Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems...

12
Journal of Ecology. 2019;107:2121–2132. wileyonlinelibrary.com/journal/jec | 2121 © 2019 The Authors. Journal of Ecology © 2019 British Ecological Society Received: 25 January 2019 | Accepted: 3 May 2019 DOI: 10.1111/1365-2745.13253 IS PHYLOGENETIC AND FUNCTIONAL TRAIT DIVERSITY A DRIVER OR CONSEQUENCE OF GRASSLAND COMMUNITY ASSEMBLY? Resource addition drives taxonomic divergence and phylogenetic convergence of plant communities Xian Yang 1 | Guoyong Li 2 | Shaopeng Li 3,4 | Qianna Xu 1 | Pandeng Wang 5 | Huanhuan Song 2 | Danyu Sun 2 | Mingxing Zhong 2 | Zhenxing Zhou 2 | Jian Song 6 | Jingyi Ru 2 | Shiqiang Wan 6 | Lin Jiang 1 1 School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA; 2 State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China; 3 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; 4 Institute of Eco‐Chongming (IEC), Shanghai, China; 5 State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat‐sen University, Guangzhou, China and 6 College of Life Sciences, Hebei University, Baoding, China Correspondence Shiqiang Wan Email: [email protected] Lin Jiang Email: [email protected] Funding information National Natural Science Foundation of China, Grant/Award Number: 31361123001, 31430015 and 31770522; National Science Foundation, Grant/Award Number: DEB‐ 1342754, DEB‐1856318 and CBET‐1833988 Handling Editor: David Gibson Abstract 1. Anthropogenic environmental changes are known to affect the Earth's ecosys- tems. However, how these changes influence assembly trajectories of the im- pacted communities remains a largely open question. 2. In this study, we investigated the effect of elevated nitrogen (N) deposition and in- creased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China. 3. We found that both N and water addition significantly increased taxonomic β-di- versity, whereas N, not water, addition significantly increased phylogenetic β-di- versity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic con- vergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait. 4. Synthesis. Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure. KEYWORDS community assembly, global change ecology, nitrogen fertilization, phylogenetic β‐diversity, precipitation change, semi‐arid steppe, taxonomic β‐diversity

Transcript of Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems...

Page 1: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

Journal of Ecology. 2019;107:2121–2132. wileyonlinelibrary.com/journal/jec  | 2121© 2019 The Authors. Journal of Ecology © 2019 British Ecological Society

Received:25January2019  |  Accepted:3May2019DOI: 10.1111/1365-2745.13253

I S P H Y L O G E N E T I C A N D F U N C T I O N A L T R A I T D I V E R S I T Y A D R I V E R O R C O N S E Q U E N C E O F G R A S S L A N D C O M M U N I T Y A S S E M B LY ?

Resource addition drives taxonomic divergence and phylogenetic convergence of plant communities

Xian Yang1  | Guoyong Li2  | Shaopeng Li3,4 | Qianna Xu1 | Pandeng Wang5 | Huanhuan Song2 | Danyu Sun2 | Mingxing Zhong2  | Zhenxing Zhou2 | Jian Song6  | Jingyi Ru2 | Shiqiang Wan6 | Lin Jiang1

1SchoolofBiologicalSciences,GeorgiaInstituteofTechnology,Atlanta,Georgia,USA;2StateKeyLaboratoryofCottonBiology,KeyLaboratoryofPlantStressBiology,CollegeofLifeSciences,HenanUniversity,Kaifeng,China;3ZhejiangTiantongForestEcosystemNationalObservationandResearchStation,SchoolofEcologicalandEnvironmentalSciences,EastChinaNormalUniversity,Shanghai,China;4InstituteofEco‐Chongming(IEC),Shanghai,China;5StateKeyLaboratoryofBiocontrol,GuangdongKeyLaboratoryofPlantResources,SchoolofLifeSciences,SunYat‐senUniversity,Guangzhou,Chinaand6CollegeofLifeSciences,HebeiUniversity,Baoding,China

CorrespondenceShiqiang WanEmail:[email protected]

LinJiangEmail:[email protected]

Funding informationNationalNaturalScienceFoundationofChina,Grant/AwardNumber:31361123001,31430015and31770522;NationalScienceFoundation,Grant/AwardNumber:DEB‐1342754,DEB‐1856318andCBET‐1833988

HandlingEditor:DavidGibson

Abstract1. Anthropogenic environmental changes are known to affect theEarth's ecosys-tems. However, how these changes influence assembly trajectories of the im-pactedcommunitiesremainsalargelyopenquestion.

2. Inthisstudy,weinvestigatedtheeffectofelevatednitrogen(N)depositionandin-creasedprecipitationonplanttaxonomicandphylogeneticβ‐diversityina9‐yearfieldexperimentinthetemperatesemi‐aridsteppeofInnerMongolia,China.

3. WefoundthatbothNandwateradditionsignificantlyincreasedtaxonomicβ-di-versity,whereasN,notwater,additionsignificantlyincreasedphylogeneticβ-di-versity.Afterthedifferencesinlocalspeciesdiversitywerecontrolledusingnullmodels,thestandardeffectsizeoftaxonomicβ‐diversitystillincreasedwithbothNandwateraddition,whereaswater,notN,addition,significantlyreducedthestandardeffectsizeofphylogeneticβ‐diversity.Theincreasedphylogeneticcon-vergenceobservedinthewateradditiontreatmentwasassociatedwithcolonizingspeciesineachwateradditionplotbeingmorecloselyrelatedtospeciesinotherreplicateplotsofthesametreatment.Speciescolonizationinthistreatmentwasfoundtobetrait‐based,withleafnitrogenconcentrationbeingthekeyfunctionaltrait.

4. Synthesis.Ouranalysesdemonstratethatanthropogenicenvironmentalchangesmayaffecttheassemblytrajectoriesofplantcommunitiesatbothtaxonomicandphylogeneticscales.Ourresultsalsosuggestthatwhilestochasticprocessesmaycausecommunitiestodivergeinspeciescomposition,deterministicprocesscouldstilldrivecommunitiestoconvergeinphylogeneticcommunitystructure.

K E Y W O R D S

communityassembly,globalchangeecology,nitrogenfertilization,phylogeneticβ‐diversity,precipitationchange,semi‐aridsteppe,taxonomicβ‐diversity

Page 2: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2122  |    Journal of Ecology YANG et Al.

1  | INTRODUC TION

Understandingmechanisms driving compositional variation acrossecologicalcommunities,frequentlyreferredtoasβ‐diversity,isoneof themajor goals of community ecology (Anderson et al., 2011;Chase&Myers,2011;Whittaker,1960).Acrosslargespatialscales,evolutionaryandbiogeographicprocessessuchas insitudiversifi-cationmayconstituteanimportantsourceofβ‐diversity(Graham&Fine,2008;Ricklefs,2006,2008).Ecological theories thatexplainβ‐diversityamongcommunities,whichgenerallyignoreevolutionaryprocesses,fallintotwobroadcategories.Thenichetheorysuggeststhatβ‐diversity arises largely fromdeterministicprocesses,drivenby ecological selection favouring different species across locali-ties characterizedbydifferent environmental conditions (Chase&Leibold,2003).Incontrast,theneutraltheorysuggeststhatβ-diver-sitycouldsimplyarisefromecologicaldrift,drivenbystochasticpro-cessessuchaschancecolonizationandrandomdemographicevents(Bell, 2001;Hubbell, 2001). Ecological communities are known tobesubjecttotheinfluenceofbothniche‐basedecologicalselection,whichwouldcausecommunitiessharingsimilarenvironmentalcon-ditionstobestructurallysimilar(i.e.lowβ‐diversity),andstochastic-ity‐basedecologicaldrift,whichcouldcausesubstantial structuraldissimilarityamongcommunities (i.e.highβ‐diversity)even insim-ilar environments (Adler,HilleRisLambers,& Levine, 2007;Gravel,Canham,Beaudet,&Messier,2006;Leibold&McPeek,2006).Asanthropogenic environmental changes, such as increasednitrogen(N)depositionandchangingprecipitation,continuetoaffectecosys-temsworld‐wide (Vitousek,Mooney, Lubchenco,&Melillo,1997),it isessential tounderstandhowthesechangesaffecttherelativeimportance of the two contrasting processes in shaping commu-nityassembly,and,consequently,β‐diversityamongtheassembledcommunities.

Anthropogenicenvironmental changes in the formof resourceamendment(e.g.increasedNdepositionandelevatedprecipitation)mayhave thepotential to impact the trajectoryofcommunityas-sembly,andthusβ‐diversity inoppositedirections.Forexampleinenvironmentswherelimitedresourcesupplypresentsanimportantenvironmental filter that excludes many species whose resourcerequirements are not met, increased resource input may relieveenvironmentalharshnessandallowagreaternumberofspeciestosuccessfully colonize thehabitat; the resulting larger species poolcould thenmore readily give rise to alternative community states(Chase, 2003; Fukami, 2004; Jiang, Joshi, Flakes, & Jung, 2011;Law&Morton, 1993; Levine,Bascompte,Adler,&Allesina, 2017;Saavedra et al., 2017), resulting in increased β‐diversity. The in-creased environmental productivity under resource enrichmentmayfurtherpromotethepresenceofalternativecommunitystates(Chase,2010;Ejrnæs,Bruun,&Graae,2006;Isbell,Tilman,Polasky,Binder,&Hawthorne,2013).Ontheotherhand,increasedresourceinputmayfavourspecieswithcertaintraitsbutmaketheconditionlessfavourableforotherspecies(e.g.Dickson,Mittelbach,Reynolds,&Gross, 2014), whichwould lead to increased dominance of thesamespeciesassemblagesacrosscommunities,resultinginreduced

β‐diversity.Inaddition,resourceenrichmentmayoftencausethere-ducedavailabilityofotherresourcesandincreasedintensityofcom-petition for these resources (e.g. light for plants,Hautier,Niklaus,&Hector,2009),acceleratingdeterministiccompetitiveexclusion.

Notably, existing studieson the responseofβ‐diversity toen-vironmental changes have focused on taxonomic β‐diversity thatcapturesturnoverinspeciescompositionamongsites(Chase,2007,2010; Myers, Chase, Crandall, & Jiménez, 2015; Zhang, Liu, Bai,Zhang,&Han,2011). It is less clearhowphylogeneticβ‐diversity,which accounts for evolutionary relationships among species, re-sponds to environmental changes [but seeGuoet al. (2018) for astudyofclimatewarmingonsoilmicrobialcommunities].Studyingphylogeneticβ‐diversity,however,couldprovidenovel insight intohowcommunitiesrespondtoenvironmentalchangesbeyondthoseobtainedviastudyingtaxonomicβ‐diversityalone(Gerhold,Cahill,Winter, Bartish, & Prinzing, 2015; Graham & Fine, 2008; Hardy,Couteron,Munoz,Ramesh,&Pélissier,2012).Forinstancethestudyofbothtaxonomicandphylogeneticβ‐diversitycouldallowtheex-plorationoftheideathatthedegreeofdeterminismincommunityassembly may depend on the level of ecological organization ex-amined(Diamond,1975;Fox,1987;Fukami,Bezemer,Mortimer,&Putten,2005).Agroupofphylogenetically closely related speciesmayexhibitlargelysimilarresponsestoenvironmentalchanges,byvirtueoftheirsimilartraits,makingthegroup‐levelresponsemoredeterministic. However, changes in individual species within thegroupmaybelessdeterministic,astheresultofecologicaldriftin-fluencingpopulationsofcloselyrelatedspecies.Wethushypothe-sizethattaxonomicandphylogeneticβ‐diversitymaynotnecessarilyshowsimilarresponsestoenvironmentalchanges.

Changes in species taxonomic and phylogenetic β‐diversitymay be better understood by looking into species extinction andcolonizationpatterns.Species lossmaydependontheir traitsandevolutionaryhistory,suchthatspeciesofcertaincladesmaysuffergreaterextinctionriskthanspeciesofotherclades(Purvis,Agapow,Gittleman,&Mace,2000).Forexamplelegumes,whichcanwelltol-eratelowsoilNconcentrations,mayexperienceelevatedextinctionunderelevatedNlevels(Stevens,Bunker,Schnitzer,&Carson,2004;Xia &Wan, 2008). The deterministic loss of these clades acrosscommunities,inresponsetoenvironmentalchanges,wouldpromotecommunityconvergence, resulting in reduced taxonomicandphy-logeneticβ‐diversity(Figure1a).Phylogeneticβ‐diversity,however,may not necessarily decline as rapidly as taxonomic β‐diversity ifonlysome,notallspeciesbelongingtothesamecladesfaceextinc-tion. Extinction, however, is far from deterministic (Lande, 1993;Lande,Engen,&Saether,2003).Therandomlossofspecies,espe-ciallythosewithsmallpopulationsizes(Matthies,Bräuer,Maibom,&Tscharntke,2004;Sudingetal.,2005),indifferentlocationsmaydrivedivergenceofspeciescompositionamongcommunities,result-inginincreasedtaxonomicandphylogeneticβ‐diversity(Figure1b,c).Likewise, colonization could be either stochastic or deterministic,causing corresponding changes in taxonomic and phylogenetic β‐diversity(Figure1d,f,g).Colonization‐inducedchangesinphyloge-neticβ‐diversityalsomaynotnecessarilyparallelthoseintaxonomic

Page 3: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

     |  2123Journal of EcologyYANG et Al.

β‐diversity. For example the colonization of a group of species inwhich members are closely related would drive the communitiestowardsphylogeneticconvergence,butmaynotnecessarilycausetaxonomicconvergenceifotherfactors,suchasdispersallimitation,prevent the same species fromcolonizing all localities.Under thiscircumstance,wewouldexpectincreasedtaxonomicβ‐diversitybutdecreasedphylogeneticβ‐diversity(Figure1e).

Here,wereportonafieldexperiment,conductedinatemperatesteppe innorthernChina, to investigate theeffectsofNandpre-cipitationamendmentontaxonomicandphylogeneticβ‐diversityofplant communities. The temperate steppe in this area is currentlyexperiencing significant anthropogenicenvironmental changes, in-cludingincreasedNdepositionandprecipitation(Chenetal.,2013;Niuetal.,2010;Xia,Niu,&Wan,2009),necessitatingathoroughun-derstandingoftheirecologicalconsequences.Previousworkatthestudysitehasdocumentedchangesinanumberofcommunityandecosystemproperties,includingfunctionalgroupcomposition(Yangetal.,2011),ecosystemproductivity,respirationandnetCexchange(Niu et al., 2009, 2010), community stability (Yang et al., 2012)and plant phylogenetic community structure (Yang et al., 2018),in response toexperimentalmanipulationsofNandprecipitation.

However,thequestionofhowtheseenvironmentalchangesaffectthe trajectory of community assembly remains unanswered. WeshowedthatbothNandwateradditionincreasedthestandardef-fective size of taxonomic β‐diversity,whereaswater, notN, addi-tion,reducedthestandardeffectivesizeofphylogeneticβ‐diversity,suggestingthatanthropogenicenvironmentalchangesdifferentiallyaffected plant community assembly trajectories at taxonomic andphylogeneticscales.

2  | MATERIAL S AND METHODS

2.1 | Study site, experimental design and vegetation sampling

TheexperimentwasconductedinanaturalgrasslandattheDuolunRestoration Ecology Station of the Institute of Botany, ChineseAcademy of Sciences, located in a temperate steppe (42o02’ N,116o17’E)inInnerMongolia,China.Thestudyareahasasemi‐aridcontinentalmonsoonclimatewithannualprecipitationof378mmandmeanannualtemperatureof2.1°C.Dominantplantspecies(intermsofcover)inthisareaareperennialgrassesandforbs,including

F I G U R E 1  Aconceptualdiagramofthepotentialeffectsofspeciescolonizationandextinctiononcommunitytaxonomicandphylogeneticbetadiversity.PlotAandBaretworeplicateplotsunderthesameexperimentaltreatments.Forillustrationpurpose,hereweonlyrelatecolonization/extinctioninplotB(focalplot)tocommunitiesinplotA(referenceplot).Theoveralleffectsofspeciescolonizationandextinctiononcommunitytaxonomicandphylogeneticbetadiversitycouldbeassessedbyaveragingallpossiblepairwisecombinationsofreplicateplotsthataresubjecttothesametreatments.Phylogeneticdissimilaritycolonization/extinctinctionisthestandardizedeffectsizeofphylogeneticβ‐diversitybetweencolonized/extinctspeciesinplotBandfinalcommunitycompositionofplotA.(a)ExtinctioneliminatesspeciesinplotBthataredistantlyrelatedtofinalspeciescompositioninplotA,leadingtodecreasedtaxonomicandphylogeneticbetadiversitybetweenthetwoplots.(b)RandomextinctionofspeciesinplotBleadstoincreasedtaxonomicbetadiversityandincreasedorunchangedphylogeneticbetadiversitybetweenthetwoplots.(c)ExtinctioneliminatesspeciesinplotBthatarecloselyrelatedtofinalspeciescompositioninplotA,leadingtoincreasedtaxonomicandphylogeneticbetadiversitybetweenthetwoplots.(d)ColonizationofspeciesintoplotBleadstosimilarfinalspeciescompositioninthetwoplots,leadingtodecreasedtaxonomicandphylogeneticbetadiversitybetweenthetwoplots.(e)ColonizationofspeciesintoplotBthatarenotpresentinplotAbutcloselyrelatedtofinalspeciescompositioninplotAleadstoincreasedtaxonomicbutdecreasedphylogeneticbetadiversitybetweenthetwoplots.(f)RandomcolonizationofspeciesintoplotBleadstoincreasedtaxonomicbetadiversityandincreasedorunchangedphylogeneticbetadiversitybetweenthetwoplots.(g)ColonizationofspeciesthataredistantlyrelatedtofinalspeciescompositioninplotAintoplotBleadstoincreasedtaxonomicandphylogeneticbetadiversitybetweenthetwoplots

(d)

(e) (a)

(b) (f)

(g)(c)

Page 4: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2124  |    Journal of Ecology YANG et Al.

Stipa krylovii, Artemisia frigida, Potentilla acaulis, Cleistogenes squar-rosa, Allium bidentatum and Agropyron cristatum.Ourstudysitewasheavilygrazedbylivestockpriorto2001; ithasbeenfencedsince2001toexcludelargeherbivores.

Theexperimentused a split‐plot designwithN additionbeingtheprimary factorandwateradditionbeing thesecondary factor.Fourpairsof45×28mplotswereestablished in2005,with twoplotsineachpairassignedtothecontrolandNadditiontreatmentsrespectively.Within each plot,we set up two15× 10m subplotsassignedtothecontrolandwateradditiontreatmentsrespectively.Nenrichmentwasaccomplishedbyadding10gN/m2 year−1 in July 2005intheformofureaandinJulyfrom2006to2013intheformofNH4NO3.TherateofnaturalNdepositioninthestudyareaisap-proximately1.47gN/m2 year−1(Zhangetal.,2017),andtheamountofNadditionappliediscomparabletotherateofatmosphericnitro-gendepositionintheNorthChinaPlain(about8.33gN/m2 year−1; He,Liu,Fangmeier,&Zhang,2007),whereagriculturalactivitiesandfossilfuelconsumptionaremoreconcentrated.Wateradditionwasconductedbyadding15mmofwaterweeklyinJulyandAugust,re-sultinginanapproximately30%increaseinwatersupplyeachyear.Moredetailedinformationonthestudyareaandexperimentalde-signcanbefoundinYangetal.(2012).

Wesurveyedtheexperimentalplots inAugusteachyear from2005 to2013. In eachplot,weplaceda1×1m framewith10010×10cmgridsintoarandomlyselected1×1mquadrat.Allspe-ciesineachgridwereidentifiedandtheircoveragewereestimatedbasedontheiroccurrencewithinthe100grids.Wealsocollecteddata on key plant functional traits, including plant height, rootingdepth,leafNconcentrationandspecificleafarea(SLA).Unlikeourpreviouswork (Yangetal.,2018),whichextractedmost traitdatafromtheTRYdatabase(Kattgeetal.,2011),herewemeasuredmostdata insitu.Plantheightwasmeasuredasthemaximumheightofeachspecies in theexperimentalplotsat thebeginningof theex-periment.Plantsamples for themeasurementofother traitswerecollected fromanearby grasslandoutside theexperimental plots.Rootingdepth,leafNconcentrationandSLAof26commonspeciesweremeasuredaccording toCornelissenetal. (2003).Forspeciesforwhichtraitdatawerenotdirectlymeasured,weextracteddataonrootingdepth,leafNconcentrationandSLAfromtheTRYdata-base(SupportingInformationFigureS1;Kattgeetal.,2011).

2.2 | Phylogenetic tree

Weconstructedaphylogenetictreeforthe52speciesobserved intheexperimentalarea (Supporting InformationFigureS1).First,webuiltagenus‐levelphylogenetictreebasedonthephylogenyofvas-cularplantsgeneratedbyZanneetal.(2014)andQianandJin(2016).However,speciesinthegeneraAllium, Astragalus and Potentilla were absentfromZanneetal.andQian&Jin'sphylogeny.Wethusextractedthe ITS1 and ITS2 sequencesof speciesbelonging to these generafromGenBankandconstructedaphylogenetictreeforeachgenus.WealignedthesequencesfromGenBankwithClustalX(version2.0;Larkin et al., 2007), confirmed the alignment by observation, and

selected thebestevolutionmodelwith jModelTest (version2.1.10;Guindon&Gascuel,2003;Darriba,Taboada,Doallo,&Posada,2012;012,340+G+FforAllium and Potentilla;011,012+FforAstragalus).The phylogeny of each genus was constructed with the Bayesianmethod inMrBayes (version3.1.2;Huelsenbeck&Ronquist,2001),usingtheclosestrelativetoeachgenusastheoutgroup.

2.3 | Species and phylogenetic β‐diversities and their standardized effect sizes

Toassesstreatmenteffectsoncommunityconvergence/divergence,wecalculateddissimilarities inspeciescomposition (i.e. taxonomicβ‐diversity)andphylogeneticstructure(i.e.phylogeneticβ‐diversity)betweenreplicatedplotswithinthesametreatment.Taxonomicβ-diversitywascalculatedusingtheabundance‐weightedBray–Curtisdissimilarity index (Bray&Curtis, 1957). TheBray–Curtis index isrobusttosamplingerrors(Schroeder&Jenkins,2018),andiswidelyused to quantify taxonomic β‐diversity among communities. ThevalueofBray–Curtisdissimilarityapproaches0whenspeciescom-positionisidentical,andapproaches1whenspeciescompositioniscompletelydifferent.Phylogeneticβ‐diversitywasquantifiedusingtheabundance‐weightedpairwisedissimilarityindexDpw(Swenson,2011;Webb,Ackerly,&Kembel,2008).Dpw issuitablefordetect-ingphylogeneticallybasalturnoverbetweencommunitiesandcon-verges to theBray–Curtis dissimilarity index in the case of a starphylogeny(Swenson,2011).Itiscalculatedas:

where k1 and k2aretwocommunities,fiistherelativecoverofspe-cies i in communityk1, fj is the relative coverof species j in com-munityk2, �ik2 isthemeanpairwisephylogeneticdistancebetweenspeciesiincommunityk1andallspeciesincommunityk2excludingconspecificspeciesand�jk1 is themeanpairwisephylogeneticdis-tancebetweenspeciesjincommunityk2andallspeciesincommu-nityk1excludingconspecificspecies.LargervaluesofDpwindicategreaterphylogeneticdistancebetweenthecomparedcommunities.

Inadditiontoniche‐basedandstochasticity‐basedecologicalprocesses,theobservedpatternsoftaxonomicandphylogeneticβ‐diversitymayalsobeaffectedbybothlocalcommunitydiversity(α‐diversity)andthesizeoftheregionalspeciespool(γ‐diversity).Inparticular,whentheregionalspeciespoolremainsunchanged,any factor that changes α‐diversity could potentially alter β-di-versity owing simply to random sampling effects (Anderson etal.,2011;Chase,Kraft,Smith,Vellend,& Inouye,2011;Chase&Myers, 2011;Myers et al., 2013). Therefore,we performed nullmodel analyses to disentangle the variation in β‐diversity fromvariationinα‐diversity.Thenullmodelanalysesdeterminediftheobservedpatternsintaxonomicandphylogeneticβ‐diversitydevi-atedfromtheexpectationsofrandomassembly,afteraccountingfor changes in α‐diversity.Anull distributionof taxonomicβ-di-versitywasgeneratedbyrandomlysamplingindividualsfromthe

(1)Dpw=

∑nk1

i=1fi�ik2 +

∑nk2

j=1fj�jk1

2

Page 5: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

     |  2125Journal of EcologyYANG et Al.

regionalspeciespool999times,whileperseveringthetotalplantcover in each plot and the relative cover of each species in thespeciespool(Kraftetal.,2011).Nulldistributionsofphylogeneticβ‐diversityweregeneratedbyrandomizingthenamesofspeciesacross the tipsof thephylogenetic tree999 times (Webbet al.,2008).Standardizedeffectsize(SES;Gotelli&Graves,1996)wascalculatedfortaxonomic(β‐deviation)andphylogenetic(SES.Dpw)β‐diversityusingthemeanandstandarddeviationoftheirrespec-tivenulldistributions:

where Xobservedistheobservedβ‐diversityvaluebetweentwocom-munities,Xnullisthemeanvalueofthenulldistributionandsd(Xnull)isthestandarddeviationofthenulldistribution.Positiveandneg-ative values indicate higher and lower β‐diversity than expectedbychance,respectively,whereasavalueofzeroindicatesthattheobserved β‐diversitydoesnotdifferfromrandompatterns.

2.4 | Species colonization and extinction

Weclassifiedaspeciestobelocallyextinctfromaplotiftheywerepresent in2005butabsent in2013,anddefinednewcolonistsasspeciesthatwereabsentin2005butpresentin2013inaplot.Toexaminetheeffectofnewcolonistsonthetaxonomicandphyloge-neticdissimilarityamongplotswithinatreatment,wecalculatedtheaverage β‐deviationandphylogeneticSES.Dpwbetweennewcolo-nistsineachreplicateplotandfinalspeciescompositioninthethreeotherreplicateplotsunderthesametreatment(β‐deviation(C)andSES.Dpw(C)).Anegativeβ‐deviation(C)orSES.Dpw(C)indicatesthatnew colonists in a plot aremore similar or phylogeneticallymorecloselyrelatedtothespeciescompositioninotherplotsofthesametreatmentsthanexpectedbychancerespectively.Toexaminetheeffect of the extinct species on the taxonomic and phylogeneticdissimilarityamongplotswithinatreatment,wecalculatedtheav-erage β‐deviationandphylogeneticSES.Dpwbetweenextinctspe-ciesineachreplicateplotandthefinalspeciescompositionintheotherreplicateplotsunderthesametreatment(β‐deviation(E)andSES.Dpw(E)).Forspeciesextinction,apositiveβ‐deviation(E)orSES.Dpw(E)indicatesthattheextinctspeciesinaplotaremoredissimilarorphylogeneticallymoredistantlyrelatedtotheremainingspeciesinotherplotsofthesametreatmentsthanexpectedbychancere-spectively.Toaddressthepossibilitythattheresultsbasedon2005and2013onlymaybevulnerabletoobservationerror,wealsodi-vided the experiment into three periods (2005–2007, 2007–2010and2010–2013), andanalysedβ‐deviation(C/E) andSES.Dpw(C/E)foreachperiod.Consistentresultsbetweenthethreeperiodswouldlendgreatercredibilitytoourresults.

Toassess thecontributionsof species’ functional traitson thepatternofSES.Dpw,wecalculatedSES.Dpwvaluesoffunctionaltraitsforbothcolonistandextinctspeciesusingthedendrogramsofthemeasured functional traits (i.e. plant height, rooting depth, leafN

concentrationandSLA).Wegeneratedfourtraitdendrograms,onefor each functional trait, using UPGMA clustering based on theEuclideandistancematrix(Petchey&Gaston,2002).

2.5 | Statistical analysis

To test for theeffectsofNandwateradditionon taxonomicandphylogenetic β‐diversity and their standardized effect sizes overtime, we conducted a permutational multivariate analysis of vari-ance (PERMANOVA;999permutations;Anderson,2001) inwhichfertilization, watering, time and their interactions were used asexplanatory variables. FollowingPERMANOVA,we also usedper-mutationalanalysisofmultivariatedispersions (PERMDISP) totestwhethercommunitiesdifferintheirwithin‐treatmentdissimilarities(Anderson,2006;Anderson,Ellingsen,&McArdle,2006).

We calculated the phylogenetic signal of the four functionaltraits measured in this study using the K statistic (Blomberg,Garland,& Ives, 2003). The significance (p‐values) of thephylo-genetic signalwasevaluatedbycomparing thevarianceof inde-pendentcontrastsforeachtraittotheexpectedvaluesobtainedbyshufflingleaftraitdataacrossthetipsofthephylogenetictree999 times. To assess the importance of species’ initial coverageandfunctionaltraitsoncolonizationandextinction,weranlogis-ticregressionsofspeciescolonization/extinctionasafunctionofspecies’initialcoverageandtraitvalues(i.e.plantheight,rootingdepth,leafNconcentrationandSLA).Speciesthatdidnotcolonizeorgoextinctinanyplotwithinatreatmentwereassignedavalueof0.Otherwise,specieswereassignedavalueof1.Weassignedvaluesforcolonizationandextinctionseparately.

AllanalyseswereperformedusingR3.5.1(RCoreTeam.,2018).TheBray–Curtis indexwascalculatedusingthevegdist functioninthepackagevegan (Oksanenet al., 2018), andDpwwascalculatedusing the comdist function in the package picante (Kembel et al.,2010). The null communities were generated using the nullmodel in the vegan package (Oksanen et al., 2018). PERMANOVA andPERMDISPwereperformedusing the functionsadonis2 and beta-disper in the veganpackagerespectively(Oksanenetal.,2018).TheanalysesonphylogeneticsignalwereconductedusingthefunctionmultiPhylosignalinthepicantepackage(Kembeletal.,2010).

3  | RESULTS

3.1 | Species taxonomic and phylogenetic β‐diversity, and their standardized effect size

Taxonomic β‐diversity (Bray–Curtis index) fluctuated significantlyovertimeinallbutthewateradditiontreatments.Taxonomicβ-di-versityexhibitedapositivetrendonlyintheNadditiontreatment,resulting in greaterβ‐diversity in this treatment than the controls(Figure 2a). Phylogenetic β‐diversity (Dpw) remained largely un-changed intheNadditionandN+wateradditiontreatments,butdeclinedovertimeinthecontrolandwateradditionplots,resultingingreaterphylogeneticβ‐diversityintheNadditionandN+water

(2)SES.X=Xobsered−Xnull

sd(

Xnull)

Page 6: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2126  |    Journal of Ecology YANG et Al.

addition plots towards the end of the experiment (Figure 2c).PERMANOVAindicatedthatNenrichment,wateraddition,yearandalltheirtwo‐wayinteractiontermssignificantlyaffectedtaxonomicβ‐diversity,whereasphylogeneticβ‐diversitywasonlysignificantlyaffectedbyNaddition(Table1).PERMDISPrevealedthatN,waterandN+wateradditiontreatmentincreasedthedispersionofspe-ciescomposition(SupportingInformationFigureS2).

β‐deviation showed a similar temporal pattern as the Bray–Curtisindex.Attheendoftheexperiment,β‐deviationwasnotsig-nificantly different fromnull expectation in the control plots, butwas significantlyhigher thannull expectation in theN,water andN+wateradditiontreatments,withthehighestvaluesobservedfortheNadditionplots(Figure2b).ThestandardizedeffectsizeofDpw (i.e.SES.Dpw)wassignificantlygreaterthanzeroinalltreatmentsini-tially(one‐samplet‐test,p<.05).Attheendoftheexperiment,how-ever,SES.Dpwwassignificantlynegative(one‐samplet‐test,p=.018)in the water addition plots and not significantly different fromzerointheothertreatments(one‐samplet‐test,p>.05;Figure2d).

Correspondingly,PERMANOVAindicatedthatNenrichment,wateradditionand their interaction termssignificantlyaffectedβ-devia-tionandthatSES.Dpwwasonlyaffectedbywateraddition(Table1).PERMDISP revealed thatDpwshowedgreaterdispersion in theN,waterandN+wateradditiontreatmentsthanthecontrols,whereasSES.Dpwshowedlowerdispersioninthewateradditiontreatmentthanothertreatments(FigureS2,TableS1).

3.2 | Species colonization and extinction

Inthecontrolplots,mostoftheextinctspecieswereforbsfromthegenera Allium and Potentilla andmostcolonistsweregrasses fromthefamilyPoaceae.InplotswithNfertilization,inadditiontospe-ciesthatwentextinctinthecontrols,somegrassesfromthefamilyPoaceaeandCyperaceaealsowentextinct;thefewcolonistsweremainlyforbsfromthefamiliesRosaceaeandCruciferae.Inthewateraddition plots, however, the number of extinct specieswasmuchlower, with most being extinct also in the control plots. Species

F I G U R E 2  Changesintaxonomicβ‐diversity,phylogeneticβ‐diversityandtheirrespectivestandardizedeffectsizesamongreplicateplotswithineachtreatmentovertime.Taxonomicβ‐diversityanditsstandardizedeffectsizeweremeasuredby(a)Bray–Curtisdissimilarityand(b)β‐deviationrespectively.Phylogeneticβ‐diversityanditsstandardizedeffectsizeweremeasuredby(c)Dpwand(d)SES.Dpw respectively.Valuesaremean±standarderror.Thestandardizedeffectsizes(β‐deviationandSES.Dpw)showthemagnitudeofdeviationbetweenobservedβ‐diversityandthevaluesgeneratedfromnullmodels.Negativevaluesindicatelowerβ‐diversitythanexpectedfromchance,whereaspositivevaluesindicatetheopposite

0.2

0.4

0.6

0.8

Bra

y–cu

rtis

dis

sim

ilarit

y

0

5

10

15

β-de

viat

ion

Control

N

Water

N + Water

160

180

200

220

240

260

280

Dpw

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

SE

S.D

pw

2005 2007 2009 2011 2013

2005 2007 2009 2011 2013 2005 2007 2009 2011 2013

Year Year

(a)

(c)

(b)

(d)

Df

Bray–Curtis Dpw β‐deviation SES.Dpw

F p F p F p F p

N 1 20.45 .001 11.62 .001 1.79 .001 0.87 1.000

Water 1 5.21 .001 1.17 0.181 1.15 .001 1.02 .035

Year 1 12.42 .001 1.55 0.055 1.00 .467 0.98 .924

N:W 1 2.69 .016 1.10 0.212 1.08 .032 0.99 .858

N:Y 1 3.69 .002 1.63 0.047 1.16 .003 1.00 .614

W:Y 1 2.66 .011 1.30 0.113 1.10 .012 1.01 .110

N:W:Y 1 1.02 .382 0.92 0.499 1.00 .500 0.99 .765

TA B L E 1  Resultsofpermutationalmultivariateanalysisofvariance(PERMANOVA)ontheeffectsofNenrichment,wateraddition,yearandtheirinteractionsoncommunitytaxonomicβ‐diversity(Bray–Curtis),phylogeneticβ‐diversity(Dpw)andtheirrespectivestandardeffectsizes(β‐deviationandSES.Dpw).Theanalyseswereperformedusing999permutations.p < 0.05 shown in bold.

Page 7: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

     |  2127Journal of EcologyYANG et Al.

colonizingthewateradditionplotsweremainlyforbsfromthefami-liesLabiatae,GentianaceaeandLeguminosae(FigureS1).

The compositional dissimilarity between colonists and finalcommunitycompositionwithinatreatment(i.e.β‐deviation(C))wassignificantlygreaterthanzeroinalltreatments,indicatingthatcol-onistsweremoredissimilartospeciesinotherreplicateplotsthannull expectation (Figure 3a; one‐sample t‐test,p < .05). The com-positionaldissimilaritybetweenextinctspeciesandthe finalcom-munitycompositionwithinatreatment(i.e.β‐deviation(E))wasalsosignificantlygreaterthanzeroinalltreatments(Figure3b;one‐sam-plet‐test,p<.05),indicatingtaxonomicallydeterministicextinction.ThephylogeneticSES.Dpwbetweencolonistsand finalcommunitycompositionwithinatreatment(i.e.SES.Dpw(C))didnotsignificantlydiffer fromzero in thecontrol,NadditionandN+wateradditiontreatments (Figure 3c; one‐sample t‐test,p > .05), indicating phy-logenetic randomnessof speciescolonization in these treatments.However,wefoundsignificantnegativephylogeneticSES.Dpw(C)inthewateradditiontreatment(Figure3c;one‐samplet‐test,p=.035),indicatingthatcolonizingspecies ineachwateradditionplotweremorecloselyrelatedtospeciesinotherreplicateplotsthanexpectedbychance.ThephylogeneticSES.Dpwbetweenextinctspeciesandfinal community compositionwithin a treatment (SES.Dpw(E)) wasnotsignificantlydifferentfromzerointheN,waterandN+wateradditiontreatments(Figure3d;one‐samplet‐test,p>.05),indicatingphylogeneticrandomnessofspeciesextinctioninthesetreatments.The average phylogenetic SES.Dpw(E) in the controls was signifi-cantly greater than zero (Figure 3d; one‐sample t‐test, p = .011),

indicating thatextinctionexcluded species thatweremorephylo-genetically distantly related to the final species composition thanexpectedbychanceinthistreatment.Whentheexperimentwasdi-videdintothreeperiods(2005–2007,2007–2010and2010–2013),thepatternsforβ‐deviation(C/E)andSES.Dpw(C/E)withineachpe-riodweresimilartothoseacrossallyears(FigureS3).

Amongthefourfunctionaltraitsmeasuredinthisstudy,signifi-cantphylogeneticsignalwasdetectedonlyforleafNconcentration(p= .035,TableS1).Therefore,wepresentedtheresultsonleafNconcentration inthemaintextandtheresultsonother functionaltraitsinthesupportinginformation(SupportingInformationFigureS4, S5, Appendix A, B). The SES.Dpw(C) for leaf N concentrationshowed a similar patternwith phylogenetic SES.Dpw(C), such thatcolonizingspeciesineachwateradditionplotweremoresimilarinleafNconcentrationwithspecies inother replicateplots thanex-pectedbychance(Figure4a,one‐samplet‐test,p=.036).Forspeciesextinction,non‐significantSES.Dpw(E)forleafNconcentrationwasfoundforalltreatments(Figure4b).

Theinitialcoverageofspecieswasasignificantpredictorofspe-ciesextinctioninalltreatments.Specieswithlowerinitialcoveragetendedtohaveagreaterprobabilityofextinction(Figure5a–d),cor-respondingwiththetaxonomicallydeterministicextinctionfoundinall treatments (showninFigure3b).LeafNconcentrationaffectedthe likelihood of species colonization in thewater addition treat-ment,suchthatspecieswithhigherleafNconcentrationsweremorelikely tocolonize (Figure5g). In theN+wateradditiontreatment,leafNconcentrationaffected the likelihoodof speciesextinction,

F I G U R E 3  Thetaxonomic(β‐deviation)andphylogeneticdissimilarity(SES.Dpw)between(a,c)newcolonistsand(b,d)extinctspeciesofeachplotandfinalspeciescompositionintheotherthreereplicateplotswithinthesametreatment.Forspeciescolonization,anegativeβ‐deviation(C)indicatesthatnewcolonistsaremoresimilartothefinalcommunitiesinotherreplicatesthanexpectedbychance,andanegativeSES.Dpw(C)indicatesthatnewcolonistsaremorephylogeneticallycloselyrelatedtothefinalcommunitiesinotherreplicatesthanexpectedbychance,indicatingdeterministiccolonization.Forspeciesextinction,apositiveβ‐deviation(E)indicatesthatextinctspeciesaremoredissimilartotheremainingspeciesinotherreplicatesthanexpectedbychance,andSES.Dpw(E)indicatesthatextinctspeciesaremorephylogeneticallydistantlyrelatedtotheremainingspeciesinotherreplicatesthanexpectedbychance,indicatingdeterministicextinction. *denotesvaluesthataresignificantlydifferentfromzerobasedonone‐samplettest(p<.05).Errorbarsrepresentstandarderrors

0

5

10

15

devi

atio

n (C

)

Control N Water N + W

* **

*

0

5

10

15

devi

atio

n (E

)

Control N Water N + W

* **

*

2.0

1.5

1.0

0.5

0.0

0.5

SE

S.D

pw (

C)

Control N Water N + W

* 0.60.40.20.00.20.40.6

SE

S.D

pw (

E)

Control N Water N + W

*

Colonization Extinction(a) (b)

(c) (d)

Page 8: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2128  |    Journal of Ecology YANG et Al.

suchthatspecieswithhigherNconcentrationsufferedfromgreaterriskofextinction(Figure5h).

4  | DISCUSSION

The Earth's ecosystems are facing widespread anthropogenic en-vironmental changes. A key challenge is to elucidate how ecologi-cal processes interact with evolutionary processes in influencingdiversitypatternsacrossspatialscalesinthefaceofanthropogenicenvironmental changes. In this study, we investigated the impactof elevated N deposition and precipitation on species taxonomicand phylogenetic β‐diversity, and linked species colonization and

extinctiontotheobservedβ‐diversitypatterns.WefoundthatbothNenrichmentandwateradditionsignificantlyincreasedtaxonomicβ-diversity,andNenrichmentalsosignificantlyincreasedphylogeneticβ‐diversity.However,whenthedifferences in localcommunitysizewerecontrolledforusingnullmodels,bothNenrichmentandwateradditionsignificantlyincreasedthestandardeffectsizeoftaxonomicβ‐diversity(i.e.β‐deviation),suggestingthatresourceenrichmentledto increased taxonomic divergence; water addition, not N enrich-ment,significantlydecreasedthestandardeffectsizeofphylogeneticβ‐diversity(i.e.SES.Dpw),suggestingthatwateradditiondrovecom-munitiestoconvergetowardsmoresimilarphylogeneticstructure.

A number of experiments have assessed the effects of re-source addition on taxonomicβ‐diversity. Chalcraft et al. (2008)

F I G U R E 4  Thefunctionaltraitdissimilarity(SES.Dpw)forleafNconcentrationbetweennewcolonists(a)andextinctspecies(b)ofeachplotandfinalspeciescompositionintheotherthreereplicateplotswithinthesametreatment.AnegativeSES.Dpw(C)indicatesthatnewcolonistsaremoresimilartothefinalspeciescompositionthanexpectedbychance.ApositiveSES.Dpw(E)indicatesthatextinctspeciesaremoredifferentfromtheremainingspeciesthanexpectedbychance.*denotesvaluesthataresignificantlydifferentfromzerobasedonone‐samplettest(p<.05).Errorbarsrepresentstandarderrors

–1.0

–0.5

0.0

0.5

1.0

SE

S.D

pw(C

)* –0.5

0.0

0.5

1.0

1.5

SE

S.D

pw(E

)

Control N Water N + W Control N Water N + W

(a) (b)

F I G U R E 5  Speciescolonization(blackcircles)andlocalextinction(redcircles)asfunctionsofinitialcoverage(a–d)andleafNconcentration(e–h)ineachtreatment.Speciesthatdidnotcolonizeorgoextinctinanyplotwithinatreatmentwasassignedavalueof0.Otherwise,specieswereassignedavalueof1.Significantlogisticregressionlines(p<.1)areshown

(a) (b) (c) (d)

(e) (f) (g) (h)

Page 9: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

     |  2129Journal of EcologyYANG et Al.

synthesizeddatafrom18N‐enrichmentexperimentsalongapro-ductivitygradientacrossNorthAmerica,andfoundthatNadditionpromoted β‐diversity at low‐productivity sites but reduced β-di-versityathigh‐productivitysites,withthethresholdproductivityaround 400 g m−2 year−1.Thepositivetreatmenteffectsonβ-di-versityinourexperimentareinaccordancewiththisgeneralpat-tern,astheproductivityatourstudysiteisfarbelowthethreshold(60~250gm−2 year−1,Xuet al., 2018).Nandwater areknownto be the two major limiting resources for our study grassland(Bai,Han,Wu,Chen,&Li,2004;Niuetal.,2010).Ourresultsarethus consistent with the idea that adding limiting resources en-hances β‐diversityinresource‐scarceenvironments,wherestrongenvironmentalfilteringlimitscommunitymembershipinalargelydeterministicmanner (Chalcraft et al., 2008;Chase, 2010).Notethat in our experiment, both taxonomic β‐diversity and β-devia-tionincreasedinresponsetoNandwateraddition,indicatingthatthe observed community divergence afterN andwater additionwasduetotheenhancedroleofstochasticprocessesratherthanchanges in α‐diversity.Onepossiblemechanismforthemoreim-portantroleofstochasticassemblyprocessesunderresourceen-richmentisthatstrongerpriorityeffectsmayleadtotheincreasedlikelihoodofmultiple community states inmorebenignenviron-ments(Chase,2003,2007,2010).Inourstudy,dispersalwashighlystochasticatthespecieslevel,asevidencedbythecompositionaldissimilaritybetweencolonizedspeciesineachplotandspeciesinother replicateplots (i.e.β‐deviation (C))beingmuchhigher thannull expectation in all treatments. Under resource amendment,suchstochasticdispersalmayhaveledtohighvariabilityinspeciesarrivalhistoryand, inturn,strongpriorityeffects,promotingthetaxonomic divergenceof communities (Chase, 2010;Vannette&Fukami,2017).

Wefoundthatwateraddition,ratherthanNenrichment,signifi-cantlydecreased the standardeffect sizeofphylogeneticβ-diver-sity(SES.Dpw),drivingthecommunitiesfrombeingphylogeneticallydivergent to being phylogenetically convergent (Figure 2d). Suchtransitioninthewateradditiontreatmentcouldbeattributedtothephylogenetically non‐random colonization of species. Specifically,thecolonistsineachplotafterwateradditionweresignificantlyre-latedtospeciesinotherreplicateplots(Figure3c),resultinginphylo-geneticallysimilarcommunitycompositionamongplots.Thispatterncontrastswiththetaxonomicallystochasticcolonizationanddiver-genceobservedinthewateradditionplots(seethepreviouspara-graph),supportingourhypothesisthattaxonomicandphylogeneticβ‐diversitymaynotnecessarilyrespondsimilarlytoenvironmentalchanges (Graham&Fine,2008;Hardyet al., 2012).These resultsemerged likely becausewater addition favours certain closely re-latedspecieswithsimilartraits(e.g.thosewithsimilarleafNcontent,Figure4a),resultingincommunityconvergenceatthephylogeneticscale,butfacilitatesthenon‐deterministiccolonizationofthesespe-ciesamongplots (Figure3a),resulting incommunitydivergenceatthespecieslevel.Onewaytoconfirmthisexplanationistoeliminatethestochasticityassociatedwithspeciescolonizationby,forexam-ple seedaddition,whichwould favourcommunityconvergenceat

bothtaxonomicandphylogeneticscales.Indeed,arecentstudyhasfoundthatfertilizationandwateradditionintoaCaliforniagrasslandreducedplanttaxonomicβ‐diversitywhenseedsofcommonspecieswereaddedtoallexperimentalplots(Eskelinen&Harrison,2015).On theotherhand,our resultsclearlyshowthatconsideringbothphylogeneticandtaxonomicturnoverallowsabetterassessmentoftheroleofdeterministicandstochasticprocessesinshapingecolog-icalcommunities.

We foundevidence for functional trait‐based species coloni-zationinthewateradditionplots.LeafNconcentration,theonlyplanttraitthatexhibitedsignificantphylogeneticsignal(TableS2),was found tobemore similar between the colonist in eachplotandthespeciesinotherreplicateplotsinthewateraddition,butnotothertreatments(Figure4a).Correspondingly,theprobabilityofcolonizationwasstronglyassociatedwithleafNconcentration,withN‐richspeciestendingtohaveagreaterprobabilityofcoloni-zation(Figure5g).LeafNconcentrationisakeyfunctionaltraitonthe“leafeconomicspectrum”that relatestoplant resourcecap-ture and conservation (Wright et al., 2004). N‐poor species aregenerally conservative in resource use and expected to be bet-ter at copingwithabiotic stress (Coley,Bryant,&Chapin,1985;Díazetal.,2016;Reich,Walters,&Ellsworth,1997;Wrightetal.,2004).Studiesthatexploredrelationshipsbetweenleafeconomictraits andclimatehave foundageneral tendency for species in-habitingaridandsemi‐aridregionstoexhibitamoreconservativestrategyinresourceuse(Wright,Reich,&Westoby,2001).Inlinewiththesefindings,ourresultdemonstratedthatenhancedwatersupplyalleviatedabioticstressandfacilitatedspeciesonthe“ac-quisitive” end of the leaf economic spectrum to colonize,whichresulted in phylogenetic homogenization among water additionplots. Finally,wenote that traits of the sameplant speciesmayrespond to resource amendment, such that theymay alsodifferamongexperimentaltreatments(Yanetal.,2015).Thispossibility,however,wouldneedtobeaddressedbyfuturestudies,asweonlyquantifiedplanttraitsinthecontrols.

Our study provides, to our knowledge, the first experimen-tal evidence that anthropogenic environmental changes can dif-ferentially affect plant taxonomic and phylogenetic β‐diversity.Both N enrichment and water addition significantly increasedtaxonomicβ‐diversity,whereaswateraddition,notNenrichment,significantly reducedphylogeneticβ‐diversity,with the latterat-tributed to colonizing species in eachwater addition plot beingmorecloselyrelatedtospeciesinotherreplicateplotsofthesametreatment.Ourresultsthusillustratethatalthoughstochasticpro-cessesmaycausecommunitiestodivergemoreinspeciescompo-sitionunderanthropogenicenvironmentalchanges,deterministicprocesses could still produce communities more convergent inphylogeneticcommunitystructure.Itremainstobeseenwhetherthesefindingsapplytoothersystemsandwhethertheyextendtoecosystemfunctions.Forexamplean interestingquestiontoasknextiswhethercommunityphylogeneticconvergenceunderpre-cipitationamendmentwould translate intoecosystemfunctionalconvergence.

Page 10: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2130  |    Journal of Ecology YANG et Al.

ACKNOWLEDG EMENTS

This project was supported by the National Natural ScienceFoundation of China (grant no. 31361123001, 31430015 and31770522)andtheNationalScienceFoundationofUSA(grantno.DEB‐1342754,DEB‐1856318 andCBET‐1833988).Wedeclare noconflictofinterest.

AUTHORS’ CONTRIBUTIONS

S.W.,L.J.andX.Y.conceivedtheproject;G.L,D.S.,H.S.,M.Z.,Z.Z.,J.S. and J.R. carriedout the field experiments and collecteddata;X.Y.analysedthedata;X.Y.andL.J.wrotethefirstdraftofthemanu-script;allauthorscontributedsubstantiallytorevisions.

DATA AVAIL ABILIT Y S TATEMENT

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.nh1s3k3(Yangetal.,2019).

ORCID

Xian Yang https://orcid.org/0000‐0002‐1527‐7673

Guoyong Li https://orcid.org/0000‐0003‐0932‐4063

Mingxing Zhong https://orcid.org/0000‐0003‐0397‐3863

Jian Song https://orcid.org/0000‐0001‐9957‐6533

Lin Jiang https://orcid.org/0000‐0002‐7114‐0794

R E FE R E N C E S

Adler, P. B., HilleRisLambers, J., & Levine, J. M. (2007). A nichefor neutrality. Ecology Letters, 10, 95–104. https://doi.org/10.1111/j.1461‐0248.2006.00996.x

Anderson,M.J.(2001).Anewmethodfornon‐parametricmultivariateanalysis of variance. Austral Ecology, 26, 32–46.

Anderson, M. J. (2006). Distance‐based tests for homogeneity ofmultivariate dispersions. Biometrics, 62, 245–253. https://doi.org/10.1111/j.1541‐0420.2005.00440.x

Anderson,M.J.,Crist,T.O.,Chase,J.M.,Vellend,M.,Inouye,B.D.,Freestone,A.L.,…Swenson,N.G.(2011).Navigatingthemultiplemeaningsofβ diversity:Aroadmapforthepracticingecologist.Ecology Letters, 14, 19–28.https://doi.org/10.1111/j.1461‐0248.2010.01552.x

Anderson,M.J.,Ellingsen,K.E.,&McArdle,B.H. (2006).Multivariatedispersionasameasureofbetadiversity.Ecology Letters, 9,683–693.https://doi.org/10.1111/j.1461‐0248.2006.00926.x

Bai,Y.,Han,X.,Wu,J.,Chen,Z.,&Li,L.(2004).EcosystemstabilityandcompensatoryeffectsintheInnerMongoliagrassland.Nature, 431, 181–184.https://doi.org/10.1038/nature02850

Bell,G.(2001).Neutralmacroecology.Science, 293,2413–2418.https://doi.org/10.1126/scien ce.293.5539.2413

Blomberg, S. P.,Garland, T.,& Ives,A. R. (2003). Testing for phyloge-netic signal in comparative data: Behavioral traits aremore labile.Evolution, 57, 717–745. https://doi.org/10.1111/j.0014‐3820.2003.tb00285.x

Bray,J.R.,&Curtis,J.T.(1957).Anordinationoftheuplandforestcom-munitiesofsouthernWisconsin.Ecological Monographs, 27, 325–349. https://doi.org/10.2307/1942268

Chalcraft,D.R.,Cox,S.B.,Clark,C.,Cleland,E.E.,Suding,K.N.,Weiher,E.,&Pennington,D.(2008).Scale‐dependentresponsesofplantbio-diversitytonitrogenenrichment.Ecology, 89,2165–2171.https://doi.org/10.1890/07‐0971.1

Chase, J. M. (2003). Community assembly: When should historymatter? Oecologia, 136, 489–498. https://doi.org/10.1007/s00442-003-1311-7

Chase, J. M. (2007). Drought mediates the importance of stochasticcommunityassembly.Proceedings of the National Academy of Sciences of the United States of America, 104, 17430–17434. https://doi.org/10.1073/pnas.0704350104

Chase,J.M.(2010).Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironments.Science, 328,1388–1391.https://doi.org/10.1126/science.1187820

Chase, J.M.,Kraft,N. J.B., Smith,K.G.,Vellend,M.,& Inouye,B.D.(2011).Usingnullmodelstodisentanglevariationincommunitydis-similarity fromvariation inα‐diversity.Ecosphere, 2, art24.https://doi.org/10.1890/ES10‐00117.1

Chase,J.M.,&Leibold,M.A.(2003).Ecological niches: Linking classical and contemporary approaches.Chicago,IL:UniversityofChicagoPress.

Chase,J.M.,&Myers,J.A.(2011).Disentanglingtheimportanceofeco-logicalnichesfromstochasticprocessesacrossscales.Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363.https://doi.org/10.1098/rstb.2011.0063

Chen,W.,Zheng,X.,Chen,Q.,Wolf,B.,Butterbach‐Bahl,K.,Brüggemann,N.,&Lin,S.(2013).EffectsofincreasingprecipitationandnitrogendepositiononCH4 andN2O fluxes and ecosystem respiration in adegradedsteppeinInnerMongolia,China.Geoderma, 192, 335–340. https://doi.org/10.1016/j.geoderma.2012.08.018

Coley, P.D., Bryant, J. P., &Chapin, F. S. (1985). Resource availabilityandplantantiherbivoredefense.Science, 230,895–899.https://doi.org/10.1126/science.230.4728.895

Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N.,Gurvich,D. E.,… Poorter,H. (2003). A handbook of protocols forstandardised and easy measurement of plant functional traitsworldwide. Australian Journal of Botany, 51, 335–380. https://doi.org/10.1071/BT02124

Darriba,D.,Taboada,G.L.,Doallo,R.,&Posada,D.(2012).CircadiOmics:Integratingcircadiangenomics,transcriptomics,proteomicsandme-tabolomics.Nature Methods, 9, 445–466.

Diamond,J.M.(1975).Assemblyofspeciescommunities.InM.L.Cody,&J.M.Diamond(Eds.),Ecology and evolution of communities(pp.342–444).Cambridge,MA:HarvardUniversityPress.

Díaz,S.,Kattge,J.,Cornelissen,J.H.C.,Wright,I.J.,Lavorel,S.,Dray,S.,…Gorné,L.D.(2016).Theglobalspectrumofplantformandfunc-tion.Nature, 529,167–171.https://doi.org/10.1038/nature16489

Dickson, T. L., Mittelbach, G. G., Reynolds, H. L., & Gross, K. L.(2014). Height and clonality traits determine plant communityresponses to fertilization. Ecology, 95, 2443–2452. https://doi.org/10.1890/13‐1875.1

Ejrnæs,R.,Bruun,H.H.,&Graae,B.J.(2006).Communityassemblyinex-perimentalgrasslands:Suitableenvironmentortimelyarrival?Ecology, 87,1225–1233.https://doi.org/10.1890/0012‐9658(2006)87[1225:-CAIEGS]2.0.CO;2

Eskelinen,A.,&Harrison,S. (2015).Erosionofbetadiversityunderin-teractingglobalchange impacts inasemi‐aridgrassland.Journal of Ecology, 103,397–407.https://doi.org/10.1111/1365‐2745.12360

Fox, B. J. (1987). Species assembly and the evolution of communitystructure.Evolutionary Ecology, 1,201–213.https://doi.org/10.1007/BF02067551

Fukami, T. (2004). Assembly history interacts with ecosystem size toinfluence species diversity. Ecology, 85, 3234–3242. https://doi.org/10.1890/04‐0340

Fukami, T., Bezemer, T.M.,Mortimer, S. R., &VanDer Putten,W.H.(2005). Species divergence and trait convergence in experimental

Page 11: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

     |  2131Journal of EcologyYANG et Al.

plant community assembly.Ecology Letters, 8, 1283–1290. https://doi.org/10.1111/j.1461‐0248.2005.00829.x

Gerhold,P.,Cahill,J.F.,Winter,M.,Bartish, I.V.,&Prinzing,A. (2015).Phylogeneticpatternsarenotproxiesofcommunityassemblymech-anisms(theyarefarbetter).Functional Ecology, 29,600–614.https://doi.org/10.1111/1365-2435.12425

Gotelli,N.J.,&Graves,G.R.(1996).Null models in ecology.Washington,D.C.:SmithsonianInstitutionPress.

Graham,C.H.,&Fine,P.V.A.(2008).Phylogeneticbetadiversity:Linkingeco-logicalandevolutionaryprocessesacrossspaceintime.Ecology Letters, 11,1265–1277.https://doi.org/10.1111/j.1461‐0248.2008.01256.x

Gravel,D.,Canham,C.D.,Beaudet,M.,&Messier,C.(2006).Reconcilingnicheandneutrality:Thecontinuumhypothesis.Ecology Letters, 9, 399–409.https://doi.org/10.1111/j.1461‐0248.2006.00884.x

Guindon,S.,&Gascuel,O. (2003).Asimple, fastandaccuratemethodto estimate large phylogenies by maximum‐likelihood. Systematic Biology, 52, 696–704.

Guo,X.,Feng,J.,Shi,Z.,Zhou,X.,Yuan,M.,Tao,X.,…Zhou,J. (2018).Climatewarming leadstodivergentsuccessionofgrasslandmicro-bial communities.Nature Climate Change, 8, 813–818. https://doi.org/10.1038/s41558‐018‐0254‐2

Hardy,O.J.,Couteron,P.,Munoz,F.,Ramesh,B.R.,&Pélissier,R.(2012).Phylogeneticturnoverintropicaltreecommunities:Impactofenvi-ronmental filtering, biogeography and mesoclimatic niche conser-vatism.Global Ecology and Biogeography, 21,1007–1016.https://doi.org/10.1111/j.1466‐8238.2011.00742.x

Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for lightcauses plant biodiversity loss after eutrophication. Science, 324, 636–638.https://doi.org/10.1126/science.1169640

He,C.E.,Liu,X.,Fangmeier,A.,&Zhang,F.(2007).Quantifyingthetotalairborne nitrogen input into agroecosystems in the North ChinaPlain.Agriculture, Ecosystems and Environment, 121,395–400.https://doi.org/10.1016/j.agee.2006.12.016

Hubbell,S.P.(2001).The unified neutral theory of biodiversity and biogeog-raphy.Princeton,NJ:PrincetonUniversityPress

Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian infer-enceofphylogenetictrees.Bioinformatics, 17,754–755.https://doi.org/10.1093/bioinformatics/17.8.754

Isbell,F.,Tilman,D.,Polasky,S.,Binder,S.,&Hawthorne,P.(2013).Lowbiodiversity state persists twodecades after cessationof nutrientenrichment.Ecology Letters, 16, 454–460. https://doi.org/10.1111/ele.12066

Jiang,L.,Joshi,H.,Flakes,S.K.,&Jung,Y. (2011).Alternativecommu-nitycompositionalanddynamicalstates:Thedualconsequencesofassemblyhistory.Journal of Animal Ecology, 80,577–585.https://doi.org/10.1111/j.1365‐2656.2010.01799.x

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch,G., … Wirth, C. (2011). TRY – A global database of planttraits. Global Change Biology, 17, 2905–2935. https://doi.org/10.1111/j.1365‐2486.2011.02451.x

Kembel,S.W.,Cowan,P.D.,Helmus,M.R.,Cornwell,W.K.,Morlon,H.,Ackerly,D.D.,…Webb,C.O.(2010).Picante:Rtoolsforintegratingphylogeniesandecology.Bioinformatics, 26,1463–1464.https://doi.org/10.1093/bioinformatics/btq166

Kraft,N. J.B.,Comita, L. S.,Chase, J.M., Sanders,N. J., Swenson,N.G.,Crist, T.O.,…Myers, J.A. (2011).Disentangling thedriversofβdiversityalong latitudinalandelevationalgradients.Science, 333, 1755–1758.

Lande,R. (1993).Risksofpopulationextinctionfromdemographicandenvironmentalstochasticityandrandomcatastrophes.The American Naturalist, 142,911–927.https://doi.org/10.1086/285580

Lande,R.,Engen,S.,&Saether,B.‐E.(2003).Stochastic population dynam-ics in ecology and conservation.Oxford,UK:OxfordUniversityPress.

Larkin,M.A.,Blackshields,G.,Brown,N.P.,Chenna,R.,McGettigan,P.A.,McWilliam,H.,…Higgins,D.G.(2007).ClustalWandClustalX

version 2.0. Bioinformatics, 23,2947–2948.https://doi.org/10.1093/bioinformatics/btm404

Law, R., & Morton, R. D. (1993). Alternative permanent states ofecological communities. Ecology, 74, 1347–1361. https://doi.org/10.2307/1940065

Leibold,M.A.,&McPeek,M.A. (2006).Coexistenceof thenicheandneutral perspectives in community ecology. Ecology, 87, 1399–1410. https://doi.org/10.1890/0012‐9658(2006)87[1399:COTNAN]2.0.CO;2

Levine, J.M.,Bascompte, J.,Adler,P.B.,&Allesina,S. (2017).Beyondpairwisemechanismsof species coexistence in complex communi-ties.Nature, 546,56–64.https://doi.org/10.1038/nature22898

Matthies, D., Bräuer, I., Maibom, W., & Tscharntke, T. (2004).Population size and the risk of local extinction: Empirical ev-idence from rare plants. Oikos, 105, 481–488. https://doi.org/10.1111/j.0030‐1299.2004.12800.x

Myers,J.A.,Chase,J.M.,Crandall,R.M.,&Jiménez,I.(2015).Disturbancealtersbeta‐diversitybutnottherelative importanceofcommunityassembly mechanisms. Journal of Ecology, 103, 1291–1299.https://doi.org/10.1111/1365-2745.12436

Myers,J.A.,Chase,J.M.,Jiménez,I.,Jørgensen,P.M.,Araujo‐Murakami,A.,Paniagua‐Zambrana,N.,&Seidel,R.(2013).Beta‐diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassembly.Ecology Letters, 16,151–157.https://doi.org/10.1111/ele.12021

Niu,S.,Wu,M.,Han,Y.,Xia, J.,Zhang,Z.,Yang,H.,&Wan,S. (2010).Nitrogen effects on net ecosystem carbon exchange in a tem-perate steppe. Global Change Biology, 16, 144–155. https://doi.org/10.1111/j.1365‐2486.2009.01894.x

Niu,S.,Yang,H.,Zhang,Z.,Wu,M.,Lu,Q.,Li,L.,…Wan,S.(2009).Non‐additiveeffectsofwaterandnitrogenadditiononecosystemcarbonexchange inatemperatesteppe.Ecosystems, 12,915–926.https://doi.org/10.1007/s10021-009-9265-1

Oksanen,J.,Blanchet,F.G.,Friendly,M.,Kindt,R.,Legendre,P.,McGlinn,D.,…Wagner,H.(2018).vegan: Community ecology package.RPackageVersion,2.5‐2,http://CRAN.R‐project.org/package=vegan

Petchey,O.L.,&Gaston,K.J.(2002).Functionaldiversity(FD),speciesrichness and community composition.Ecology Letters, 5, 402–411. https://doi.org/10.1046/j.1461‐0248.2002.00339.x

Purvis, A., Agapow, P. M., Gittleman, J. L., & Mace, G. M. (2000).Nonrandomextinctionandthelossofevolutionaryhistory.Science, 288,328–330.https://doi.org/10.1126/science.288.5464.328

Qian,H.,&Jin,Y.(2016).Anupdatedmegaphylogenyofplants,atoolforgeneratingplantphylogeniesandananalysisofphylogeneticcom-munity structure. Journal of Plant Ecology, 9, 233–239. https://doi.org/10.1093/jpe/rtv047

RCoreTeam.(2018).R:Alanguageandenvironmentforstatisticalcom-puting.R Foundation for Statistical Computing, 1,409.http://www.R–project.org

Reich, P.B.,Walters,M.B.,&Ellsworth,D. S. (1997). From tropics totundra:Globalconvergence inplant functioning.Proceedings of the National Academy of Sciences of the United States of America, 94, 13730–13734.https://doi.org/10.1073/pnas.94.25.13730

Ricklefs,R.E. (2006).Evolutionarydiversificationandtheoriginofthediversity–environment relationship. Ecology, 87, 3–13. https://doi.org/10.1890/0012‐9658(2006)87[3:EDATOO]2.0.CO;2

Ricklefs,R. E. (2008).Disintegrationof theecological community.The American Naturalist, 172,741–750.https://doi.org/10.1086/593002

Saavedra, S., Rohr, R. P., Bascompte, J., Godoy, O., Kraft, N. J. B., &Levine,J.M.(2017).Astructuralapproachforunderstandingmulti-speciescoexistence.Ecological Monographs, 87,470–486.https://doi.org/10.1002/ecm.1263

Schroeder,P. J.,& Jenkins,D.G. (2018).Howrobustarepopularbetadiversityindicestosamplingerror.Ecosphere, 9,e02100.https://doi.org/10.1002/ecs2.2100

Page 12: Resource addition drives taxonomic divergence and phylogenetic … · 2020. 6. 20. · tems world‐wide (Vitousek, Mooney, Lubchenco, & Melillo, 1997), it is essential to understand

2132  |    Journal of Ecology YANG et Al.

Stevens,M.H.H.,Bunker,D.E.,Schnitzer,S.A.,&Carson,W.P.(2004).Establishment limitation reduces species recruitment and speciesrichness as soil resources rise. Journal of Ecology, 92,339–347.https://doi.org/10.1111/j.0022‐0477.2004.00866.x

Suding,K.N.,Collins,S.L.,Gough,L.,Clark,C.,Cleland,E.E.,Gross,K.L.,…Pennings,S. (2005).Functional‐andabundance‐basedmech-anisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387–4392.https://doi.org/10.1073/pnas.0408648102

Swenson,N.G.(2011).Phylogeneticbetadiversitymetrics,traitevolu-tionandinferringthefunctionalbetadiversityofcommunities.PLoS ONE, 6,e21264.https://doi.org/10.1371/journal.pone.0021264

Vannette, R. L., & Fukami, T. (2017). Dispersal enhances beta diver-sity in nectar microbes. Ecology Letters, 20, 901–910. https://doi.org/10.1111/ele.12787

Vitousek, P.M.,Mooney,H.A., Lubchenco, J.&Melillo, J.M., (1997).Humandomination of Earth’ s ecosystems.Science, 277, 494–499. https://doi.org/10.1126/science.277.5325.494

Webb,C.O.,Ackerly,D.D.,&Kembel,S.W.(2008).Phylocom:Softwarefortheanalysisofphylogeneticcommunitystructureandtraitevo-lution.Bioinformatics, 24,2098–2100.https://doi.org/10.1093/bioinformatics/btn358

Whittaker,R.H.(1960).VegetationoftheSiskiyouMountains,Oregonand California. Ecological Monographs, 30, 279–338. https://doi.org/10.2307/1943563

Wright,I.J.,Reich,P.B.,&Westoby,M.(2001).Strategyshiftsinleafphys-iology,structureandnutrientcontentbetweenspeciesofhigh‐andlow‐rainfallandhigh‐andlow‐nutrienthabitats.Functional Ecology, 15,423–434.https://doi.org/10.1046/j.0269‐8463.2001.00542.x

Wright,I.J.,Reich,P.B.,Westoby,M.,Ackerly,D.D.,Baruch,Z.,Bongers,F., … Villar, R. (2004). The worldwide leaf economics spectrum.Nature, 12,821–827.https://doi.org/10.1038/nature02403

Xia,J.,Niu,S.,&Wan,S.(2009).Responseofecosystemcarbonexchangetowarmingandnitrogenadditionduringtwohydrologicallycontrast-ing growing seasons in a temperate steppe.Global Change Biology, 15,1544–1556.https://doi.org/10.1111/j.1365‐2486.2008.01807.x

Xia, J.,&Wan, S. (2008).Global responsepatternsof terrestrial plantspeciestonitrogenaddition.New Phytologist, 179,428–439.https://doi.org/10.1111/j.1469‐8137.2008.02488.x

Xu, Z., Li,M.‐H., Zimmermann,N. E., Li, S.‐P., Li,H., Ren,H.,… Jiang,L. (2018). Plant functional diversitymodulates global environmen-talchangeeffectsongrasslandproductivity.Journal of Ecology, 106, 1941–1951.https://doi.org/10.1111/1365‐2745.12951

Yan,Z.,Kim,N.,Han,W.,Guo,Y.,Han,T.,Du,E.,&Fang,J.(2015).Effectsofnitrogenandphosphorussupplyongrowthrate,leafstoichiome-try, and nutrient resorption ofArabidopsis thaliana.Plant and Soil, 388,147–155.https://doi.org/10.1007/s11104‐014‐2316‐1

Yang,H.,Jiang,L.,Li,L.,Li,A.,Wu,M.,&Wan,S.(2012).Diversity‐de-pendent stability under mowing and nutrient addition: Evidencefrom a 7‐year grassland experiment. Ecology Letters, 15, 619–626. https://doi.org/10.1111/j.1461‐0248.2012.01778.x

Yang, H., Li, Y., Wu, M., Zhang, Z., Li, L., & Wan, S. (2011). Plantcommunity responses to nitrogen addition and increasedprecipitation: The importance of water availability and spe-cies traits. Global Change Biology, 17, 2936–2944. https://doi.org/10.1111/j.1365‐2486.2011.02423.x

Yang,X.,Li,G.,Li,S.,Xu,Q.,Wang,P.,Song,H.,…Jiang,L.(2019).Datafrom:Resourceadditiondrivestaxonomicdivergenceandphyloge-netic convergence of plant communities. Dryad Digital Repository, https://doi.org/10.5061/dryad.nh1s3k3

Yang, X., Yang, Z., Tan, J., Li,G.,Wan, S., & Jiang, L. (2018).Nitrogenfertilization,notwateraddition,altersplantphylogeneticcommunitystructure in a semi‐arid steppe. Journal of Ecology, 106, 991–1000. https://doi.org/10.1111/1365‐2745.12893

Zanne,A.E.,Tank,D.C.,Cornwell,W.K.,Eastman,J.M.,Smith,S.A.,FitzJohn, R.G.,…Beaulieu, J.M. (2014). Three keys to the radia-tionofangiospermsintofreezingenvironments.Nature, 506,89–92.https://doi.org/10.1038/nature12872

Zhang,X.,Liu,W.,Bai,Y.,Zhang,G.,&Han,X. (2011).Nitrogendepo-sition mediates the effects and importance of chance in chang-ing biodiversity. Molecular Ecology, 20, 429–438. https://doi.org/10.1111/j.1365‐294X.2010.04933.x

Zhang,Y.,Xu,W.,Wen,Z.,Wang,D.,Hao,T.,Tang,A.,&Liu,X.(2017).Atmospheric depositionof inorganicnitrogen in a semi‐arid grass-landofInnerMongolia,China.Journal of Arid Land, 9,810–822.https://doi.org/10.1007/s40333‐017‐0071‐x

How to cite this article:YangX,LiG,LiS,etal.Resourceadditiondrivestaxonomicdivergenceandphylogeneticconvergenceofplantcommunities.J Ecol. 2019;107:2121–2132. https://doi.org/10.1111/1365‐2745.13253