST

(4) SZA = 60°(3) SZA = 50°

(1) SZA = 30° (2) SZA = 40°

(5) SZA = 70° (6) SZA = 80°

(7) SZA = 90° (8) AS

4.6 Cloud optical thickness

Ozone inversion error

-1 0 1 2 3 410

30

50

70(1) SZA = 30° tau=[0.05-3]

Relative percent error (%)

Altit

ude

(km

)

-1 0 1 2 310

30

50

70(2) SZA = 40° tau=[0.05-3]

Relative percent error (%)

-1 0 1 2 3 410

30

50

70(3) SZA = 50° tau=[0.05-3]

Relative percent error (%)

-1 0 1 2 3 410

30

50

70(4) SZA = 60° tau=[0.05-3]

Relative percent error (%)

Altit

ude

(km

)

-1 0 1 2 3 410

30

50

70(5) SZA = 70° tau=[0.05-3]

Relative percent error (%)

-1 0 1 2 3 410

30

50

70(6) SZA = 80° tau=[0.05-3]

Relative percent error (%)

-1 0 1 2 310

30

50

70(7) SZA = 90° tau=[0.05-3]

Relative percent error (%)

Altit

ude

(km

)

-0.1 0.1 0.3 0.5 0.7 0.9 1.110

30

50

70(8)SZA = [30-90]° tau=0.05

Relative percent error (%)

tau0.05tau2tau3

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

-0.1 0 0.140

50

60

70

-0.2-0.1 0 0.140

50

60

70

-0.1 0.150

60

70

SZA30SZA40SZA50SZA60SZA70SZA80SZA90

-0.1 0 0.1 0.240

50

6070

-0.1 0 0.1 0.240

506070

0 0.2 0.440

50

60

70

-0.1 0 0.1 0.240

50

6070

-0.2 -0.1 040

50

60

70

subplot (1) - (7) subplot (8)

TAU∈{0.05, 1, 2, 3}

dTAU↑error↑4 %, higher than 40 km (0.4 %)

height ↑error↓

SZA ↑error first ↑ then ↓

Solar zenith angle (°)

Altit

ude

(km

)

30 40 50 60 70 80 9010

20

30

40

50

60

70

Solar zenith angle (°)

Clo

ud o

ptic

al d

epth

30 40 50 60 70 80 900.05

2

3

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

1.2

Error summary

Height(km) 10 20 30 40 50 60 70

Tangent height positioning < 3 % < 7 % < 5 % < 3 % < 5 % < 8 % < 7 %

Boundary layer visibility < 1.5 % < 0.6 % < 0.4 % < 0.2 % < 0.1 % < 0.1 % < 0.1 %

Stratospheric aerosol load < 42 % < 12 % < 8 % < 1.5 % < 1 % < 1 % < 1 %

Aerosol extinction coefficient < 12 % < 13 % < 3 % < 2 % < 4 % < 1 % < 1 %

Surface albedo < 2.4 % < 1 % < 0.5 % < 0.2 % < 0.2 % < 0.1 % < 0.1 %

Cloud height < 1.4 % < 0.8 % < 0.6 % < 0.3 % < 0.1 % < 0.1 % < 0.1 %

Cloud optical thickness < 1.2 % < 0.5 % < 0.4 % < 0.2 % < 0.1 % < 0.1 % < 0.1 %

Ozone inversion error

5. Inversion Validation

Ozone inversion contrast

Inversion ozone (JLU ozone)

-Bremen University SCIAMACHY ozoneV2.3(BU ozone)

-Saskatchewan University OSIRIS ozone V3.0

-MLS ozone

Inversion validation

SCIAMACHY

Period of time:3 days, 37 tracks

Location and time:Exact correspondence

Comparison

Middle latitude:the highest point is the difference

Low latitude have good consistency;10-68 km: average deviation 15 %10-50 km and 55-63 km: average deviation 10 %

0 2 4 6

x 1012

10

20

30

40

50

60

70

Alti

tude

(km

)

0 2 4 6

x 1012

10

20

30

40

50

60

70

0 2 4 6

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

Alti

tude

(km

)

0 2 4 6

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

JLUBU

JLUBU

JLUBU

JLUBU

lat = -2.0° lat = 12.8°

lat = 24.1° lat = 34.7°

-20 -10 0 10 2010

20

30

40

50

60

70

Mean of percent difference (%)

Alti

tude

(km

)

0 5 10 15 2010

20

30

40

50

60

70

Standard deviation of percent difference (%)

BU OSIRIS MLS

Inversion validation

OSIRISPeriod of time: 3 days Latitude:±5°Longitude:±10°Height range: 18-46 km

Comparisonstructure , peak height and size is good 18-39 km: average deviation is less than

10%Higher than 40 km: much more than20 %

0 2 4 6

x 1012

10

20

30

40

50

60

70

Alti

tude

(km

)

0 2 4 6

x 1012

10

20

30

40

50

60

70

0 2 4 6

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

Alti

tude

(km

)

0 1 2 3 4 5

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

JLUOSIRIS

JLUOSIRIS

JLUOSIRIS

JLUOSIRIS

lat =40°

lat = 15°lat = 7°

lat =26°

-20 -10 0 10 2010

20

30

40

50

60

70

Mean of percent difference (%)

Alti

tude

(km

)

0 5 10 15 2010

20

30

40

50

60

70

Standard deviation of percent difference (%)

BU OSIRIS MLS

Inversion validation

MLS

Period of time: 3 days

Latitude:±5°Longitude:±10

Height range: 18-46 km

Comparison

More than 20 km consistency is good , following 20 km have obvious difference

20-46 km,average deviation 10 %

0 2 4 6

x 1012

10

20

30

40

50

60

70

Alti

tude

(km

)

0 2 4 6

x 1012

10

20

30

40

50

60

70

0 2 4 6

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

Alti

tude

(km

)

0 1 2 3 4 5

x 1012

10

20

30

40

50

60

70

[O3] (cm-3)

JLUMLS

JLUMLS

JLUMLS

JLUMLS

lat = 17° lat = 36°

lat = 2°lat = -12°

-20 -10 0 10 2010

20

30

40

50

60

70

Mean of percent difference (%)

Alti

tude

(km

)

0 5 10 15 2010

20

30

40

50

60

70

Standard deviation of percent difference (%)

BU OSIRIS MLS

Inversion validation

Comparison summary

Ozone deviation

Data Less than 10% Maximum deviation

SCIAMACHY 10-50 km 15 %

OSIRIS 18-39 km 20 %

MSL 20-46 km More than 20%

6. Conclusions

Global measurements by satellite

Limb based measurements will improve the vertical resolution of ozone concentrations

China will launch a satellite based limb ozone measurement instruments

Ground measurements will validate the satellite results. They should be integrated

Thank You!