RESERVORIOS DIAPOSITIVAS

download RESERVORIOS DIAPOSITIVAS

of 204

Transcript of RESERVORIOS DIAPOSITIVAS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    1/204

    RESERVOIRI

    PP-324 A

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    2/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    3/204

    rocks

    Rocks continental Rocks marine

    sediments

    Sediments water

    sweet

    transport and

    sedimentation

    of particles

    transport in

    solution and

    precipitation

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    4/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    5/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    6/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    7/204

    Igneous RocksAn igneous rock is a

    rock that had melted(derriti) but it later

    cooled and hardened

    (endureci)

    Metamorphic

    Rocks Is an igneous o

    sedimentary rock thahas been changed(alterada) by heat andpressure.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    8/204

    Source Rock-A rock with abundant hydrocarbon-rone organic matter

    Reservoir Rock -A rock in which oil and gasccumulates:

    Porosity - space between rock grains in which oilaccumulates

    Permeability - passage-ways between pores throughwhich oil and gas moves

    Seal Rock -A rock through which oil and gas cannotmove effectively (such as mudstone and claystone)

    Trap- The structural and stratigraphic configuration thatfocuses oil and gas into an accumulation

    Migration Route - Avenues in rock through which oil andgas moves from source rock to trap

    Petroleum System Elements

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    9/204

    Salt

    Dome

    Fault

    Unconformi

    ty

    Pinchou

    t

    Anticline

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    10/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    11/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    12/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    13/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    14/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    15/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    16/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    17/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    18/204

    Porosity

    i. Define: Porosity = Total pore volume in the rock sampleTotal rock sample volume (solid+pore)

    ii. Mathematically:

    iii. Range of porosity: 0.1 to 0.3

    iv. Use reservoir core to measure porosity

    v. Limitations

    a. Rock sample must be large enough to obtain many sandgrains and many pores to be representative

    b. Features sample has a different type of pore spacefrom sandstone

    lV

    V

    Fluid Saturation

    i. Water saturation, Sw = Volume filled by waterTotal pore volume

    Oil saturation, So = Volume filled by oilTotal pore volume

    ii. If oil and water is the only fluid present, Sw + So = 1

    iii. In most oil fields Sw tends to increase as porosity decrease

    iv. Typical value of Sw 0.1 to 0.5

    v. Free gas also present in oil pools,

    Free gas saturation, Sg = Volume filled by free gasTotal pore volume

    vi. 3 factors should always be remembered conceiving fluidsaturation

    a. It vary from place to place in reservoir rock; Sw highein less porous sections due to gravity segregation of thgas, oil and water

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    19/204

    Example

    One of the most important determinations for anoil accumulation is the volume of oil in place.Suppose that in geological evidence is known thatthe area extent of an oil reservoir is 2 millionsqft and that the thickness of the bay zone is30 ft. If the sand porosity and water saturationare 0.2 and 0.3, respectively, how much oil ispresent?

    Solution:

    Volume of bay = 2,000,000 ft3 x 30 ft = 6x107ft3

    Total pore volume = 0.2 x 6x107 = 12x106 ft3

    Then Sw+So=1; So = 1 - 0.3 = 0.7

    Total oil volume = 0.7 x 12x106 = 8.4x106 ft3

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    20/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    21/204

    b. Vary with cumulative withdrawal; oil producedreplace by water or gas

    c. Oil and gas saturation frequently expressed interms of HC-filled pore space.

    Pore space = V

    HC-filled pore space: SoV + SgV = (1-Sw)V

    Therefore,Oil saturations, Gas saturations,

    w

    o

    w

    oS

    SVS

    VSS

    1)1(

    0'

    w

    g

    w

    g

    g S

    S

    VS

    VSS

    1)1(

    '

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    22/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    23/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    24/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    25/204

    - MER (Most Efficient Recovery)i. MER rate: based on most oil and gas that

    can extracted for a sustained period oftime without harming the formation

    ii. Generally, most well cannot work 24 hrs, 7

    days a week could damage formation

    - Multiple Completions

    i. Drilling single well at several differentdepth in formation

    ii. Reason: increase production from a singlewell

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    26/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    27/204

    INJECTION GAS

    PRODUCED FLUID

    PRESSURE (PSI)

    DEPTH(

    FT

    TVD)

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0

    1000 20000

    OPERATING GAS LIFT V

    CASING PRESSURE WHEWELL IS BEING GAS LIFT

    FBH

    CONSTANT FLOW GAS LIF

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    28/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    29/204

    DISSOLVED GAS DRIVEDISSOLVED GAS DRIVE

    GAS CAP DRIVEGAS CAP DRIVE

    WATER DRIVE

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    30/204

    Sistema cerrado (un pozo)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    31/204

    Field Production

    .Primary Recovery (NaturalMethods)

    i. 1st method of producing oil from awell

    ii. Solution gas drive

    a. pressure inside reservoir relievedwhen well punctures and gastrapped in oil forms bubbles

    b. Bubbles grow, exert pressurepush oil to well and up to surface(20-30%)

    iii. Gas cap drive

    a. If contain gas cap, drill welldirectly into oil layer gas capexpand

    b. Expanding gas pushes oil into well(40%)

    iv. Water drive scenario

    a. Water layer press against oil layer

    b. Water pushes oil towards surfaceand replace it within the pores ofthe reservoir rock

    c. Highest recovery: up to 75%

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    32/204

    2.Secondary Recovery

    i. Used to enhance orreplace primary

    techniquesii. Water flooding

    a. Additional injectionwell is drilled into thereservoir

    b. Pressure waterinjected

    c. Water displaces the oilin reservoir

    iii. Mechanical Lift

    a. Reciprocating orplunger pumping calledhorsehead

    b. Pump barrel loweredinto well on 6 inch

    string steel rod(sucker rods)

    c. Up and down movementforce oil up to tubing

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    33/204

    3. Tertiary Recovery

    i. When 2nd recovery no longereffective

    ii. Thermal Process

    a. Steam Flooding steam injected,heats oil to flow readily

    b. in-situ combustion (fire flooding) air injected, a portion if oilignited , combustion front moves

    away from air injection welltoward production well

    iii. CO2 injection

    a. CO2 injected, mix with oil reduces forces that hold oil to

    pores, allows easily displace byinjected water

    iv. Chemical recovery

    i. Inject polymer into water phaseof reservoir trap, large molecule

    add bulk to water, waterthicken, wash oil from pores

    ii. Sometimes surfactant added toreduce force water to solid

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    34/204

    4. Improvement of formationcharacteristic

    i. To aid 3rd

    recovery becauseproduction drop

    ii. Acidizing

    a. Injecting acid into a solubleformation (exp: carbonate) to

    dissolve rocksb. Enlarge the existing voids and

    increase permeability

    iii. Hydraulic Fracturing

    a. Inject a fluid into formation

    under significant pressure toenlarge existing fracture andcreate new fracture

    b. This fracture extend outwardfrom well bore into formationtherefore increasepermeability

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    35/204

    Petroleum ProductionSystem

    . Petroleum hydrocarbon production

    involve 2 districtsi. Reservoir a porous medium with a unique

    storage and flow characteristic

    ii. Artificial structures includes well, bottomhole, surface gathering, separation and

    storage facilities

    2. Production Engineering - attempts to maximizeproduction in a cost effective way

    3. Appropriate production technology and methodrelated directly with other major area ofpetroleum engineering such as formulationevaluation, drilling and reservoir engineering

    4. Petroleum Hydrocarbon

    i. Mixture of many compounds petroleum

    and natural gasii. Mixture depending on its composition and

    conditions of P and T occur as liquid or gasor mixture of 2 phase

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    36/204

    4. Oil Gravity

    i. Commonly expressed in degree API

    ii. The terms heavy, medium and light crudecover approximately the ranges 10 to 20o, 20to 30o and over 30o API, respectively

    5. Instantaneous Water/Oil Ratio (WOR)i. Homogeneous formation produce only oil and

    water (no free gas) then

    ii. The pressure drop in oil may differ slightlyfrom that in the water owing to effect ofcapillary forces, so dividing the equationsabove, results in

    5.131

    5.141

    60

    F

    o

    oSGAPI

    dl

    dPkq

    o

    oo

    dl

    dPkq

    w

    ww

    wo

    ow

    o

    w

    k

    k

    q

    q

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    37/204

    iii. At the surface

    iv. Or from above equation

    (surface)

    Where Bo is oil formation volume factor:

    v. Bo is defined as ratio of the volume of oil(plus the gas in solution) at reservoir T and Pto the volume of oil at standard conditions(so-called stock-tank oil)

    o

    wo

    oo

    w

    q

    qB

    Bq

    q

    wo

    owo

    k

    kBWOR

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    38/204

    6. Instantaneous Gas/Oil Ratio (GOR)

    i. Homogeneous formation producing only oil andgas (no water production, although water maybe present in the formation)

    ii. Where the pressure drop across the distancedl is the same for both fluid, if capillaryforces are neglected. Dividing

    iii. Stock-tank oil rate will be qo/Bo, and surfacefree gas rate qg/Bg. In addition to free gasproduced from the formation, each barrel of

    stock-tank oil will release a volume Rs of gas,then the total surface gas/oil ratio is

    dl

    dPkq

    o

    oo

    dl

    dPkq

    g

    g

    g

    go

    og

    o

    g

    k

    k

    q

    q

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    39/204

    iv. At the surface

    v. Therefore

    (surface)

    7. Productivity Index

    i. Bottom hole flowing pressure - producingpressure (Pwf) at the bottom of the well

    ii. The difference bettwen this and the well stati

    pressure (Ps) is

    og

    os

    oo

    gg

    sqB

    qgBR

    Bq

    BqR

    gog

    ogo

    skB

    kBRGOR

    wfs PPDrawdown

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    40/204

    iii. Ratio of producing rate of the well to itsdraw down is called Producing Index.

    iv. If the rate q (bbl/day) of stock-tank liquidand draw down (psi), the productivity index

    (J) is defined as

    (bbl/day/psi)

    iii. Productivity index is based on the gross liquidrate (oil rate + water rate)

    iv. Specific productivity index, Js is the numberof barrel (gross) of stock-tank liquidproduced/day/psi/ft net thickness

    wfs PP

    qJ

    )(wfs

    sPPh

    qhJJ

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    41/204

    Rock Permeability

    i. Measurement of the fluid ability toflow through the connected pores ofthe reservoir.

    ii. A function of a degree of

    interconnection between pores in therock

    iii. The concept was introduced by Darcyin a classical experimental work fromboth petroleum engineering and groundwater hydrology. Is expressed inmilidarcies or Darcies.

    iv. The flow rate can be measured againstpressure (head) for different porousmedia

    v. The flow rate of fluid thru specificporous medium is linearly proportionaltop head difference betwen the inlet

    and outlet and characteristic propertyof the medium, thus u = kDP

    Where k = permeability and is acharacteristic property of the porousmedium

    vi. The rock permeability is measured from

    core samples (plugs or whoke core) inthe laboratory or it could also becalculated from well testing

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    42/204

    a. Suppose a cylindrical sample (core) of a porousrock is fully saturated with liquid of viscosity.

    b. Experimentally for a particular rock samplethe expression

    DarcyEquation

    where k is constant

    c. Q will increase a k increases, the higher thevalue of k the more readily will liquid flowthrough the core

    l

    A

    Q

    P

    1P

    2

    )(21PPA

    lQ

    k

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    43/204

    d. If in flow rate contain two fluid (oil andwater), free gas is not present then,

    d. If Q (cm3/s), (cp), l (cm) A (cm2), and P1 andP2 (atm), the value of k in Darcy is

    1 Darcy = 10-8 cm2

    )(21PPAlQk ooo

    )(21PPA

    lQk www

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    44/204

    NUCLEOS PRESERVADOS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    45/204

    PERFIL DE RADIACION

    GAMMA

    Objetivo: Puesta enprofundidad.

    Gamma Total

    Gamma espectral

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    46/204

    Equipo de Gamma

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    47/204

    Equipode

    Gamma

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    48/204

    Equipo de Gamma

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    49/204

    Puesta en Profundidad

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    940 945 950 955 960 965 970 975 980

    Profundidad (mbbp)

    Gamma(API)

    GR Pozo Gamma Corona

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    50/204

    PLAN DE TRABAJO

    Considerar:

    Objetivo del trabajo

    Recuperacin y estado del

    ncleo

    Urgencia de datos

    En ncleos preservados ver

    estado de preservacin y estado

    de la muestra (necesidad defreezar el ncleo)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    51/204

    MANIPULEO DE NUCLEOS

    EN LABORATORIO

    Marcar encastres

    Marcar techo y base general, ytecho y base de cada metro

    Marcar lnea que una puntos de

    mayor inclinacin de las capas,lnea azul o verde. Marcar lnea

    roja a la derecha

    Numerar trozos

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    52/204

    MANIPULEO DE NUCLEOS

    EN LABORATORIO

    Estimacin y localizacin de

    tramos de mala recuperacin Marcar profundidad cada 50 cm

    Marcar ubicacin de plugs y

    numerar. Duplicacin de nmeros de

    trozos y encastres.

    Planilla de pozo

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    53/204

    Marcado de lneas de

    orientacin

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    54/204

    Marcado de lneas de

    orientacin

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    55/204

    Numeracin de trozos

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    56/204

    LABORATO

    RIO

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    57/204

    PLANILLA DE CONTROL

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    58/204

    EXTRACCION DE PLUGS

    De acuerdo al plan de trabajo:

    Seleccionar plenos dimetros

    Seleccionar intervalo de

    muestreo

    Duplicacin de plugs

    Preservacin de plugs

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    59/204

    PLENO DIAMETRO

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    60/204

    PLENO DIAMETRO

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    61/204

    EXTRACCION DE PLUGS

    DE PLENO DIAMETRO

    Con isopar

    Con agua de formacin

    Con nitrgeno lquido

    Con aire

    Dimetro: 38 mm 25 mm

    Longitud: 1.5 cm-6cm Ideal:

    6cm.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    62/204

    EXTRACC

    ION DE

    PLUGS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    63/204

    EXTRACCI

    ON DEPLUGS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    64/204

    EXTRACCI

    ON DE

    PLUGS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    65/204

    EXTRACCIO

    N DE PLUGS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    66/204

    FRENTEADO DEL PLUG

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    67/204

    FRENTEADO DE PLUG

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    68/204

    FRENTEADO DE PLUG

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    69/204

    FRENTEA

    DO DEPLUG

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    70/204

    CORTE Y PULIDO

    Remarcar lneas de orientacin

    y nmero de trozo si esnecesario.

    Cortar longitudinalmente un

    tercio del dimetro total porlnea azul/verde.

    Corte: con agua, isopar,

    nitrgeno lquido, aire.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    71/204

    CORTE DE

    NUCLEO

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    72/204

    CORTAD

    ORA

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    73/204

    CARACTERISTICAS DE

    ROCAS RESERVORIO

    -Porosidad-Permeabilidad

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    74/204

    POROSIDAD

    -Es una medida que indica la relacin entre elespacio poral de la roca reservorio y elvolumen total de la roca reservorio.-Se expresa en porcentaje.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    75/204

    Arenas consolidadas

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    76/204

    PERMEABILIDAD

    Es una medida que indica la facilidad deun fluido a fluir en una roca porosa.

    La unidad que la representa es elDarcy.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    77/204

    FLUIDOS DELRESERVORIO

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    78/204

    Fluidos

    en el reservorio

    Gas

    PetrleoAgua

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    79/204

    Petrleo

    Densidad (API)

    Gradiente (psi / ft)

    Viscosidad (cp)

    Factor de volmen de formacin(Bo)

    Temperatura (F)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    80/204

    Agua de formacin

    Corte de agua (%)

    Salinidad (ppm Cl)

    Gradiente (psi / ft)

    Viscosidad (cp)Factor de volmen de formacin

    (Bw)

    Temperatura (F)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    81/204

    Gas Natural

    Composicin

    Relacin Gas Petrleo (GOR)

    Gradiente (psi / ft)

    Factor de volmen de formacin(Bg)

    Temperatura (F)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    82/204

    Formacion productiva

    -Son aquellas rocas reservorio

    que mantienen fludos

    hidrocarburos entrampados ensu interior.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    83/204

    Trampa para petrleo y

    gas

    Condiciones.-

    Roca fuente.

    Porosidad y permeabilidad.

    Tope y fondo con roca impermeable.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    84/204

    Tipos de reservorio

    -Reservorio de arenisca

    -Reservorio de caliza

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    85/204

    Porosity Determination from Logs Porosity Determination from LogsMost log interpretation techniques in use todayuse a bulk volume rock approachQuantitative rock data must be input into equations toderive values of phi and Sw. For example:Db = x Df + (1 - ) Dm

    Porosity is then derived: = (Dma - Db)/(Dma - Df)

    Values of matrix density are normally assumed:Dma = 2.65 for clean sand

    = 2.68 for limy sands or sandy limes

    = 2.71 for limestone

    = 2.87 for dolomite

    Fluid density is that of the mud filtrate:

    Df = 1.0 (fresh)= 1.0 = 0.73N (salt)

    Where: N = NaCl concentration, ppm x 10-6

    Accurate knowledgeof grain density isessential

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    86/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    87/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    88/204

    Porosity at Net Overburden (NOB)

    Increase in NOB can reduce porosity. Generallythe reduction is 3.0gm/cc dolomite2.32gm/cc -- gypsum2.96gm/cc -- anhydrite3.89gm/cc -- siderite

    Accurate values of grain density are importantbecause grain density is used to correct wirelinelogs for potential sources of error

    Fluid Saturations from CoresThrough knowledge of porosity, permeability

    and residual fluid saturations (oil, water and

    gas), it is possible to predict with a highdegree of accuracy the probable type of fluid

    which will be produced from a given interval.

    Review of the core fluorescence can also be

    an indicator of oil gravity and should be

    factored when type of production is predicted.

    DATA USE

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    89/204

    se of Routine Core Data of Routine Core Dataaboratory measurements of routine coreoperties (phi, k, saturation) are commonly usedr the following purposes:

    to define pay,

    to interpret gas/oil and oil/water contacts,to estimate rate of production,to determine storage capacity and evaluate verticalsweep efficiency by secondary and tertiary recoverymethods

    Wettability : Definitions :Water Wet the water phase is preferentially attracted to

    the surfaces of the grains and water occupies most of thesmall pores. Common in sandstones, especially those thatcontain some shale

    Oil Wet the oil phase is preferentially attracted to the grainsurfaces and the oil occupies most of the small pores. Canoccur in carbonates (particularly those with abundant smallpores) and in some very clean (shale-free) sandstones

    Neutral Wet no preference for either water or oilFractional Wettability certain areas of the rock are oil wet,

    others are water wet due to mineralogical changes or tochanges in adsorption of the oil

    Mixed Wettability the larger pores contain oil (oil wet) andthe smaller pores contain water (water wet). Common in

    carbonate reservoirs with heterogeneous pore geometryFormations generally increase in their degree of water

    wetness above 200C

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    90/204

    Capillary Pressure (1)Capillary pressure exists in a hydrocarbon reservoirfundamentally because of differences in the density ofvarious fluids that affect the pressure gradients:

    Pressure gradient of water = 0.44 psi/ft (density =1gm/cc)Pressure gradient of oil = 0.33 psi/ft (density =0.8gm/cc)*Pressure gradient of gas = 0.09 psi/ft (density =0.2gm/cc)*** 30O API** 5000psi

    As hydrocarbons accumulate in a trap, the difference indensity between the fluids results in a vertical segregationof the fluids: gas on oil, oil on waterFor example, at 10,000ft, oil pressure = 3300 psi andwater pressure = 4400 psi

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    91/204

    Capillary Pressure

    Capillary pressure in reservoirs can be defined asthe difference between the force actingdownwards (hydrostatic head, related to density

    contrasts) and the force acting upwards(buoyancy, related to pore throat size, interfacialtension and contact angle)

    Capillary pressure is measured in the laboratorygenerally using plug samples or rotary sidewallcores. Occasionally cuttings samples are usedIn the most common type of test, a non-wetting

    phase fluid (e.g. mercury) is injected into the rockat slowly increasing values of pressure. Theamount of fluid injected at each increment ofpressure is recorded and is presented as acapillary curve

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    92/204

    Capillary Pressure andWater Saturation (2)Reservoir Sw decreases with increasing heightabove the free water level (the level at which thereservoir produces only water)Zones that are at irreducible water saturation

    (Swirr) produce only hydrocarbons. Swirr occurswhere sufficient closure and hydrocarbon columnexistThe transition zone occurs between the free waterlevel and the Swirr level. Formations in this zoneproduce water and hydrocarbonsThe magnitude of the Swirr and the thickness ofthe transition zone are a function of the pore size

    distributionSmall pore throats = low permeability = high Swirr

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    93/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    94/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    95/204

    Initial Reservoir Fluid Distribution

    The amount of Sw at any height in the reservoir isa function of:Pore throat size, wettability, interfacial tension,saturation history and differences in fluid densitiesThese variables control capillary pressure,therefore there is a relationship between Sw, h,Pc and pore throat sizeLaboratory measurements of capillary pressure

    are used to relate Sw to height above the freewater level as long as appropriate values oflaboratory and reservoir interfacial tension andcontact angle are usedLaboratory tests can be made with different fluidsoil, brine, mercury

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    96/204

    Capillary Pressure: :

    Static MeasurementStatic Method Mercury injectionWidely used, rapid, economic and simple. Mercury isthe non-wetting phase and is injected into a cleaned andevacuated core plug at successively increasingpressures from 0 to 60,000psiThe core plug cannot be used for further testingbecause of residual Hg saturation

    Hg capillary pressure data must be scaled to reservoirconditions using the following formula:

    . Conversion factor= Mercury Pc = Sm Cos mWater-Air Pc Sw Cos wWhere:

    Sm = surface tension of mercury

    Sw = surface tension of water

    m = contact angle of mercury against a solid (140 degrees)

    w = contact angle of water against a solid (0 degrees)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    97/204

    Capillary Pressure:Dynamic MeasurementDynamic Method -- CentrifugeGenerally uses oil-brine fluid system but actualreservoir fluids can also be usedRapid, more complicated and more expensive than

    mercury Pc measurementsRequires preserved or restored-state core plugsLarge (2 inch) plugs are required. These can be used forfurther analysisBrine saturated samples are centrifuged at everincreasing speeds under oil to obtain a relationshipbetween capillary pressure and saturation

    Capillary Pressure: Rock ControlsPore geometry is a fundamental control oncapillary pressure, in particular the size of thepore throats: the capillary pressurecharacteristics change with changes in RockType (pore geometry)In heterogeneous reservoirs, it is essential to

    collect capillary pressure data for each RockType that is present in the reservoirAll other factors being equal, the lower thepermeability the smaller the pore throats thehigher the Pce and the higher the SwirrCapillary pressure data is used to determine theheight above free water (column height) for eachRock Type and to improve the prediction of the

    type of fluid produced (hydrocarbon/water)

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    98/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    99/204

    Use of Pc in Reservoir Simulationand Reservoir CharacterizationFor purposes of simulation and characterization, it isnecessary to know the Free Water Level (FWL)When FWL is known it is possible to predict Sw at anyheight in the reservoir even in areas that lack wellpenetrationsThis is particularly important in the following cases:Areas with long transition zones and no obvious FWLAreas with misidentified or unknown FWLAreas with unknown or incorrect Rw

    Areas where a, m and/or n are incorrect or unknownAreas with multiple Rock Types (where a, m,n and Swvary as a function of Rock Type)In these situations, it is possible to solve for Sw usingeither the Pc curves or the Leverett J Function.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    100/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    101/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    102/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    103/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    104/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    105/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    106/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    107/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    108/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    109/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    110/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    111/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    112/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    113/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    114/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    115/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    116/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    117/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    118/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    119/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    120/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    121/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    122/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    123/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    124/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    125/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    126/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    127/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    128/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    129/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    130/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    131/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    132/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    133/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    134/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    135/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    136/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    137/204

    Clculo de Reservas de

    Petrleo y Gas

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    138/204

    Definicin de Reservas

    Petrleo crudo

    Gas: Gas Natural, Gas

    condensado

    Lquidos del Gas Natural

    Sustancias asociadas

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    139/204

    Estimacin de Reservas

    Basados en:

    Interpretacin de Datos de

    Ingeniera y/o Geologa

    disponibles a la fecha. Condiciones econmicas

    existentes como precios , costos

    y mercado.

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    140/204

    RESERVAS FACTIBLES DE

    RECUPERAR

    ENERGIA NATURAL(RECUPERACION PRIMARIA)

    METODOS DE RECUPERACION

    MEJORADA

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    141/204

    Los Clculos de Reservas se pueden

    realizar:

    Mtodos Volumtricos

    Balance de materiales

    Anlisis de Curva deDeclinacin

    Simulacin de Reservorios

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    142/204

    Mtodo Volumetrico

    Mapa de curvas de nivel de

    la zona productiva (arena net

    productiva).

    Se emplean dos mtodos para

    determinar el volumen bruto:

    Trapezoidal V = h*( 0.5*A0 + A1+A2+A3+0.5*A4

    Piramidal V = h (A0 + 4*A1+2*A2+4*A3+A4)3

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    143/204

    Mtodo Volumtrico - Reservorios

    de Petrleo

    Para el clculo de petrleo insitu:

    N = 7758*V**(1-Swi) / Boi

    STBPara el petrleo remanente:

    Nf = 7758*V**(1-Swg) /

    Bo

    Nf = 7758*V**(1-Sw -

    Sg) / BoEl Factor de recobro F.R. :F.R. = Np/N = 1 - Nf/N

    V = Volumen bruto en Acres*ft

    = Porosidad en fraccin

    Swi = Saturacin inicial de agua FraccinBoi= Factor de volumen de formacin de petrleo inicial

    Bo = factor de volumen de formacin de petrleo final

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    144/204

    Mtodo Volumtrico -

    Reservorios de Gas

    Para el clculo de gas insitu:G = 43560*V**(1-Swi) / BgiSCF

    Para el gas remanente:

    Ga = 43560*V**(Sgr) / Bga

    El Factor de recobro F.R. :

    F.R. = Gp/G =(Bga-Bgi)/Bgi

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    145/204

    Mtodo Volumtrico - Reservorios de Gas

    Condensado

    Mtodo 1.o = 141.5 / (131.5 + API)

    Mo= 6084/(API-5.9)

    mw = R g 28.97 + 350 o

    379

    nw = R + 350 o

    379 MoMw = 0.07636 Rg + 350 o

    0.002636 R + 350 o

    Mo

    w = Mw/28.97=Rg + 4584 o

    R + 132800o

    Mo

    Encontramos la Tr y Pr yluego el valor de Z luego

    determinamos:

    Gw = 379 PV/ ZRT

    V = 43560 AH (1-Swi)

    R = 10.73 Psia-ft3 / lb-mol R

    Fraccin de gas:

    fg = R /(R + 132800o/Mo

    Cantidad de gas:

    G = Gw* fg

    Cantidad de lquidos

    N = Gw fg/R

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    146/204

    Mtodo Volumtrico - Reservorios de Gas

    Condensado

    Mtodo 2.avg gas prod. = gt ;

    gt = qpsps + qstst

    qps +qstConociendo STB

    ond./MMSCF y

    tilizando una grfica

    esarrollada por Standing

    odemos determinar una

    elacin (R)= u/gt ymediante la correlacin

    mprica desarrollada por

    tanding podemos

    ncontrar Bo para

    eservorio deondensado.

    Existe una grfica de Bo esfuncin de:

    R SCF/STB, gt , st ,

    Temperatura reserv.

    P reservorio ,

    a altas relaciones gas/petrCantidad de lquidos

    N = 7758Ah (1-Swi)/ B

    Cantidad de gas :

    G = Rsi* N

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    147/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    148/204

    Anlisis de Curvas de declinacin

    Aplicaciones Mecanismo PLOT

    Hiperblico Gas Solucin log (Np) vs log (q)

    Exponencial Gas Solucin Np vs q

    Intrusion agua con

    corte agua = 0Np vs q

    2

    Lineal Intrusion agua con

    corte agua 0Np vs corte (petroleo/agua)

    Exponencial Intrusion agua, donde

    produccion de fluido

    total permanece cte.

    Np vs q

    Armnica Intrusin de agua de flanco Np vs q

    Lineal Impulsin capa gas

    con bajo GOR,

    gas solucion = 0

    Np vs 1/p

    Hiperblico

    Impulsin capa gas

    con bajo GOR bajo

    gas en solucin

    log (Np) vs log (q) b = 2,0

    Impulsin capa gas

    despues que GOC alcance

    a los pozos productores

    Np vs GOR

    Np vs Profundidad del GOC

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    149/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    150/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    151/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    152/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    153/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    154/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    155/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    156/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    157/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    158/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    159/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    160/204

    Ecuacin de Balance de Materiales -

    Reservoriosde Gas

    Para el clculo tenemos:masa inicial- masa final final = masa

    removida

    ni - nf= n producido del reservorio

    iVi/ziRT - PfVf/zfRT = PscGp/RTscVf= Vi - We + WpBwGBgi -(G -Gp) Bgf= We + WpBwReservorio volumtrico, no hay

    ntrusin de agua entonces Vi=Vf

    f/zf= Pi/zi - Psc TGp/Tsc = b - m Gp

    P/z

    Gp

    MMM SC

    Gi

    Pi/zi

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    161/204

    Ecuacin de Balance de Materiales -

    Reservoriosde Petrleo

    Reservorios No saturado, produccin

    erca al punto de Burbuja no hay intrusin

    e agua, Compresibilidad de la formacin

    agua=0

    Vi = Vf ; Vi = N Boi ;

    Vf = Nf Bof= (N - Np) Bof

    Luego: N Boi = (N - Np) BofN = Np Bof/ (Bof- Boi )

    .R. = (Bof- Boi )/ Bof

    PETROLEO PETROLEO

    AGUA AGUA

    Pi Pb

    Reservorios No saturado, produccin

    cerca al punto de Burbuja no hay intrusinagua , si efectos compresibilidades

    Cf +w = Cf+CwSwi/ (1-Swi)

    N = Np Bof / (Bof - Boi (1- Cw+fDP))

    F.R. = Bof - Boi (1- Cw+fDP)/ Bof

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    162/204

    Ecuacin de Balance de Materiales -

    Reservorios

    de Petrleo

    Reservorios No saturado, produccin

    ebajo al punto de Burbuja no hay

    ntrusin de agua

    Vi = Vf= Vo + Vg;N Boi = (N - Np) Bof + GfBgf

    f = Nrsi - (N-Np)Rs - NpRp siendo Rp = Gp/Np

    N = Np [Bof+ Bg (Rp- Rs)]/ [Bof- Boi + Bg(Rsi-Rs)]

    .R.= [Bof- Boi + Bg(Rsi-Rs)]/ [ Bof+ Bg (Rp- Rs)]i hay intrusin de agua:

    Vi = Vf= Vo + Vg+ Vw

    Vw = We-BwWp

    N ={ Np [Bof+ Bg (Rp- Rs)]- (We-BwWp)}/ [Bof- Boi + Bg

    PETROLEO PETROLEO

    AGUA AGUA

    Pi Pf

    GAS

    Pb

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    163/204

    Ecuacin de Balance de Materiales -

    Reservorios

    de Petrleo

    Reservorios No saturado, produccin

    ebajo al punto de Burbuja no hay

    ntrusin de agua, considerando la

    xpansin del volumen poroso

    N = Np [Bof+ Bg (Rp- Rs)]/ [Bof- Boi + Bg(Rsi-Rs) + Cf+w.R.= [Bof- Boi + Bg(Rsi-Rs) + Cf+w BoiDP ]/ [ Bof+ Bg

    PETROLEO PETROLEO

    AGUA AGUA

    Pi Pf

    GAS

    Pb

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    164/204

    Ecuacin de Balance de Materiales -

    Reservorios

    de Petrleo

    Reservorios saturado, produccinebajo al punto de Burbuja , intrusin

    e agua, considerando la

    xpansin del volumen poroso

    m= Vgli

    /Voi

    Vi = Vf= Vo + Vgd + Vgl + Vw;

    Vgl = m N Boi [Bg - Bgi] / Bgi

    = Np [Bof + Bg (Rp- Rs) - (We-BwWp) ]/ [Bof - Boi + Bg(Rsi-Rs) + m Boi [B

    PETROLEO PETROLEO

    AGUA AGUA

    Pi Pf

    GAS

    Pb

    Intrusin de agua.

    GAS

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    165/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    166/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    167/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    168/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    169/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    170/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    171/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    172/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    173/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    174/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    175/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    176/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    177/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    178/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    179/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    180/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    181/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    182/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    183/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    184/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    185/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    186/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    187/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    188/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    189/204

    Simulacin de Reservorios

    Fundamentalmente se basa en los principios fsicos de

    conservacin de masa, flujo de fluido y la conservacin

    de energa.

    Contiene un juego de ecuaciones que permiten describir

    el comportamiento de los fluidos en un reservorio.

    Los tipos de simuladores existentes: Black Oil ,Composicional, Recuperacin Mejorada entre otros..

    Es un estudio planeado y organizado para obtener

    buenos resultados, teniendo en consideracin:

    Geometra del reservorio

    Propiedades de roca y fluido

    Pruebas de presinDatos de produccin y completacin

    Diseo del modelo del reservorio

    Inicializacin del modelo del reservorio.

    Anlisis de sensibilidad del modelo

    Ajuste de historia

    Performance del reservorio

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    190/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    191/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    192/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    193/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    194/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    195/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    196/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    197/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    198/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    199/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    200/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    201/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    202/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    203/204

  • 7/31/2019 RESERVORIOS DIAPOSITIVAS

    204/204