Research Report Dr.chatr Suchinda 2554

download Research Report Dr.chatr Suchinda 2554

of 85

Transcript of Research Report Dr.chatr Suchinda 2554

  • THE EFT

    FFECT OTENSIONE

    OF EARTHED CONC

    HQUAKECRTE FLA

    E AND WIAT SLAB

    2554

    IND LOADBS IN THA

    DS ON POAILAND

    OST-

  • (Structural Engineering) (Earthquake Engineering)

    2555

  • : : : : .. 2555

    -- (. 1311-50) (. 1302-52)

    6 7,14, 21 28 21 28 . 1311-50 1.02, 1.72 4.55 7, 14 21 . 1311-50, . 1302-52 2.65, 48.30 140.00 7, 14 21 . 1311-50 . 1302-52 2.01, 30.27 71.76 7, 14 21 :

  • Research Title : The Effect of Earthquake and Wind Loads on Post-tensioned Concrete Flab Slabs in Thailand Name of Researcher : Mr. Chatr Suchinda Name of Institution : Faculty of Engineering, Sripatum University Year of Publication : B.E. 2555

    ABSTRACT

    This research is a study of trial analysis and design of post-tensioned concrete flat slab-column-shear wall system resisting wind (DPT. 1311-50), earthquake (DPT. 1302-52) and gravity loads without any beam structural members using equivalent static force and response spectrum methods. The comparison of the analysis and design results emphasizes on the effect total amount of mild reinforcing dues to the lateral load in part of the post-tensioned concrete flat slabs.

    From the study of four buildings having square shape plan, shear-wall in the middle of the plan, 6 spans in both directions, 7, 14, 21 and 28 story heights and constant slab thickness, it was found that the 21 and 28 story buildings need tremendous amount of slab mild reinforcement and uneconomic. The ratios of total mild reinforcement amount in the flat slabs considering both wind load as per DPT. 1311-50 code and gravity load over considering gravity load alone are 1.02, 1.72 and 4.55 for 7, 14 and 21 story buildings respectively. The ratios considering wind load as per DPT. 1311-50 code, earthquake load as per DPT. 1302-50 (equivalent static force) and gravity load over considering gravity load alone are 2.65, 48.30 and 140.00 for 7, 14 and 21 story buildings respectively. Lastly, the ratios of total mild reinforcement amount considering wind load as per DPT. 1311-50 code, earthquake load as per DPT. 1302-50 (response spectrum) and gravity load over considering gravity load alone are 2.01, 30.27 and 71.76 for 7, 14 and 21 story buildings respectively. Keywords: Effect of lateral loads, Thai building codes, Post-tensioned concrete flat slabs.

  • 1 .......................................................................................................................... 1 1.1 ......................................................... 1 1.2 ................................................................................ 2 1.3 ................................................................................................. 2 1.4 .......................................................................................... 2 1.5 .............................................................................................. 2 1.6 ............................................................................................. 3 2 ................................................................................................ 4 2.1 ................................................................... 4 2.2 .............................................. 11 2.2.1

    . 1302-52.....................................................................

    11 2.2.1.1 ............................................. 14 2.2.1.2 ........................................ 14 2.2.1.3 ...................................... 19 2.2.1.4 ............................... 19 2.2.1.5 ............................. 20 2.2.1.6 ...................................................... 21 2.2.1.7 P-Delta................................................................................. 21

    2.2.2 ( 1) . 1302-54.................................

    21

    2.2.3 (2550) . 1311-50 26 2.3 .................................................................................... 31 2.4 ............................................................................................................... 35

  • 3 ...................................................................................................... 36 3.1 ........................................................... 36 3.2 ............................................................................. 38 3.3 .......................................................................................... 39 3.4 ............................................................................................. 39 3.5 ......................................................................... 40 3.6 .......................................................................................... 40 3.6.1

    (. 1302-52)...........................

    40 3.6.2

    (. 1311-50).....................................................................................

    49 4 ................................................................................................. 54 4.1 ................... 54 4.2

    .........................................................................................................

    61 4.3 ......................................... 64 5 ............................................................................. 70 5.1 .............................................................................. 70 5.2 ........................................................................... 70 5.3 ................................................................................................... 71 .............................................................................................................. 73 .......................................................................................................... 76

    ()

  • 2.1 DSS ............ 14 2.2 1DS ........... 14 2.3 R , 0

    dC .................................................................................................. 15

    2.4 I ......................................................................

    18

    2.5 ( a )..................................................... 22 3.1 Sa .... 46 3.2 Diaphragm.......................................... 52 4.1 SDS SD1 ETAB 9.7.4 Sa

    ................................................................................................................. 57

    4.2 Fa......................................................... 58 4.3 Fv........................................................ 58 4.4 SS S1 ETAB 9.7.4 Sa

    ................................................................................................................. 59

    4.5 ................................................................................. 62 4.6 4 .................................. 66

  • 2.1 .................................................................

    12

    2.2 ...........................................................................

    13

    2.3 ....................................................................................... 24 2.4 .......................................................................... 24 2.5 ....................................................................... 25 2.6 ( FT ) 50 ( 50V )................................... 26 2.7 ( eC )..................... 27 2.8 Background Turbulence Factor ( B ).............................. 29 2.9 ( s ).................................. 29 2.10 Gust energy ratio at the natural frequency of the structure

    ( F )............................ 30

    2.11 ( pg ).....................................................................................................................

    30

    2.12 ( pC ) ..........................................................................

    31

    2.13 Mass-3............................................................................................ 34 2.14 ETAB

    ............................................................... 35

    3.1 Load Combination ASCE7-10................................... 38 3.2 g

    ....................................................................................................... 41

    3.3 g ( 5).........................................................................................

    42

    3.4 .................. 43 3.5 (Define Mass Source)....................... 44

  • 3.6 Modal participation mass ratios................................................................................... 44 3.7 RI ( g g).. 45 3.8 P-Delta 1 ()....................................................... 46 3.9 ( tV )..................... 47 3.10 (V ).................................... 48 3.11 85%

    ......................................................................................................... 48

    3.12 2.1......................................................... 50 3.13 2.1...................................................................... 51 3.14 2.1............................................................... 51 3.15 User Defined ETAB 9.7.4....................................... 53 4.1 ETAB 9.7.4........................... 54 4.2

    Sa ( 5).................................................. 55

    4.3 Sa ETAB 9.7.4 IBC2006 . 1301 T=0.63 sec................................

    56

    4.4 Sa ETAB 9.7.4 IBC2006 . 1301 T=1.26 sec................................

    57

    4.5 IBC2006 Seismic Loading ETAB 9.7.4.............................. 61 4.6

    . 1302-52..................................................................................... 64

    4.7 ........................................................ 65 4.8 (Curtailment)

    ...................................................................................... 65

    ()

  • 1

    1.1

    2550 (2550) . 1311-50 2552 . 1302-52 ( , 2552) . 1311-50 National Building Code of Canada (NBCC 2005) (National Research Council Canada, 2005) . 1302-52 ASCE7-05 (ASCE Committee, 2005)

    - , () () --

    (, , ) , . 1311-50 . 1302-52 ETAB 9.7.4

  • 2

    SAFE 12.3.2

    1.2

    1.3

    1.4

    1.5

    1. . 1311-50 . 1302-52

    2. 7, 14, 21 28

    3. 4.

  • 3

    1.6 (Equivalent Static Analysis)

    ( )

    (Response Spectrum Analysis)

    () (absolute) (square root of the sum of the squares, SRSS) (complete quadratic combination, CQC) SRSS

  • 2

    2.1

    (Response Spectrum) (Multi Degrees of Freedom) MDOF

    (Single Degree of Freedom) SDOF (Time Domain) MDOF (Model Analysis) () MDOF (Linear Elastic System) Superposition (Frequency Domain)

    Superposition Convolution Integral SDOF (Displacement) t (2.1)

    gumkuucum &&&&& =++ (2.1)

    MDOF (2.2)

    gxMIKxxCxM &&&&& =++ (2.2)

  • 5

    (2.2) SDOF

    a.

    )(tYx = (2.3)

    )(tY (Non-singular) (Positive) (Inverse) b. Eigenvalue MDOF

    iii MK = 2 (2.4)

    c. Eigenvalue () N Eigenvector () (2.4) Eigenvalue Ritz Vector Eigenvalue (Fundamental Mode) (Fundamental Frequency) (2.5)

    ( ) 02 = xMK (2.5)

    (Orthogonal)

    d. (Damping) ()

  • 6

    ijiijTi C 2= (2.6)

    2 Rayleight Damping

    KMC += (2.7) i i

    j

    j

    i

    2

    2+= (2.8)

    () M K Rayleigh

    e. (Generalized) iY

    giiiiiii xYYY =++ 22 (2.9)

    i i

    i

    ii M

    K= (2.10)

    iM

    iTii MM = (2.11)

  • 7

    iK

    iTii KK = (2.12)

    i i

    i

    ii M

    L= (2.13)

    IML Tii = (2.14)

    f. N

    (2.13) i Convolution Integral ( Duhamel Integral)

    ( ) ( )tA

    MLtY i

    ii

    ii = (2.15)

    ( )tAi (2.1) (Numerical Method) (Direct Integration Method) (Fast Fourier Transform)

    g.

    ( ) ( ) iNi

    ii

    i MtAMLtYKR ==

    =1 (2.16)

    h. BV

  • 8

    ( )=

    =N

    ii

    i

    iB tAM

    LV

    1

    2

    (2.17)

    i. i

    ( ) ( ) iii

    iii tAM

    LtYx == (2.18)

    (2.8) (d) i (Over-damp) (Rigid-body Motion) ( )0= MDOF K

    ii ML 2 (2.17) 85-90% 2 3 MDOF MDOF

    ==

    =N

    ii

    N

    i i

    i MML

    11

    2

    (2.19)

    (2.16) (2.18)

    MDOF (Lump) N N ( )tY (2.15)

  • 9

    ( )

    a. MDOF (a) (d)

    b. (Generalized Mass) iM

    i (2.10) (2.12) c. d. aiS iT

    e. ( )tF imax, i

    ( ) aii

    Ti

    iii SM

    LMtF =max, (2.20)

    f. (,

    , , ) ()

    g. (f)

    2 3 85-90%

  • 10

    85-90%

    Superposition Square Root of Sum of Squares (SRSS) 2 Complete Quadratic Combination (CQC)

    SRSS E

    =

    =N

    iiEE

    1

    2 (2.21)

    10% SRSS

    SRSS SRSS

    CQC

    = =

    =N

    i

    N

    jijji EEE

    1 1 (2.21)

    ij == ji

  • 11

    ( )( ) ( )2222232

    14118

    rrrrr

    ij ++++=

    (2.22)

    ijr = ij 0 1 ji = MDOF CQC SRSS

    E CQC SRSS

    2.2

    3

    1. . 1302-52 2.

    ( 1) . 1301-54 3. (2550) . 1311-50

    2.2.1 . 1302-52

    (2552)

    . 1302 () 2.1 1 5 2.2 2.2.2.1 2.2.2.6

  • 12

    2.1

    (, 2552)

  • 13

    2.2

    (, 2552)

  • 14

    2.1 DSS

    DSS

    I II III IV

    DSS < 0.167 () () () 0.167 DSS < 0.33 0.33 DSS < 0.50 0.50 DSS

    2.2 1DS

    1DS

    I II III IV

    1DS < 0.067 () () () 0.067 1DS < 0.133 0.133 1DS < 0.20 0.20 1DS

    2.2.1.1

    90

    2.2.1.2

    ( 2.2)

  • 15

    RI R

    2.3 I 2.4 2.3 R , 0 dC (, 2552)

    R 0 dC

    1. (Bearing Wall System)

    (Ordinary Reinforced Concrete Shear Wall)

    4 2.5 4 X

    (Special Reinforced Concrete Shear Wall)

    5 2.5 5

    (Ordinary Precast Shear Wall)

    3 2.5 3 X X

    (Intermediate Precast Shear Wall)

    4 2.5 4 X

    2. (Building Frame System)

    (Steel Eccentrically Braced Frame with Moment-Resisting Connections)

    8 2 4

    (Steel Eccentrically Braced Frame with Non-Moment-Resisting Connections)

    7 2 4

    (Special Steel Concentric Braced Frame)

    6 2 5

    (Ordinary Steel Concentric Braced Frame)

    3.5 2 3.5 X

    (Special Reinforced Concrete Shear Wall) 6 2.5 5

    (Ordinary Reinforced Concrete Shear Wall)

    5 2.5 4.5 X

    (Ordinary Precast Shear Wall)

    4 2.5 4 X X

    (Intermediate Precast Shear Wall)

    5 2.5 4.5 X

    : = X =

  • 16

    2.3 ()

    R 0 dC

    3. (Moment Resisting Frame)

    (Ductile/Special Steel Moment-Resisting Frame) 8 3 5.5

    (Special Truss Moment Frame) 7 3 5.5 (Ductile Steel Moment Resisting Frame with Limited Ductility)

    4.5 3 4 X

    (Ordinary Steel Moment Resisting Frame)

    3.5 3 3 X

    (Ductile/Special Reinforced Concrete Moment Resisting Frame)

    8 3 5.5

    (Ductile RC Moment-Resisting Frame with Limited Ductility)

    5 3 4.5 X

    (Ordinary Reinforced Concrete Moment Resisting Frame)

    3 3 2.5 X X

    4. 25 (Dual System with Ductile/Special Moment Resisting Frame)

    (Special Steel Concentrically Braced Frame) 7 2.5 5.5

    (Steel Eccentrically Braced Frame) 8 2.5 4 (Special Reinforced Concrete Shear Wall) 7 2.5 5.5 (Ordinary Reinforced Concrete Shear Wall) 6 2.5 5 X

    : = X =

  • 17

    2.3 ()

    R 0 dC

    5. 25 (Dual System with Moment Resisting Frame with Limited Ductility/ Dual System with Intermediate Moment Resisting Frame)

    (Special Steel Concentrically Braced Frame)

    6 2.5 5 X

    (Special Reinforced Concrete Shear Wall)

    6.5 2.5 5

    (Ordinary Reinforced Concrete Shear Wall) 5.5 2.5 4.5 X

    6. (Shear Wall Frame System)

    (Shear Wall Frame Interactive System with Ordinary Reinforced Concrete Moment Frame Ordinary Concrete Shear Wall)

    4.5 2.5 4 X X

    7. (Steel Systems Not Specifically Detailed for Seismic Resistance)

    3 3 3 X

    : = X =

  • 18

    2.4 I (, 2552)

    - - -

    I () 1.0

    II () 1.0

    - 300 - 250 - 500 - 50 -

    III () 1.25

    - - - - - - - -

    IV () 1.5

  • 19

    (

    RI )

    ICd ( dC 2-1)

    2.2.1.3 4

    ( 2.4) SDS SD1 2.1 2.2

    SDS SD1 (Sa) 0.2 1.0 2.2

    2.1 2.2

    (T ) T=0.02H () T=0.03H () 0.8Ts Ts 2.2

    2.2.1.4

    SRSS CQC SRSS 0.67 1.5 CQC

  • 20

    2.2.1.6

    1.5 (2.23) 1.5 (2.23)

    ( )( )

    =

    == ni

    ii

    n

    iii

    Fg

    wT

    1

    2

    1

    2

    2

    (2.23)

    i i

    (m) iF i (Newton)

    g (9.806 m/sec2) i n

    iw i (Newton)

    (2.23)

    85% V85.0

  • 21

    2.2.1.7 (2.24)

    =

    =n

    xiix FV (2.24)

    iF i

    0.05

    2.2.1.6 P-Delta P-Delta

    (2.25)

    IC xed

    x = (2-25)

    dC ( 2.1) xe (m)

    I ( 2.3) xe a 2.5

  • 22

    2.5 ( 1a )

    ( 2.2)

    I II III IV

    4

    20.025hsx 0.020hsx 0.015hsx

    3 0.010hsx 0.010hsx 0.010hsx

    0.007hsx 0.007hsx 0.007hsx 0.020hsx 0.015hsx 0.010hsx 1hsx x 2 ( x ) (2.25) 3 ( Coupling Beam)

    2.2.2 ( 1) . 1302-54

    . 1302-54

  • 23

    1 ( 2.3-2.5) ( )sM

    2 sf M

    3 (Band Direction) (Uniform Direction) Uniform Direction

    4 1 4

    5

    6

    7

  • providesA ,

    providedsed A ,

    2

    2.3

    .4

    24

  • 2.5

    5

    25

  • 26

    2.2.3. (2550) . 1311-50 2.2.3.1.

    pgew CCqCIp = (2.26)

    1.1 ( wI ) 2.1 2.2

    =wI 0.8, 1, 1.15, 1.15 , , 1.2 ( q ) (2.27) (2.28)

    2

    21 V

    gq

    = (2.27)

    50VTV F= (2.28)

    FT 50V 2.6

    1 V50 = 25 : TF = 1.0 2 V50 = 27 : TF = 1.0 3 V50 = 29 : TF = 1.0 4A V50 = 25 : TF = 1.2 4B V50 = 25 : TF = 1.08

    2.6 ( FT ) 50 ( 50V )

  • 27

    1.3 ( eC ) 2.7

    A 28.0

    10

    = zCe

    B 5.0

    7.125.0

    = zCe

    C 72.0

    304.0

    = zCe

    2.7 ( eC )

  • 28

    1.4 ( gC ) (2.29) (2.30)

    +=

    pg gC 1 (2.29)

    TTg

    eep log2

    577.0log2 += (2.30)

    BsFsFn

    DD += (2.31) 3600=T (2.32)

    +=

    DeH

    sFBCK

    (2.33)

    =K 0.08 A =K 0.10 B =K 0.14 C =eHC 3.6 Hz = ()

    =B Background Turbulence Factor 2.8 =s 2.9 =F Gust energy ratio at the natural frequency of the structure 2.10 =Dn HnD

    44= =W =H =HV 1

    eHH CVV =

  • 2.8

    2.9

    B

    Background T

    Turbulence F

    actor ( B )

    ( ss )

    29

  • 2.10

    2.11

    Gust energ( F )

    ( pg

    gy ratio at the)

    )

    e natural freq

    quency of the

    30

    structure

  • 31

    1.5 ( pC ) 2.12

    2.12 ( pC )

    2.3

    (2545)

    -- 3 4 10 15 3 , . UBC 1994 1 0.075g 7-8 1.7-1.8 4.3-6 5-7

  • 32

    , (2550) -- 6 (. 2527) . 30 . , , . 0.50% 6 (. 2527)

    (2551) Adapt PT (Equivalent Frame Method) RAM Concept 6 (Conservative)

    (2552) , RAM Concept 6

    (2553) RAM Concept

  • 33

    (2553) . 1301-50 . 1311-50 ACI, UBC . 8 6-27 160 13-18% 5-6%

    Bharath G. N. (2010) 2 (1) Mass-3 90 m 30 m 4 1 2.13 (2) RPS 50 m 25 m 4 1 IS 456-2000, IS1893 Part 1 IS 875 Part 3 (Non-cracked section) (Cracked section) 2 20%

  • Tilv

    4 Importance Fx 6 m (2) ETAB 5 cm

    va, V. K. Factor (I)=1, 3 x SAFE (4

    (201

    1 kN/m2 Response Rex 3

    4) 22

    2.13

    1) E(102 kg/m2)eduction Fac SAFE2.5 cm

    ETAB ) ctor (R)=5 E (3)

    Mass-3

    4

    15 cm 29%

    IS 14 kN/m2 (408 (1)

    7

    34

    1893 8 kg/m2) 6 m 2.14

    75%

  • 2.4

    --. 1311-5

    . 1302-550 . 1302-5

    () 2.14

    () ()

    2 52

    (Drop panel) (No drop P

    ETAB Panel)

    ()

    35

    ,

  • 3

    3.1

    1. (DCON1-DCON2)

    2. . 1311-50 (DCON1-DCON14)

    3. , . 1311-50 . 1302-52 (DCON1-DCON26)

    4. , . 1311-50 . 1302-52 (DCON1-DCON26 EQX SPEC1 EQY SPEC2)

    DCON1=1.4DEAD DCON2=1.2DEAD+1.6LIVE DCON3=1.2DEAD+1.0LIVE+1.6WINDX DCON4=1.2DEAD+1.0LIVE-1.6WINDX DCON5=1.2DEAD+1.0LIVE+1.6WINDY DCON6=1.2DEAD+1.0LIVE-1.6WINDY DCON7=1.2DEAD+0.8WINDX DCON8=1.2DEAD-0.8WINDX DCON9=1.2DEAD+0.8WINDY

  • 37

    DCON10=1.2DEAD-0.8WINDY DCON11=0.9DEAD+1.6WINDX DCON12=0.9DEAD-1.6WINDX DCON13=0.9DEAD+1.6WINDY DCON14=0.9DEAD-1.6WINDY DCON15=1.2DEAD+1.0LIVE+1.0EQX DCON16=1.2DEAD+1.0LIVE-1.0EQX DCON17=1.2DEAD+1.0LIVE+1.0EQY DCON18=1.2DEAD+1.0LIVE-1.0EQY DCON23=0.9DEAD+1.0EQX DCON24=0.9DEAD-1.0EQX DCON25=0.9DEAD+1.0EQY DCON26=0.9DEAD-1.0EQY DEAD= (Dead Load) LIVE= (Live Load) WINDX= X (Wind Load in X-axis) WINDY= Y (Wind Load in Y-axis) EQX= X

    (Equivalent Static Earthquake Load in X-axis) EQY= Y

    (Equivalent Static Earthquake Load in Y-axis) SPEC1= (Response Spectrum

    Earthquake Load in X-axis) SPEC2= (Response Spectrum

    Earthquake Load in Y-axis) ETAB 9.7.4 Load Combination ASCE7-05 ( 3.1) ACSE7-05 1 DCON1, 2 DCON2, 3 DCON7-

  • DCON10, DCON11-DC

    3.2

    . 1302-5

    4 CON14

    52 5 (

    DCON3-DC 7

    3.1 Lo

    2

    . . 131

    CON6, DCON23-

    oad Combina

    2.1)

    III () wI1302-52

    11-50

    5 DDCON26

    ation

    2.2

    25.1=I

    15.1=w

    CON15-DCO

    ASCE

    . 1305 I NB

    ON18,

    E7-05

    ,

    02-52 ( .I

    ACSE7 BCC2005

    38

    6

    2.4) 1311-50

  • 39

    -- 5 SDS Sa(0.2sec)=0.126g SD1 Sa(1sec)=0.158g 2.1 III () DSS

  • 40

    3.5

    1. Load Combination ETAB 9.7.4

    2. ETAB 9.7.4 3. ETAB 9.7.4

    SAFE 12.3.2 4. SAFE 12.3.2 (

    ) 5. SAFE 12.3.2 6. 7.

    3.6

    3.6.1 (. 1302-52)

    1.

    1.1 DSS 1DS 30 1.2 IBC2003 Spectrum ETAB 9.7.4 ( . 1302-52) 3.2

  • 41

    3.2 g

    2.2 ( 2.1) User Spectrum ETAB 9.7.4 3.3

  • 42

    3.3 g

    ( 5)

    2. Moment of Inertia 0.7, () 0.7 0.25 Moment of Inertia (Gross Section) Analysis Property Modification Factor ETAB 9.7.4 3.4

  • 43

    ()

    3.4

    3. (Define Mass Source) . 1302-52 25 (Floor Live Load) 3.5

  • 44

    3.5 (Define Mass Source)

    4. 90 3.6 ETAB 9.7.4 12

    3.6 Modal participation mass ratios

    >90, OK

  • 45

    5. RI 3.7 dCR P-Delta ICd P-Delta ( ) ( ) 1)(** =ICCRRI dd 3.8

    3.7 RI

    ( g g)

    I/R*g=1.25/5.5*9.81=2.230

  • 46

    3.8 P-Delta 1 ()

    6. T HT 02.0= () H m 3.1 7. Eigenvalue Analysis 1.5T V 3.1

    3.1 () Model Analysis 7, 14, 21 28 ( 3 m) HT 02.0= H m 1.5T

    3.1 Sa

    (sec)

    Model Analysis T=0.02H 1.5T 7 1.28 0.42 0.63 14 3.89 0.84 1.26 21 7.25 1.26 1.89 28 9.06 1.68 2.52

  • 47

    3.1 Model Analysis 1.5T 1.5T 8. ( tV ) ( 3.9) V85.0 V ( 3.10) tVV /85.0 3.11 Scale Factor

    X Y

    3.9 ( tV )

    VSPEC1=784708 kgf VSPEC2=552060 kgf

  • 48

    X Y

    3.10 (V )

    X Y

    3.11 85%

    2.230*0.85VEQX/VSPEC1= 2.230*0.85*679348/784708=1.64

    2.230*0.85VEQY/VSPEC2= 2.230*0.85*478348/552060=1.64

    VEQX=-679348 kgf VEQY=-478011 kgf

  • 49

    9. 5% 5% 3.9 Ecc. Ratio (All Diaph.) = 0.05 10. Scale Factor 3.11 VSPEC1=577095 kgf VSPEC2=405999 kgf VSPEC1/VEQX=405999/679348 =0.85 VSPEC2/VEQY=577095/55206=0.85 . 1302-52

    3.6.2 (. 1311-50)

    2.1 ( ) 3.12 2.6 1 V50=25 m/s2 (H) 14 14 X 3 m= 42 m, (W) = (D) = 6 X 8 m = 48 m Iw=1.15 (: ) 3.13 () () 3.14 3.2 Diaphragm WINDX WINDY User Defined ( Ton) 3.15

  • 50

    3.12 2.1

  • 51

    3.13 2.1

    3.14 2.1

  • 52

    3.2 Diaphragm 1.16 -50.34

    z (m)

    windward leeward total wind tonf. tonf. tonf.

    42 1.332 94.73 6.82 -3.62 10.45 39 1.313 93.33 13.44 -7.25 20.69 36 1.292 91.85 13.23 -7.25 20.48 33 1.27 90.27 13.00 -7.25 20.25 30 1.246 88.56 12.75 -7.25 20.00 27 1.22 86.71 12.49 -7.25 19.74 24 1.191 84.7 12.20 -7.25 19.45 21 1.16 82.46 11.87 -7.25 19.12 18 1.125 79.96 11.51 -7.25 18.76 15 1.084 77.1 11.10 -7.25 18.35 12 1.037 73.73 10.62 -7.25 17.87 9 0.979 69.61 10.02 -7.25 17.27 6 0.903 64.19 9.24 -7.25 16.49 3 0.9 63.98 9.21 -7.25 16.46 0 0.9 63.98 4.61 -3.62 8.23

  • 53

    WINDX Diaphragm

    WINDY Diaphragm

    3.15 User Defined ETAB 9.7.4

  • 4

    4.1

    7, 14, 21 28 ( 4.1) 6 X Y 8 m 3 m (Shear Wall) 5.3m x 5.3 m (Additional Dead Load) 120 kg/m2 300 kg/m2 (Fixed Support) . 1203-52

    7 14 21 28

    4.1 ETAB 9.7.4

  • ( 2

    ETAB 9.7 SD1

    0.120.150.16

    0.06

    1) 3 Y (

    4.2

    .4

    S Sa

    2 5 6

    6

    X (

    4.2 SS

    Sa

    Sa a

    (M

    4.2

    4.1 (

    Mode Shape) Y (

    (

    4. ETAB 9.7.4

    0.63

    4 X X Y) 5)

    5)

    4.3 .1) 4 S

    1.26

    1.89

    252

    X)

    7, 14, 21 Sa

    2.52

    55

    28 SDS

  • 4.1 4.2

    IBC2006

    SS

    SDS=Sa=0.1 4.2

    Sa=SDS=0

    F S1

    12 SD1=

    4.3 . 1301

    0.63

    .12

    SS S1

    SDS=(2/3SD1=(2/3

    Fa Fv

    Ss=(3/2)SS1=(3/2)S

    T=0.63

  • Sa

    IBC2006

    4.1

    7 14 21 28

    SDS=Sa=0.1

    T

    3.2

    0.63 1.26 1.89 2.52

    15 SD1= 4.3

    4.4 . 1301

    SDS SD

    Sa

    4.2 0.12 0.15 0.16 0.06

    Sa=SDS

    T=1.26>Ts Sa*T=0.15*

    T=1.89 D1

    SDS=Sa

    0.12 0.15 0.16 0.06

    S/T=0.189/1.2

    1.26=0.189

    Sa

    2.52 sec

    TSD1=S T>

    SD1=Sa0.120.180.300.15

    1.26

    26=0.15

    Sa SD11 a*T

    SDTs= S SD

    Ts=0 19 12 11 1

    6

    SDS SDS Sa

    B 9.7.4 6 sec

    4 Sa

    D1SDS SD1/SDS D1>SDS =1.0

    SSa

    .0

    .0

    .0

    .0

    57

    SD1

    .2

    TTs Sa=SD1 T>Ts

    a=SD1/T 0.12 0.15 0.16 0.06

  • 58

    Ss S1 Site Coefficient Fa Fv E ETAB 9.7.4 4.2 4.3

    4.2 Fa

    0.2 (g)

    SS 0.25 SS = 0.5 SS = 0.75 SS = 1.0 SS 1.25 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0 E 2.5 1.7 1.2 0.9 0.9 F

    4.3 Fv

    1.0 (g)

    S1 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 0.5 A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.7 1.6 1.5 1.4 1.3 D 2.4 2.0 1.8 1.6 1.5 E 3.5 3.2 2.8 2.4 2.4 F

    4.3 4.4 S1 SS

    4.4

  • 59

    4.4 SS S1 ETAB 9.7.4 Sa Fa Fv

    Ss=(3/2)SDS/Fa

    S1=(3/2)SD1/Fv

    Fa 4.2

    Fv 4.3

    7 2.5 3.5 0.0720 0.0514 2.5 3.5 14 2.5 3.5 0.0900 0.0810 2.5 3.5 21 2.5 3.5 0.0960 0.1296 2.5 3.4 28 2.5 3.5 0.0360 0.0648 2.5 3.5

    Sa S1 4.5 IBC2006 Seismic Loading ETAB

    9.7.4 4.5 Fa Fv Site Class ( Site Class E) 4.2 4.3 Fa Fv 4.4 SS S1

    7

  • 60

    14

    21

  • 61

    28

    4.5 IBC2006 Seismic Loading ETAB 9.7.4

    4.2

    ETAB 9.7.4 SAFE 12.3.2 320 kg/cm2 5,000 kg/cm2 7, 14 21 30 cm ( ) 28 40 cm 28 21

  • 62

    4.5

    4.5

    7 14 21

    80x80 cm ( 1-21) 100x100 cm ( 1-8) 80x80 cm ( 9-21) 25 cm ( 1-21) 30 cm ( 1-21)

    7 70x70

    cm 80x80 cm 14 21 100x100 cm 1-8 9-21 80x80 cm

    (Inter-story Drift)

    ICd . 1302-52 ( 2.3)

    4.6

  • 63

    Inter-story Srift (x hsx)

    -.002 0.000 .002 .004 .006 .008 .010 .012 .014 .016

    Sto

    ry

    1

    2

    3

    4

    5

    6

    7

    Equivalent Static ForceResponse SpectrumDTP. 1302-52 Limit State

    7

    Inter-story Drift (x hsx)

    -.002 0.000 .002 .004 .006 .008 .010 .012 .014 .016

    Sto

    ry

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    Equivalent Static ForceResponse SpectrumDTP. 1302-52 Limit State

    14

  • 64

    Inter-story Drift (x hsx)

    -.002 0.000 .002 .004 .006 .008 .010 .012 .014 .016

    Sto

    ry

    123456789

    101112131415161718192021

    Equivalent Static ForceResponse SpectrumDPT. 1302-50 Limit State

    21

    4.6 . 1302-52

    4.3

    SAFE 12.3.2 12 mm 40 mm 4.4 4.8 () 4.6

  • 65

    4.7

    4.8 (Curtailment)

  • 66

    4.6 4 : [Grav] [Grav,Wind] , (-) [Grav,Wind,Spec] , () [Grav,Wind,Eq-static]

    7

    (Metric Ton)

    Grav Grav,Wind Grav,Wind, Eq-static Grav,Wind,Spec

    1 0.53 0.53 0.98 0.70 2 0.55 0.61 1.51 1.09 3 0.64 0.64 1.73 1.37 4 0.71 0.71 1.97 1.58 5 0.75 0.76 2.13 1.61 6 0.79 0.79 2.08 1.60 7 0.67 0.67 1.88 1.39

    4.64 4.71 12.28 9.34

    14

    (Metric Ton)

    Grav Grav,Wind Grav,Wind, Eq-static Grav,Wind,Spec

    1 0.80 0.80 8.36 6.29 2 0.77 1.16 23.68 18.81 3 0.97 1.52 39.64 31.38 4 1.19 1.89 55.69 42.41 5 1.33 2.29 73.74 50.57 6 1.48 2.67 85.05 55.64 7 1.53 2.96 93.90 60.83

  • 67

    8 1.73 3.15 99.98 60.83 9 1.85 3.38 103.01 60.95 10 2.00 3.59 103.11 60.00 11 2.09 3.67 99.89 58.81 12 2.10 3.66 97.23 56.35 13 2.19 3.69 94.71 53.91 14 2.04 3.54 87.95 51.31 22.07 37.97 1065.94 668.09

    21

    (Metric Ton)

    Grav Grav,Wind Grav,Wind, Eq-static Grav,Wind,Spec

    1 3.80 4.76 38.28 25.55 2 0.70 1.96 92.51 54.49 3 0.88 3.38 153.56 92.51 4 1.03 5.03 217.26 124.53 5 1.18 7.26 269.27 155.96 6 1.33 9.49 311.47 177.18 7 1.49 11.11 351.68 190.38 8 1.60 12.03 379.01 201.67 9 1.88 13.15 407.31 211.13 10 2.11 13.86 425.97 218.05 11 2.35 14.45 436.97 220.13 12 2.54 14.77 443.14 220.97 13 2.79 14.64 445.84 222.11 14 3.00 14.61 444.51 221.33 15 3.17 14.44 438.50 218.73 16 3.30 14.13 431.53 214.85

  • 68

    17 3.54 13.81 418.82 206.95 18 3.66 13.31 408.03 200.17 19 3.77 13.36 398.54 192.33 20 3.83 13.82 389.35 185.66 21 3.97 12.70 367.40 171.30 51.92 236.07 7268.95 3725.98

    4.9

    Rebar (Metric Ton)

    0.0 .5 1.0 1.5 2.0 2.5

    Sto

    ry

    1

    2

    3

    4

    5

    6

    7

    GravityGravity,Wind

    Gravity,Wind,Equivalent StaticGravity,Wind,Response Spectrum

    7

  • 69

    Rebar (Metric Ton)

    0 20 40 60 80 100 120

    Sto

    ry

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    GravityGravity,WindGravity,Wind,Equivalent StaticGravity,Wind,Response Spectrum

    14

    Rebar (Metric Ton)

    0 100 200 300 400 500

    Sto

    ry

    123456789

    101112131415161718192021

    Gravity Gravity,WindGravity,Wind,Equivalent StaticGravity,Wind,Response Spectrum

    21

    4.9 4 : [Gravity] [Gravity,Wind] , [Gravity,Wind,Spec] , ) [Gravity,Wind,Eq-static]

  • 5

    5.1

    . 1311-50 1302-52

    5.2

    1. 7 1.31 14 21 1.60 1.95 2. . 1311-50 1.02, 1.72 4.55 7, 14 21 . 1311-50, .

  • 71

    1302-52 2.65, 48.30 140.00 7, 14 21 . 1311-50 . 1302-52 2.01, 30.27 71.76 7, 14 21 3. 21 28 21 --

    5.3

    1. 21 28 21 -- 2. CEG511 , CEG521 . 1311-50 1302-52 ETAB SAFE 3. (Irregular Shape) 4. ()

  • 72

    -- 21

  • . 2550. . 1311-50.

    . 2552. . 1302-52.

    . 2548. . 2,2: 107-115.

    . 2551. . 13. STR-010.

    . 2552. . 14. STR-50467.

    , . 2550. . 12. STR-046.

    . 2553. . 15. STR-064.

    . 2553. . 5. STR-03.

    . 2548. : (.24-2548). .

  • 75

    . 2545. . 8. STR-047.

    ASCE Committee. (2005). Minimum Design Load for Buildings and Other Structures (SEI/ASCE 7-05).

    Bharath, G. N., Ravishankar, G. S. B. and Chandrashekar, A.V. 2010. Review and Design of Flat Plate/Slabs Construction in India. Available http://www.bharathgowda.in/pdf/SEWC%20Flatslab%20Paper.pdf

    IBC Committee. 2006. International Building Code (IBC 2006).

    National Research Council Canada. 2005. National Building Code of Canada.

    SEI/ASCE-7 Committee. 2005. Minimum Design Load for Buildings and Other Structures (SEI/ASCE 7-05).

    Tilva, V. K., Vyas, B. A., and Thaker, P. 2011. Cost Comparison between Flab Slabs with Drop and without Drop in Four Storey Lateral Load Risisting Building. National Conference on Recent Trands in Engineering and Technology. 13-14 May. B. V. M. Engineering College, V. V. Nagar, Gujarat, India.

  • 76

    . .

    61

    10900

    .. 2532 ..

    .. 2534 ..

    .. 2543 Ph.D. Georgia Institute of Technology

    01 Report Cover.pdf02 Ackknowledgement v3.pdf03 Abstract (Thai) v.pdf04 Abstract (English) v.pdf05 Table of Contents v4.pdf06 Table of Tables v4.pdf07 Table of Figures v4.pdf08 Introduction v3.pdf09 Literature Review v3.pdf10 Research Methology v3.pdf11 Analysis Results v3.pdf12 Discussion Conclusion and Suggestion v4.pdf13.pdf14 References v3.pdf15 Vita on web v2.pdf