Reservoir Quality and Petrophysical Model of the Tarn Deep-Water … · 2017. 5. 18. · Model of...

31
Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope- Apron System, North Slope, Alaska Pacific Section AAPG May 8, 2006 Alaska Department of Natural Resources Kenneth P. Helmold, Alaska Division of Oil & Gas Wayne J. Campaign, ConocoPhillips Alaska, Inc. William R. Morris, ConocoPhillips Co. Douglas S. Hastings, Brooks Range Petro. Corp. Steven R. Moothart, ConocoPhillips Alaska, Inc.

Transcript of Reservoir Quality and Petrophysical Model of the Tarn Deep-Water … · 2017. 5. 18. · Model of...

  • Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope-Apron System, North Slope, Alaska

    Pacific Section AAPGMay 8, 2006

    Alaska Department ofNaturalResources

    Kenneth P. Helmold, Alaska Division of Oil & GasWayne J. Campaign, ConocoPhillips Alaska, Inc.William R. Morris, ConocoPhillips Co.Douglas S. Hastings, Brooks Range Petro. Corp.Steven R. Moothart, ConocoPhillips Alaska, Inc.

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Conclusions• Reservoir quality is initially controlled by

    textural parameters related to turbidite elements• Channels are the best reservoirs followed by

    lobes, crevasse splays and levees• Mechanical compaction exerts a strong regional

    control on reservoir quality• Reservoir quality of Brookian sandstones can

    be accurately predicted prior to drilling • Petrophysical model is complicated by

    abundance of structural clay and low-density zeolite

  • Location of Tarn Field

    N

  • Stratigraphic Column of North Alaska

  • Tarn Slope-Apron Deposits

    N

    • Located at toe-of-slope

    • Fed by slope gullies

    • Fairly small features

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Brookian Sandstone CompositionTotal Quartz

    Feldspar Lithic Grains

    (including chert)

    Sedimentary Grains

    Volcanic Grains Metamorphic Grains

    (including chert)

    Paleocene Cenomanian Albian

    Cenomanian sands are lithic rich with abundant volcanic rock fragments

  • Typical Brookian Sandstones

    Albian (Torok)Argillaceous rich RFGenerally lack cement

    Paleocene (Flaxman)Chert richMedium-grain sand

    Cenomanian (Tarn)Volcanic glass richAnalcime cement

    100 µm

  • Brookian Sandstone Phi-K Trends

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    0 5 10 15 20 25 30Porosity (%)

    Perm

    eabi

    lity

    (md)

    PaleoceneCenomanianAlbian

    1 md K cutoff = Phi of 12% Paleocene, 15% Albian, 17% Cenomanian

  • Analcime and Microcrystalline Rims

    100 μm

    100 μm

    Silica-rich glass = NaAlSi2O6 • H2O + SiO2Analcime Quartz

    0

    5

    10

    15

    20

    25

    30

    2.40 2.50 2.60 2.70 2.80 2.90Grain Density (g/cc)

    Ana

    lcim

    e (b

    ulk

    %)

    ChannelLobesCrev SplayLeveeAban ChanBasin Plain

    r = - 0.68

    10 μm100 μm

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Channel Facies

    Sedimentary Facies: Amalgamated Ta, some Tb, Tabc, Tc (climbing at margins)

    Bed Thickness: Thin to very thickGrain Size: Very fine to fine-grain sandAvg. Porosity: 20 %Avg. Permeability: 33 mdAvg. H2O saturation: 46 %Avg. Dispersed clay: 4 %

    Cha

    nnel

    Leve

    e

  • Lobe Facies

    Sedimentary Facies: Tace, Tabe, Tabce, Tbce, occasional Tae, Tbe

    Bed Thickness: Thin to very thick,rare very thin

    Grain Size: Very fine- to fine-grain sand, rare mud

    Avg. Porosity: 18 %Avg. Permeability: 7 mdAvg. H2O saturation: 61 %Avg. Dispersed clay: 8 %

    Lobe

  • Crevasse SplayFacies

    Sedimentary Facies: Tce (climbing), Tb, Tabe, Tace, rare Tbe, Tbce

    Bed Thickness: Very thin to thickGrain Size: Very fine- to lower fine-grain

    sand, mud and siltAvg. Porosity: 17 %Avg. Permeability: 3 mdAvg. H2O saturation: 64 %Avg. Dispersed clay: 13 %

    Spla

    yLe

    vee

    Leve

    e

  • Levee Facies

    Sedimentary Facies: Tce, TcBed Thickness: Very thin, rare thinGrain Size: Very fine-grain sand,

    mud and siltAvg. Porosity: 16 %Avg. Permeability: 2 mdAvg. H2O saturation: 68 %Avg. Dispersed clay: 22 %

    Leve

    e

  • Depositional Control on Reservoir Quality

    Best reservoirs in channels; poorest in levees and basin plain

    0.01

    0.1

    1

    10

    100

    1000

    10 15 20 25 30Porosity (%)

    Perm

    eabi

    lity

    (md)

    ChannelLobeCrev SplayLeveeBasin Plain

  • Effect of Grain Size on Phi-K

    0.01

    0.1

    1

    10

    100

    1000

    0.00 0.05 0.10 0.15 0.20 0.25 0.30Framework Grain Size (mm)

    Perm

    eabi

    lity

    (md)

    r = 0.63

    ChannelLobeCrev SplayLeveeBasin Plain

    5

    10

    15

    20

    25

    30

    0.05 0.10 0.15 0.20 0.25 0.30Framework Grain Size (mm)

    Poro

    sity

    (%)

    r = 0.61

    Facies control on grain size is largely responsible for reservoir quality variability

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Brookian Erosion Map80 Miles

    Tarn Field

    Erosion estimates derived from sonic compaction curves

    mapped by Matt Burns,from Rowan et. al., 2003;USGS Open-File Report 03-329

    Maximum Burial Depth (Dmax) = Present Depth (ft) + Brookian Erosion (ft)

  • 0.001

    0.01

    0.1

    1

    10

    100

    1000

    2000 4000 6000 8000 10000 12000 14000 16000

    Dmax (feet)

    Perm

    eabi

    lity

    (md)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    2000 4000 6000 8000 10000 12000 14000 16000

    Dmax (feet)

    Poro

    sity

    (%)

    Brookian Phi-K vs. Dmax

    Cenomanian

    Albian

    Model regression

    Increasing Burial Depth

    Incr

    easi

    ng G

    rain

    Siz

    e

    Increasing Burial Depth

    • Locally, reservoir quality is controlled by grain texture related to turbidite elements

    • Regionally, reservoir quality is controlled by compaction

  • Albian Prospects Cenomanian Prospects

    Brookian Reservoir Quality Model

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25Predicted Porosity (%)

    Mea

    sure

    d Po

    rosi

    ty (%

    )

    0.01

    0.1

    1

    10

    100

    0.01 0.1 1 10 100Predicted Permeability (md)

    Mea

    sure

    d Pe

    rmea

    bilit

    y (m

    d)

    Incr

    easi

    ng B

    uria

    l Dep

    th

  • Compaction of Brookian Reservoirs

    > 9000’ Dmaxø = 11 %k = 0.1 md

    7000-9000’ Dmaxø = 15 %k = 3 md

    < 7000’ Dmaxø = 18 %k = 12 md

    100 µm

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Petrophysics: Overview of the Problem

    • GR log does not distinguish sand

    • RT and RHOB logs do show sand character

    • Problem results from presence of analcime and structural clay

    • Standard shaly-sand log model is not appropriate

  • Effect of Clay on Log Model• Reservoir contains 30-50% argillaceous rock fragments• Lithics are older and more compacted than surrounding shales

    • Lithics are “pinpoints” of conductivity that are not connected• Structural clay has little impact on reservoir quality

  • Effect of Analcime on Log Model

    • Grain densities vary over a wide range from 2.52 – 2.78• A single lithology model would yield poor results• Solve for Φ and grain density allowing for mineralogical variation• Model must use more than one porosity tool

  • Resistivity – Mineral Effect Cross PlotEx

    cess

    Neut

    ron

    Mine

    ralE

    ffect

    1 10

    0.0

    3.0

    6.0

    9.0

    12.0

    15.0

    18.0

    21.0

    24.0

    27.0

    30.0

    RT (OHMM)0 1

    Color: XRD.CALCITE_XRD

    1

    1

    11

    1

    11

    1

    11

    111

    1

    1

    1

    1

    11 11

    11

    1

    11

    1

    11

    11

    11

    11

    11

    11

    1

    1

    1

    11

    1

    11

    1

    1

    1

    1

    1

    1

    1

    11

    3

    3

    33

    33

    3333

    3

    3

    33

    33

    3

    33

    3

    44

    4

    444

    444

    4

    444

    4

    4

    44

    4444

    44

    4

    4

    44444

    4

    44

    44

    4

    44

    4

    4

    4

    4

    4

    4

    44

    45

    5

    5

    55555

    5

    5555

    555

    5

    5

    55

    5

    5

    5

    5

    5 5

    55

    55

    5

    55

    555 56

    6

    6

    6

    6

    66

    66

    6

    66

    6

    6

    6

    66

    66

    666

    6

    6

    66

    6

    6

    6

    6

    6

    6

    6

    6

    194194

    0

    0 0

    0

    50

    RT / XRD.HI_MINRL Crossplot6 Wells

    • Neutron correction is developed from the resistivity log• Calculate phi and grain density from standard Neutron/Density cross plot

    • Calculate mineral effect on Neutron log from mineral abundances (TS & XRD) and Log Parameter Table• Plot mineral effect against raw logs to determine “best fit”• Deep resistivity has best correlation

  • CoreG/C32.4 2.9

    Log ModelG/C32.4 2.9

    5200

    5250

    5300

    SSTVD

    FEETCore Porosity

    PCT50 0

    Log PorosityV/V0.5 0

    Log Sw1 0

    Core SwPCT100 0

    Grain Density

    Model ResultsWell Legend: Well A Well B Well C Well D Well E Well F

    0.0

    3.0

    6.0

    9.0

    12.0

    15.0

    18.0

    21.0

    24.0

    27.0

    30.0

    0.000

    0.030

    0.060

    0.090

    0.120

    0.150

    0.180

    0.210

    0.240

    0.270

    0.300

    TARN

    .PHI

    TX

    CORE.PHI (PCT)

    1 111

    1 11 1

    1

    1111

    1111

    11

    1

    1

    11 1

    1111

    111 1

    11

    11

    111

    11 111 1

    1

    1 111

    11

    111

    1 11111 1

    11 1

    1 1

    1

    1

    111

    1

    1

    1

    1

    111

    111 11111

    11111 1

    1

    11 1

    11 1

    1

    1 11 11

    1

    11

    111

    1 11111

    11

    1111 111 11

    111

    1111 1111

    11

    1111

    1

    11

    11 1

    11

    1

    1111

    11 1

    11

    11

    1 11 1

    1

    1

    1

    1

    1111

    1

    11

    1 11

    1 11

    1111

    1

    11

    1

    1

    1

    11

    1

    1

    1

    11

    1

    1 11

    11

    12

    222

    2 222

    2

    2

    22

    223

    3 3 33 3333 33

    344 444

    44

    444

    4

    444 44

    4

    44

    4

    44 4

    44

    44 4

    4444

    444

    4

    4

    44

    4

    44

    44

    44

    4

    44

    44

    4

    444 444 4

    4444

    444 4

    44

    4

    44

    4 4

    444 444

    4

    444

    4

    44

    4

    444

    44

    4444

    4

    44

    4

    44

    444

    4

    44

    44 4

    444

    4

    4

    4

    4 4

    44

    4

    4444

    5 55

    55

    55

    55 55 5555555

    5 55

    5 555 555

    5 55555

    55

    5555555 55 5 55555

    5555 55

    55

    555 55

    55

    5

    5 5

    5

    5

    55 5

    5

    5 55 5

    55

    5

    5

    555

    55

    5

    5

    56

    66 66

    6

    66

    6

    66

    666

    66 66 66

    66

    6

    66

    66

    6

    6

    6

    6666

    666

    666 6

    6

    6

    6

    6666

    66

    6

    6

    6

    66

    6

    6

    6

    666 6

    666666 666666

    66 666666666

    540540

    0

    0

    0 0

    • Results are for multiple wells• No log normalization or individual customization

  • Conclusions• Reservoir quality is initially controlled by

    textural parameters related to turbidite elements• Channels are the best reservoirs followed by

    lobes, crevasse splays and levees• Mechanical compaction exerts a strong regional

    control on reservoir quality• Reservoir quality of Brookian sandstones can

    be accurately predicted prior to drilling • Petrophysical model is complicated by

    abundance of structural clay and low-density zeolite

  • The End

    Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope-Apron System, North Slope, AlaskaOutlineConclusionsSlide Number 4Slide Number 5Slide Number 6OutlineBrookian Sandstone CompositionTypical Brookian SandstonesBrookian Sandstone Phi-K TrendsSlide Number 11OutlineSlide Number 13Slide Number 14Slide Number 15Slide Number 16Depositional Control on Reservoir QualitySlide Number 18OutlineBrookian Erosion MapBrookian Phi-K vs. DmaxSlide Number 22Compaction of Brookian ReservoirsOutlineSlide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29ConclusionsSlide Number 31