Results from FOPI on nuclear collective flow in heavy ion ...N. Bastid for the FOPI Collaboration,...

13
Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies N. Bastid To cite this version: N. Bastid. Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies. International Nuclear Physics Conferences (INPC 2004) 1, Jun 2004, Goteborg, Sweden. pp.1- 12, 2004. <in2p3-00022230> HAL Id: in2p3-00022230 http://hal.in2p3.fr/in2p3-00022230 Submitted on 9 Sep 2004 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destin´ ee au d´ epˆ ot et ` a la diffusion de documents scientifiques de niveau recherche, publi´ es ou non, ´ emanant des ´ etablissements d’enseignement et de recherche fran¸cais ou ´ etrangers, des laboratoires publics ou priv´ es.

Transcript of Results from FOPI on nuclear collective flow in heavy ion ...N. Bastid for the FOPI Collaboration,...

  • Results from FOPI on nuclear collective flow in heavy

    ion collisions at SIS energies

    N. Bastid

    To cite this version:

    N. Bastid. Results from FOPI on nuclear collective flow in heavy ion collisions at SIS energies.International Nuclear Physics Conferences (INPC 2004) 1, Jun 2004, Goteborg, Sweden. pp.1-12, 2004.

    HAL Id: in2p3-00022230

    http://hal.in2p3.fr/in2p3-00022230

    Submitted on 9 Sep 2004

    HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

    L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

    https://hal.archives-ouvertes.frhttp://hal.in2p3.fr/in2p3-00022230

  • '

    &

    $

    %N. Bastid for the FOPI Collaboration, LPC Clermont-Ferrand Göteborg, June 27 - July 2

    Results from FOPI

    on Nuclear Collective Flow

    in Heavy Ion Collisions at SIS energies

    1 Motivations

    2 FOPI detector overview

    3 Experimental systematics

    • Directed flow

    • Elliptic flow

    4 Data versus IQMD

    • Sensitivity to σnn?

    • Sensitivity to EoS?

    5 Anisotropic flow from Lee-Yang Zeroes

    6 Conclusion

    Ca + Ca, Ni + Ni, Ru + Ru, Xe + CsI, Au + Au

    90A MeV - 2A GeV

  • '

    &

    $

    %

    Motivations & Observables

    Probing hot & dense hadronic matter

    ↪→ Nuclear Equation of State

    � Collision dynamics

    � In-medium effects: σnn, MDI

    bounce off

    bounce off

    OFF plane emission

    OFF plane emission

    reaction plane

    impact parameter b

    Ru (400 AMeV) + Ru - Z = 2

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    -1 -0.5 0 0.5 1

    l = 1.1 fmn = 2.9 fmM = 4.7 fm

    (pz)cm0

    Au+Au E=250 AMeV A=4 |y(0)|

  • '

    &

    $

    %

    FOPI detector @ GSI

    x

    y

    z

    inner plastic wallouter plastic wall

    CDC

    Helitron

    solenoid

    plastic barrel 1 m

    beam

    target

    10-1

    1

    0 5 10 15 20 25 30 35

    Velocity [cm/ns]

    PLa

    b [G

    eV]

    π+K+

    P

    D

    T

    1

    10

    10 2

    10 3

    10 4

    10 5

    -0.5 0 0.5 1

    P

    π+

    K+

    π-

    K-

    Mass [GeV/c2]

    Yie

    ld

    0

    500

    1000

    0.2 0.4 0.6 0.8

    Yie

    ld

    MK

    KS → π+π- (69%)0

    0

    500

    1000

    1.05 1.1 1.15 1.2

    Λ → pπ- (64%)

    0

    10

    20

    30

    1 1.2

    Φ → K+K- (49%)

    0

    500

    1000

    0.2 0.4 0.6 0.80

    500

    1000

    1.05 1.1 1.15 1.2

    0

    10

    20

    0.9 1 1.1 1.2 1.3

    MINV (GeV/c2)

  • '

    &

    $

    %

    Systematics ofDirected Flow & Stopping

    Sideflow

    Au+Au

    Ca+Ca

    hydro

    Excitation Functions

    10-1 100

    beam energy (GeV/A)

    0.1

    0.2

    max

    [ p x

    dir(

    0) ]

    Au+Au

    Ca+Ca

    Stopping

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    vart

    l

    Sideflown 0.4A GeV∆ 1.5A GeV

    CaNi

    RuXe

    Au

    Size dependence

    40 80 120 160

    Z system

    Stoppingn 0.4A GeV∆ 1.5A MeV

    CaNi

    RuXe

    Au

    Size dependence

    Stopping:

    b/bmax < 0.15

    vartl =σ2(yt)

    σ2(yz)

    Sideflow:

    b/bmax ' 0.3 - 0.4

    max [(pdirx )(0)]

    W. Reisdorf et al., (FOPI), PRL 92 (2004) 232301

    • Correlation between stopping & flow & pressure

    • Evidence for incomplete stopping

    • Stopping: maximum ∼ 400A MeV

    decreasing towards higher beam energies

    rising with system size, no saturation

    below expectations from hydrodynamics

  • '

    &

    $

    %

    Systematics of Elliptic Flow

    -0.1

    -0.05

    0

    0.05

    0.1

    10-1

    1

    v 2

    Z=1, all pt(0)

    M2M3M4

    -0.2

    -0.1

    0

    0.1

    10-1

    1

    Ebeam /A (GeV)

    A≤4, xApt(0) > 0.8

    • Transition from in-plane to

    out-of-plane preferred

    emission at low energies

    • Maximum ∼ 400A MeV

    (depending on Pt)

    • v2 decreasing toward higher

    beam energies

    A. Andronic et al., (FOPI), GSI Report 2004-1 (2004) 54

    • Interplay between fireball expansion & spectator

    shadowing

    • Passing time decreasing at high beam energies

    • Influence of collision dynamics

    • Information on different stages of the collision

    ⇒ High pt particles messengers of high density phase

    T. Gaitanos et al., Eur. Phys. J. A 12 (2001) 421

    Au + Au, | y(0) |< 0.1

  • '

    &

    $

    %

    Shape parameters:Sensitivity to in-medium σnn?

    • θF → Directed flow

    • λ31 = f23/f

    21 → Directed flow &

    Stopping

    • λ21 = f22/f

    21 → Elliptic flow

    J. Gosset et al., (DIOGENE), Phys. Lett. B 247 (1990) 233

    10

    20

    30

    40

    50

    60

    70

    0 2 4 6

    σnn/σfreenn

    θ F (

    deg

    .)

    IQMD - HM

    IQMD - SM

    FOPI Data

    1

    1.25

    1.5

    1.75

    2

    0 2 4 6

    σnn/σfreenn

    λ 31

    1

    1.2

    1.4

    1.6

    1.8

    2

    0 2 4 6

    σnn/σfreenn

    λ 21

    Ru (400 AMeV) + Ru - Proton-likes - < bgeo > = 1.1 fm

    N. Bastid et al., (FOPI), Nucl. Phys. A (2004), in press

    Data favour in-medium σnn close or

    slightly higher than σfreenn

    ⇒ Consistent with results on nuclear stopping

    F. Rami et al., (FOPI), Phys. Rev. Lett. 84 (2000) 1120B. Hong et al., (FOPI), Phys. Rev C 66 (2002) 034901

  • '

    &

    $

    %

    EoS from Directed Flow?

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.2 0.4 0.6 0.8 1

    v 1

    y(0)=0.5-0.7

    Z=1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.2 0.4 0.6 0.8 1 1.2

    y(0)=0.7-0.9

    0

    0.2

    0.4

    0.6

    0 0.2 0.4 0.6 0.8 1

    Z=2

    Data

    0

    0.2

    0.4

    0.6

    0 0.2 0.4 0.6 0.8 1 1.2

    HMHSMS

    IQMD

    pt(0)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 0.2 0.4 0.6 0.8 1 1.2

    v1

    y(0)=0.5-0.7

    all,xZ

    Data

    M4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.2 0.4 0.6 0.8 1 1.2

    HMHSMS

    IQMD

    y(0)=0.7-0.9

    pt(0)

    Au + Au @ 400A MeV, M4400A MeV

    Pt(0)

    Au (90A MeV) + Au

    A. Andronic et al., (FOPI), Phys. Rev C 67 (2003) 034907

    • Sensitivity to the EoS parametrization

    • Soft EoS (with MDI & σfreenn ) in best agreement with

    directed flow data for Au + Au & Xe + CsI at 400 AMeV

    • Difficulties of the model to reproduce directed flow versus

    system size & low Ebeam (90A MeV)

  • '

    &

    $

    %

    EoS from Elliptic Flow?

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0 0.5 1 1.5 2p⊥(o)

    v 2 DatenIQMD SMIQMD HM

    dN/dp⊥IQMD

    Au 600AMeV mul4 Proton

    -0.15

    -0.1

    -0.05

    0

    500 1000 1500Eb [AMeV]

    v 2

    Au mul4 Proton |y(0)|

  • '

    &

    $

    %

    Flow from Lee-Yang Zeroes method

    Genuine flow directly from correlation between many

    particles

    ⇒ Non-flow correlations due to quantum statistics,

    resonance decays, momentum conservation effects, ...,

    not neglected

    � Generating function:

    G(ir) =〈∏

    j

    [

    1 + irωjcos(n(ϕj − θ))]〉

    events

    where ln G(ir) =∑+∞

    k=1 ck(ir)k

    k!, ck = cumulant

    � Find first zeroe (minimum), rθ0, of | G(ir) |

    rθ0

    → Asymptotic behaviour of ck in the expansion of ln G(ir)

    � “Integrated” flow: Vθn{∞} =j01

    rθ0(& averaged over θ)

    � Resolution parameter: χ=Vn{∞}

    σ→ χ > 1: Lee-Yang zeroes should be used

    → 0.5 < χ < 1: Important to optimize weights

    → χ < 0.5: Large statistical errors, better to use cumulants

    � Differential flow:

    → Deduced from Vθn{∞} in harmonics multiples of n

    Detailed description in:

    R.S. Bhalerao et al., Phys. Lett. B 580 (2004) 157 & Nucl. Phys. A 727 (2003) 373;N. Borghini et al., nucl-th/0402053 (2004

  • '

    &

    $

    %

    First application of Lee-Yang theoryto FOPI data: Ru + Ru @ 1.69A GeV

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.1 0.2 0.3 0.4 0.5

    < bgeo > = 2.9 fm

    |Gθ (

    ir)|

    θ = 0 n = 1

    r

    |Gθ (

    ir)|

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.16 0.18 0.2 0.22

    r

    |Gθ (

    ir)|

    Generating function

    ↑r0

    • χ = 1.45 ⇒ Lee-Yang Zeroes

    theory can be used

    • Clear indication of collective

    effects

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    Protons

    -0.9 < y(0) < -0.7

    < bgeo> = 2.9 fm

    Lee-Yang zeroes

    Standard method

    Standard method (w/o recoil correction)

    Cumulants 2nd order

    Cumulants 4th order

    Pt (GeV/c)

    v 1

    PRELIM

    INARY

    • Non-flow effects from 4-particle correlations negligible

    • Evidence for (small) momentum conservation effects on v1

    • Non-flow effects negligible for higher harmonics

    Ongoing development → π± flow & influence of ∆ decay?

    (110 Millions central Ni + Ni @ 1.93A GeV)

  • '

    &

    $

    %

    Conclusion

    Complete set of data at SIS energies measured with FOPI:

    • Variation of beam energy from 90A MeV to 2A GeV

    • Variation of system size from Ca to Au

    • Variation of asymmetry in isospin (Ru/Zr)

    • Variation of asymmetry in system size (Au/Ca & Pb/Ni)

    • Main dependences of directed & elliptic flow are available

    • New procedure of Lee-Yang Zeroes (& cumulants at SIS)

    successfully used for first time to analyze flow

    • Correlations from non-flow effects negligible for protons &

    composite particles

    • Most features of flow data reproduced qualitatively well

    by IQMD model but not in detail

    • EoS is influencing different observables

    • EoS is linked to in-medium NN interaction

    ⇒ momentum dependence, cross sections

    • Non-equilibrium effects important

  • '

    &

    $

    %

    FOPI

    FOPI Collaboration

    A. Andronic, V. Barret, Z. Basrak, N. Bastid,M.L. Benabderrahmane, R. Čaplar, E. Cordier, P. Crochet, P. Dupieux,

    M. Dželalija, Z. Fodor, I. Gasparić, Y. Grishkin, O. Hartmann, N. Herrmann,K.D. Hildenbrand, B. Hong, D. Kang, J. Kecskemeti, Y.J. Kim,

    M. Kirejczyk, P. Koczon, M. Korolija, R. Kotte, M. Kowalczyk, T. Kress,

    A. Lebedev, Y. Leifels, X. Lopez, A. Mangiarotti, V. Manko, T. Matulewicz,M. Merschmeyer, D. Moisa, D. Pelte, M. Petrovici, F. Rami, W. Reisdorf,

    A. Schuettauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion,K. Siwek-Wilczyńska, M. Smolarkiewicz, V. Smolyankin,

    J. Soliwoda-Poddany, M. Stockmeier, G. Stoicea, Z. Tyminski,K. Wísniewski, D. Wohlfarth, Z. Xiao, I. Yushmanov, A. Zhilin

    NIPNE Bucharest, RomaniaKFKI Budapest, Hungary

    LPC Clermont-Ferrand, FranceGSI Darmstadt, Germany

    Univ. of Heidelberg, GermanyIKH Rossendorf/Dresden, Germany

    ITEP Moscow, Russia

    Kurchatov Institute, Moscow, RussiaKorea University Seoul, Korea

    IReS Strasbourg, FranceRBI Zagreb, Croatia

    Univ. of Warsaw, Poland