Research Article Vibration, Stability, and Resonance of Angle ...In this paper, the perturbation...

27
Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2013, Article ID 418374, 26 pages http://dx.doi.org/10.1155/2013/418374 Research Article Vibration, Stability, and Resonance of Angle-Ply Composite Laminated Rectangular Thin Plate under Multiexcitations M. Sayed 1,2 and A. A. Mousa 1,3 1 Department of Mathematics and Statistics, Faculty of Science, Taif University, P.O. Box 888, Al-Taif, Saudi Arabia 2 Department of Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt 3 Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University, Shibin El-Kom, Egypt Correspondence should be addressed to M. Sayed; moh 6 [email protected] Received 10 November 2012; Revised 15 April 2013; Accepted 1 May 2013 Academic Editor: Dane Quinn Copyright Β© 2013 M. Sayed and A. A. Mousa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An analytical investigation of the nonlinear vibration of a symmetric cross-ply composite laminated piezoelectric rectangular plate under parametric and external excitations is presented. e method of multiple time scale perturbation is applied to solve the non- linear differential equations describing the system up to and including the second-order approximation. All possible resonance cases are extracted at this approximation order. e case of 1 : 1 : 3 primary and internal resonance, where Ξ© 3 β‰… 1 , 2 β‰… 1 , and 3 β‰… 3 1 , is considered. e stability of the system is investigated using both phase-plane method and frequency response curves. e influ- ences of the cubic terms on nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate are studied. e analytical results given by the method of multiple time scale is verified by comparison with results from numerical integration of the modal equations. Reliability of the obtained results is verified by comparison between the finite difference method (FDM) and Runge-Kutta method (RKM). It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such system. Such cases should be avoided as working conditions for the system. Variation of the parameters 1 , 2 , 7 , 8 , 1 , 2 , 1 , 2 leads to multivalued amplitudes and hence to jump phenomena. Some recommendations regarding the different parameters of the system are reported. Comparison with the available published work is reported. 1. Introduction Composite laminated plates that are widely used in several engineering fields such as machinery, shipbuilding, aircraο¬…, automobiles, robot arm, watercraο¬…-hydropower, and wings of helicopters are made of the angle-ply composite laminated plates. Several researchers have focused their attention on studying the nonlinear dynamics, bifurcations, and chaos of the composite laminated plates. Internal resonance has been found in many engineering problems in which the natural frequencies of the system are commensurable. Ye et al. [1] investigated the local and global nonlinear dynamics of a parametrically excited symmetric cross-ply composite laminated rectangular thin plate under parametric excitation. e study is focused on the case of 1 : 1 internal resonance and primary parametric resonance. Zhang [2] dealt with the global bifurcations and chaotic dynamics of a parametrically excited, simply supported rectangular thin plate. e method of multiple scales is used to obtain the averaged equations. e case of 1 : 1 internal resonance and primary parametric resonance is considered. Guo et al. [3] studied the nonlinear dynamics of a four-edge simply supported angle-ply composite laminated rectangular thin plate excited by both the in-plane and transverse loads. e asymptotic perturbation method is used to derive the four averaged equations under 1 : 1 internal resonance. Zhang et al. [4] investigated the local and global bifurcations of a para- metrically and externally excited simply supported rectan- gular thin plate under simultaneous transversal and in-plane excitations. e studies are focused on the case of 1 : 1 internal resonance and primary parametric resonance. Tien et al. [5] applied the averaging method and Melnikov technique to study local, global bifurcations and chaos of a two-degrees- of-freedom shallow arch subjected to simple harmonic

Transcript of Research Article Vibration, Stability, and Resonance of Angle ...In this paper, the perturbation...

  • Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2013, Article ID 418374, 26 pageshttp://dx.doi.org/10.1155/2013/418374

    Research ArticleVibration, Stability, and Resonance of Angle-Ply CompositeLaminated Rectangular Thin Plate under Multiexcitations

    M. Sayed1,2 and A. A. Mousa1,3

    1 Department of Mathematics and Statistics, Faculty of Science, Taif University, P.O. Box 888, Al-Taif, Saudi Arabia2Department of Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt3 Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University, Shibin El-Kom, Egypt

    Correspondence should be addressed to M. Sayed; moh 6 [email protected]

    Received 10 November 2012; Revised 15 April 2013; Accepted 1 May 2013

    Academic Editor: Dane Quinn

    Copyright Β© 2013 M. Sayed and A. A. Mousa. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    An analytical investigation of the nonlinear vibration of a symmetric cross-ply composite laminated piezoelectric rectangular plateunder parametric and external excitations is presented.Themethod of multiple time scale perturbation is applied to solve the non-linear differential equations describing the systemup to and including the second-order approximation. All possible resonance casesare extracted at this approximation order.The case of 1 : 1 : 3 primary and internal resonance, whereΞ©

    3β‰… πœ”1,πœ”2β‰… πœ”1, andπœ”

    3β‰… 3πœ”1,

    is considered. The stability of the system is investigated using both phase-plane method and frequency response curves. The influ-ences of the cubic terms onnonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate are studied.The analytical results given by the method of multiple time scale is verified by comparison with results from numerical integrationof themodal equations. Reliability of the obtained results is verified by comparison between the finite differencemethod (FDM) andRunge-Kutta method (RKM). It is quite clear that some of the simultaneous resonance cases are undesirable in the design of suchsystem. Such cases should be avoided as working conditions for the system. Variation of the parameters πœ‡

    1, πœ‡2, 𝛼7, 𝛽8, πœ”1, πœ”2, 𝑓1, 𝑓2

    leads to multivalued amplitudes and hence to jump phenomena. Some recommendations regarding the different parameters of thesystem are reported. Comparison with the available published work is reported.

    1. Introduction

    Composite laminated plates that are widely used in severalengineering fields such as machinery, shipbuilding, aircraft,automobiles, robot arm, watercraft-hydropower, and wingsof helicopters are made of the angle-ply composite laminatedplates. Several researchers have focused their attention onstudying the nonlinear dynamics, bifurcations, and chaos ofthe composite laminated plates.

    Internal resonance has been found in many engineeringproblems in which the natural frequencies of the system arecommensurable. Ye et al. [1] investigated the local and globalnonlinear dynamics of a parametrically excited symmetriccross-ply composite laminated rectangular thin plate underparametric excitation. The study is focused on the case of 1 : 1internal resonance and primary parametric resonance. Zhang[2] dealt with the global bifurcations and chaotic dynamics of

    a parametrically excited, simply supported rectangular thinplate. The method of multiple scales is used to obtain theaveraged equations. The case of 1 : 1 internal resonance andprimary parametric resonance is considered. Guo et al.[3] studied the nonlinear dynamics of a four-edge simplysupported angle-ply composite laminated rectangular thinplate excited by both the in-plane and transverse loads. Theasymptotic perturbation method is used to derive the fouraveraged equations under 1 : 1 internal resonance. Zhang et al.[4] investigated the local and global bifurcations of a para-metrically and externally excited simply supported rectan-gular thin plate under simultaneous transversal and in-planeexcitations.The studies are focused on the case of 1 : 1 internalresonance and primary parametric resonance. Tien et al. [5]applied the averaging method and Melnikov technique tostudy local, global bifurcations and chaos of a two-degrees-of-freedom shallow arch subjected to simple harmonic

  • 2 Mathematical Problems in Engineering

    excitation for case of 1 : 2 internal resonances. Sayed andMousa [6] investigated the influence of the quadratic andcubic terms on nonlinear dynamic characteristics of theangle-ply composite laminated rectangular plate with para-metric and external excitations. Two cases of the subhar-monic resonances cases in the presence of 1 : 2 internal reso-nances are considered.Themethod ofmultiple time scale per-turbation is applied to solve the nonlinear differential equa-tions describing the system up to and including the second-order approximation. Zhang et al. [7] gave further studies onthe nonlinear oscillations and chaotic dynamics of a para-metrically excited simply supported symmetric cross-plylaminated composite rectangular thin plate with the geo-metric nonlinearity and nonlinear damping. Zhang et al. [8]dealt with the nonlinear vibrations and chaotic dynamics ofa simply supported orthotropic functionally graded mate-rial (FGM) rectangular plate subjected to the in-plane andtransverse excitations together with thermal loading in thepresence of 1 : 2 : 4 internal resonance, primary parametricresonance, and subharmonic resonance of order 1/2. Zhanget al. [9] investigated the bifurcations and chaotic dynamics ofa simply supported symmetric cross-ply composite laminatedpiezoelectric rectangular plate subject to the transverse, in-plane excitations and the excitation loaded by piezoelectriclayers. Zhang and Li [10] analyzed the resonant chaoticmotions of a simply supported rectangular thin plate withparametrically and externally excitations using exponentialdichotomies and an averaging procedure. Zhang et al. [11]analyzed the chaotic dynamics of a six-dimensional nonlinearsystem which represents the averaged equation of a compos-ite laminated piezoelectric rectangular plate subjected to thetransverse, in-plane excitations and the excitation loaded bypiezoelectric layers. The case of 1 : 2 : 4 internal resonances isconsidered. Zhang and Hao [12] studied the global bifurca-tions and multipulse chaotic dynamics of the composite lam-inated piezoelectric rectangular plate by using the improvedextended Melnikov method. The multipulse chaotic motionsof the system are found by using numerical simulation, whichfurther verifies the result of theoretical analysis. Guo andZhang [13] studied the nonlinear oscillations and chaoticdynamics for a simply supported symmetric cross-ply com-posite laminated rectangular thin plate with parametric andforcing excitations. The case of 1 : 2 : 3 internal resonance isconsidered. The method of multiple scales is employed toobtain the six-dimensional averaged equation.The numericalmethod is used to investigate the periodic and chaoticmotions of the composite laminated rectangular thin plate.Eissa and Sayed [14–16] and Sayed [17] investigated the effectsof different active controllers on simple and spring pendulumat the primary resonance via negative velocity feedback orits square or cubic. Sayed and Kamel [18, 19] investigated theeffects of different controllers on the vibrating system and thesaturation control to reduce vibrations due to rotor blade flap-ping motion. The stability of the system is investigated usingboth phase-plane method and frequency response curves.Sayed and Hamed [20] studied the response of a two-degree-of-freedom systemwith quadratic coupling under parametricand harmonic excitations. The method of multiple scaleperturbation technique is applied to solve the nonlinear

    differential equations and obtain approximate solutions up toand including the second-order approximations. Amer et al.[21] investigated the dynamical system of a twin-tail aircraft,which is described by two coupled second-order nonlin-ear differential equations having both quadratic and cubicnonlinearities under different controllers. Best active controlof the system has been achieved via negative accelera-tion feedback. The stability of the system is investigatedapplying both frequency response equations and phase-plane method. Hamed et al. [22] studied the nonlineardynamic behavior of a string-beam coupled system subjectedto external, parametric, and tuned excitations that are pre-sented.The case of 1 : 1 internal resonance between themodesof the beam and string, and the primary and combined reson-ance for the beam is considered. The method of multiplescales is applied to obtain approximate solutions up to andincluding the second-order approximations. All resonancecases are extracted and investigated. Stability of the systemis studied using frequency response equations and the phase-plane method. Awrejcewicz et al. [23–25] studied the chaoticdynamics of continuous mechanical systems such as flexibleplates and shallow shells.The considered problems are solvedby the Bubnov-Galerkin, Ritz method with higher approxi-mations, and finite difference method. Convergence and val-idation of those methods are studied. Awrejcewicz et al. [26]investigated the chaotic vibrations of flexible nonlinear Euler-Bernoulli beams subjected to harmonic load andwith variousboundary conditions. Reliability of the obtained results isverified by the finite difference method and finite elementmethodwith the Bubnov-Galerkin approximation for variousboundary conditions and various dynamic regimes.

    In this paper, the perturbation method and stabilityof the composite laminated piezoelectric rectangular plateunder simultaneous transverse and in-plane excitations areinvestigated. The method of multiple scales are applied toobtain the second-order uniform asymptotic solutions. Allpossible resonance cases are extracted at this approximationorder. The study is focused on the case of 1 : 1 : 3 internalresonance and primary resonance.The stability of the systemand the effects of different parameters on system behaviorhave been studied using frequency response curves. Stabilityis performed of figures by solid and dotted lines. Theanalytical results given by the method of multiple timescale is verified by comparison with results from numericalintegration of the modal equations. It is quite clear thatsome of the simultaneous resonance cases are undesirable inthe design of such system. Such cases should be avoided asworking conditions for the system. Some recommendationsregarding the different parameters of the system are reported.Comparison with the available published work is reported.

    2. Mathematical Analysis

    Consider a simply supported four edges composite laminatedpiezoelectric rectangular plate of lengths π‘Ž, 𝑏 and thickness β„Ž,as shown in Figure 1. The composite laminated piezoelectricrectangular plate is considered as regular symmetric cross-ply laminates with 𝑛 layers. A Cartesian coordinate system is

  • Mathematical Problems in Engineering 3

    y

    b

    q cosΞ©3t

    q0 + qx cosΞ©1t

    q1 + qy cosΞ©2t

    x

    a

    Figure 1: The model of the composite laminated piezoelectricrectangular plate.

    located in the middle surface of the plate. Assume that 𝑒, V,and 𝑀 represent the displacements of an arbitrary point ofthe composite laminated piezoelectric rectangular plate in theπ‘₯, 𝑦, and 𝑧 directions, respectively. The in-plane excitationsare loaded along the 𝑦direction at π‘₯ = 0 in the formπ‘ž0+ π‘žπ‘₯cosΞ©1𝑑, and the excitations are loaded along the π‘₯

    direction at 𝑦 = 0 in the form π‘ž1+ π‘žπ‘¦cosΞ©2𝑑. The trans-

    verse excitation subjected to the composite laminated piezo-electric rectangular plate is represented by π‘ž cosΞ©

    3𝑑. The

    dynamic electrical loading is expressed as 𝐸𝑧cosΞ©4𝑑. Based

    on Reddy’s third-order shear deformation plate theory [27],the displacement field at an arbitrary point in the compositelaminated plate is expressed as [13]

    𝑒 (π‘₯, 𝑦, 𝑑) = 𝑒0(π‘₯, 𝑦, 𝑑) + π‘§πœ‘

    π‘₯(π‘₯, 𝑦, 𝑑) βˆ’ 𝑧

    3 4

    3β„Ž2(πœ‘π‘₯+πœ•π‘€0

    πœ•π‘₯) ,

    (1a)

    V (π‘₯, 𝑦, 𝑑) = V0(π‘₯, 𝑦, 𝑑) + π‘§πœ‘

    𝑦(π‘₯, 𝑦, 𝑑) βˆ’ 𝑧

    3 4

    3β„Ž2(πœ‘π‘¦+πœ•π‘€0

    πœ•π‘¦) ,

    (1b)

    𝑀 (π‘₯, 𝑦, 𝑑) = 𝑀0(π‘₯, 𝑦, 𝑑) , (1c)

    where 𝑒0, V0, and 𝑀

    0are the original displacement on the

    midplane of the plate in theπ‘₯,𝑦, and 𝑧directions, respectively.Let πœ‘π‘₯and πœ‘

    𝑦represent the midplane rotations of transverse

    normal about the π‘₯ and 𝑦 axes, respectively. From thevan Karman-type plate theory and Hamilton’s principle, thenonlinear governing equations of motion of the compositelaminated piezoelectric rectangular plate are given as follows[12]:

    πœ•π‘π‘₯π‘₯

    πœ•π‘₯+

    πœ•π‘π‘₯𝑦

    πœ•π‘¦= 𝐼0�̈�0+ 𝐽1�̈�π‘₯βˆ’4

    3β„Ž2𝐼3

    πœ•οΏ½ΜˆοΏ½0

    πœ•π‘₯, (2a)

    πœ•π‘π‘₯𝑦

    πœ•π‘₯+

    πœ•π‘π‘¦π‘¦

    πœ•π‘¦= 𝐼0V̈0+ 𝐽1οΏ½ΜˆοΏ½π‘¦βˆ’4

    3β„Ž2𝐼3

    πœ•οΏ½ΜˆοΏ½0

    πœ•π‘¦, (2b)

    πœ•π‘„π‘₯

    πœ•π‘₯+

    πœ•π‘„π‘¦

    πœ•π‘¦+πœ•

    πœ•π‘₯(𝑁π‘₯π‘₯

    πœ•π‘€0

    πœ•π‘₯+ 𝑁π‘₯𝑦

    πœ•π‘€0

    πœ•π‘¦)

    +πœ•

    πœ•π‘¦(𝑁π‘₯𝑦

    πœ•π‘€0

    πœ•π‘₯+ 𝑁𝑦𝑦

    πœ•π‘€0

    πœ•π‘¦)

    +4

    3β„Ž2(πœ•2𝑃π‘₯π‘₯

    πœ•π‘₯2+ 2

    πœ•2𝑃π‘₯𝑦

    πœ•π‘₯πœ•π‘¦+

    πœ•2𝑃𝑦𝑦

    πœ•π‘¦2) + π‘ž

    = 𝐼0�̈�0βˆ’16

    9β„Ž4𝐼6(πœ•2�̈�0

    πœ•π‘₯2+πœ•2�̈�0

    πœ•π‘¦2)

    +4

    3β„Ž2[𝐼3(πœ•οΏ½ΜˆοΏ½0

    πœ•π‘₯+πœ•V̈0

    πœ•π‘¦) + 𝐽4(πœ•οΏ½ΜˆοΏ½π‘₯

    πœ•π‘₯+

    πœ•οΏ½ΜˆοΏ½π‘¦

    πœ•π‘¦)] ,

    (2c)

    πœ•π‘€π‘₯π‘₯

    πœ•π‘₯+

    πœ•π‘€π‘₯𝑦

    πœ•π‘¦βˆ’ 𝑄π‘₯= 𝐽1�̈�0+ π‘˜2�̈�π‘₯βˆ’4

    3β„Ž2𝐽4

    πœ•οΏ½ΜˆοΏ½0

    πœ•π‘₯, (2d)

    πœ•π‘€π‘₯𝑦

    πœ•π‘₯+

    πœ•π‘€π‘¦π‘¦

    πœ•π‘¦βˆ’ 𝑄𝑦= 𝐽1V̈0+ π‘˜2οΏ½ΜˆοΏ½π‘¦βˆ’4

    3β„Ž2𝐽4

    πœ•οΏ½ΜˆοΏ½0

    πœ•π‘¦. (2e)

    Theboundary conditions of the simply supported rectangularcomposite laminated plate are expressed as follows:

    at π‘₯ = 0, π‘₯ = π‘Ž : πœ•π‘’πœ•π‘₯= 0,

    𝑀 = 𝑒 = πœ‘π‘₯= πœ‘π‘¦= 𝑀π‘₯π‘₯= 𝑁π‘₯𝑦= 𝑄π‘₯= 0,

    (3a)

    at 𝑦 = 0, 𝑦 = 𝑏 : πœ•Vπœ•π‘¦= 0,

    𝑀 = V = 𝑁π‘₯𝑦= 𝑀𝑦𝑦= 𝑄𝑦= 0,

    (3b)

    ∫

    𝑏

    0

    𝑁π‘₯π‘₯

    π‘₯=0, π‘Žπ‘‘π‘¦ = ∫

    𝑏

    0

    (π‘ž0+ π‘žπ‘₯cosΞ©1𝑑) 𝑑𝑦, (3c)

    ∫

    π‘Ž

    0

    𝑁𝑦𝑦

    𝑦=0, 𝑏𝑑π‘₯ = ∫

    π‘Ž

    0

    (π‘ž1+ π‘žπ‘¦cosΞ©2𝑑) 𝑑π‘₯. (3d)

    Applying the Galerkin procedure, we obtain that the dimen-sionless differential equations of motion for the simplysupported symmetric cross-ply rectangular thin plate areshown as follows [11, 28]:

    �̈�1+ πœ‡1οΏ½Μ‡οΏ½1+ πœ”2

    1𝑒1

    + (𝑓11cosΞ©1𝑑 + 𝑓12cosΞ©2𝑑 + 𝑓14cosΞ©4𝑑) 𝑒1

    + 𝛼1𝑒2

    1𝑒2+ 𝛼2𝑒2

    1𝑒3+ 𝛼3𝑒2

    2𝑒1+ 𝛼4𝑒2

    2𝑒3

    + 𝛼5𝑒2

    3𝑒1+ 𝛼6𝑒2

    3𝑒2+ 𝛼7𝑒3

    1+ 𝛼8𝑒3

    2

    + 𝛼9𝑒3

    3+ 𝛼10𝑒1𝑒2𝑒3

    = 𝑓1cosΞ©3𝑑,

    (4a)

  • 4 Mathematical Problems in Engineering

    �̈�2+ πœ‡2οΏ½Μ‡οΏ½2+ πœ”2

    2𝑒2

    + (𝑓21cosΞ©1𝑑 + 𝑓22cosΞ©2𝑑 + 𝑓24cosΞ©4𝑑) 𝑒2

    + 𝛽1𝑒2

    1𝑒2+ 𝛽2𝑒2

    1𝑒3+ 𝛽3𝑒2

    2𝑒1+ 𝛽4𝑒2

    2𝑒3

    + 𝛽5𝑒2

    3𝑒1+ 𝛽6𝑒2

    3𝑒2+ 𝛽7𝑒3

    1+ 𝛽8𝑒3

    2

    + 𝛽9𝑒3

    3+ 𝛽10𝑒1𝑒2𝑒3

    = 𝑓2cosΞ©3𝑑,

    (4b)

    �̈�3+ πœ‡3οΏ½Μ‡οΏ½3+ πœ”2

    3𝑒3

    + (𝑓31cosΞ©1𝑑 + 𝑓32cosΞ©2𝑑 + 𝑓34cosΞ©4𝑑) 𝑒3

    + 𝛾1𝑒2

    1𝑒2+ 𝛾2𝑒2

    1𝑒3+ 𝛾3𝑒2

    2𝑒1+ 𝛾4𝑒2

    2𝑒3

    + 𝛾5𝑒2

    3𝑒1+ 𝛾6𝑒2

    3𝑒2+ 𝛾7𝑒3

    1+ 𝛾8𝑒3

    2

    + 𝛾9𝑒3

    3+ 𝛾10𝑒1𝑒2𝑒3

    = 𝑓3cosΞ©3𝑑,

    (4c)

    where 𝑒1, 𝑒2, and 𝑒

    3are the vibration amplitudes of the com-

    posite laminated piezoelectric rectangular plate for the first-order, second-order, and the third-order modes, respectively,πœ‡1, πœ‡2, and πœ‡

    3are the linear viscous damping coefficients,

    πœ”1, πœ”2, and πœ”

    3are the natural frequencies of the rectangular

    plate, andΞ©1,Ξ©2,Ξ©3, andΞ©

    4are the excitations frequencies.

    𝑓𝑛1, 𝑓𝑛2, 𝑓𝑛3, and 𝑓

    𝑛(𝑛 = 1, 2, 3) are the amplitudes of

    parametric and external excitation forces corresponding tothe three nonlinear modes, and 𝛼

    𝑖, 𝛽𝑖, and 𝛾

    𝑖(𝑖 = 1, 2, . . . , 10)

    are the nonlinear coefficients.The linear viscous damping andexciting forces are assumed to be

    πœ‡π‘›= πœ€πœ‡π‘›, 𝑓𝑛1= πœ€π‘“π‘›1, 𝑓

    𝑛2= πœ€π‘“π‘›2,

    𝑓𝑛3= πœ€π‘“π‘›3, 𝑓𝑛= πœ€2𝑓𝑛, 𝑛 = 1, 2, 3,

    (5)

    where πœ€ is a small perturbation parameter and 0 < πœ€ β‰ͺ 1.The external excitation forces 𝑓

    𝑛are of the order 2, and

    the linear viscous damping πœ‡π‘›, parametric exciting forces𝑓

    𝑛1,

    𝑓𝑛2, and 𝑓

    𝑛3are of the order 1.

    To consider the influence of the cubic terms on non-linear dynamic characteristics of the composite laminatedpiezoelectric rectangular plate, we need to obtain the second-order approximate solution of (4a), (4b), and (4c). Methodof multiple scales [29–31] is applied to obtain a second-order approximation for the system. For the second-orderapproximation, we introduce three time scales defined by

    𝑇0= 𝑑, 𝑇

    1= πœ€π‘‘, 𝑇

    2= πœ€2𝑑. (6)

    In terms of these scales, the time derivatives become

    𝑑

    𝑑𝑑= 𝐷0+ πœ€π·1+ πœ€2𝐷2, (7a)

    𝑑2

    𝑑𝑑2= 𝐷2

    0+ 2πœ€π·

    0𝐷1+ πœ€2(𝐷2

    1+ 2𝐷0𝐷2) , (7b)

    where 𝐷𝑛= πœ•/πœ•π‘‡

    𝑛, 𝑛 = 0, 1, 2. We seek a uniform approxi-

    mation to the solution of (4a), (4b), and (4c) in the form:

    𝑒𝑛 (𝑑, πœ€) = πœ€π‘’π‘›1 (𝑇0, 𝑇1, 𝑇2) + πœ€

    2𝑒𝑛2(𝑇0, 𝑇1, 𝑇2)

    + πœ€3𝑒𝑛3(𝑇0, 𝑇1, 𝑇2) + 𝑂 (πœ€

    4) , 𝑛 = 1, 2, 3.

    (8)

    Terms of 𝑂(πœ€4) and higher orders are neglected. Substituting(5) and (7a)–(8) into (4a), (4b), and (4c) and equating thecoefficients of like powers of πœ€, we obtain the following.

    Order πœ€

    (𝐷2

    0+ πœ”2

    1) 𝑒11= 0, (9a)

    (𝐷2

    0+ πœ”2

    2) 𝑒21= 0, (9b)

    (𝐷2

    0+ πœ”2

    3) 𝑒31= 0. (9c)

    Order πœ€2

    (𝐷2

    0+ πœ”2

    1) 𝑒12= βˆ’2𝐷

    0𝐷1𝑒11βˆ’ πœ‡1𝐷0𝑒11

    βˆ’ (𝑓11cosΞ©1𝑇0+ 𝑓12cosΞ©2𝑇0

    +𝑓14cosΞ©4𝑇0) 𝑒11+ 𝑓1cosΞ©3𝑇0,

    (10a)

    (𝐷2

    0+ πœ”2

    2) 𝑒22= βˆ’2𝐷

    0𝐷1𝑒21βˆ’ πœ‡2𝐷0𝑒21

    βˆ’ (𝑓21cosΞ©1𝑇0+ 𝑓22cosΞ©2𝑇0

    +𝑓24cosΞ©4𝑇0) 𝑒21+ 𝑓2cosΞ©3𝑇0,

    (10b)

    (𝐷2

    0+ πœ”2

    3) 𝑒32= βˆ’2𝐷

    0𝐷1𝑒31βˆ’ πœ‡3𝐷0𝑒31

    βˆ’ (𝑓31cosΞ©1𝑇0+ 𝑓32cosΞ©2𝑇0

    +𝑓34cosΞ©4𝑇0) 𝑒31+ 𝑓3cosΞ©3𝑇0.

    (10c)

    Order πœ€3

    (𝐷2

    0+ πœ”2

    1) 𝑒13= βˆ’π·2

    1𝑒11βˆ’ 2𝐷0𝐷2𝑒11βˆ’ 2𝐷0𝐷1𝑒12

    βˆ’ πœ‡1(𝐷0𝑒12+ 𝐷1𝑒11)

    βˆ’ (𝑓11cosΞ©1𝑇0+ 𝑓12cosΞ©2𝑇0

    + 𝑓14cosΞ©4𝑇0) 𝑒12

    βˆ’ 𝛼1𝑒2

    11𝑒21βˆ’ 𝛼2𝑒2

    11𝑒31βˆ’ 𝛼3𝑒2

    21𝑒11

    βˆ’ 𝛼4𝑒2

    21𝑒31βˆ’ 𝛼5𝑒2

    31𝑒11βˆ’ 𝛼6𝑒2

    31𝑒21

    βˆ’ 𝛼7𝑒3

    11βˆ’ 𝛼8𝑒3

    21βˆ’ 𝛼9𝑒3

    31βˆ’ 𝛼10𝑒11𝑒21𝑒31,

    (11a)

  • Mathematical Problems in Engineering 5

    (𝐷2

    0+ πœ”2

    2) 𝑒23= βˆ’π·2

    1𝑒21βˆ’ 2𝐷0𝐷2𝑒21βˆ’ 2𝐷0𝐷1𝑒22

    βˆ’ πœ‡2(𝐷0𝑒22+ 𝐷1𝑒21)

    βˆ’ (𝑓21cosΞ©1𝑇0+ 𝑓22cosΞ©2𝑇0

    +𝑓24cosΞ©4𝑇0) 𝑒22

    βˆ’ 𝛽1𝑒2

    11𝑒21βˆ’ 𝛽2𝑒2

    11𝑒31βˆ’ 𝛽3𝑒2

    21𝑒11

    βˆ’ 𝛽4𝑒2

    21𝑒31βˆ’ 𝛽5𝑒2

    31𝑒11βˆ’ 𝛽6𝑒2

    31𝑒21

    βˆ’ 𝛽7𝑒3

    11βˆ’ 𝛽8𝑒3

    21βˆ’ 𝛽9𝑒3

    31βˆ’ 𝛽10𝑒11𝑒21𝑒31,

    (11b)

    (𝐷2

    0+ πœ”2

    3) 𝑒33= βˆ’π·2

    1𝑒31βˆ’ 2𝐷0𝐷2𝑒31βˆ’ 2𝐷0𝐷1𝑒32

    βˆ’ πœ‡3(𝐷0𝑒32+ 𝐷1𝑒31)

    βˆ’ (𝑓31cosΞ©1𝑇0+ 𝑓32cosΞ©2𝑇0

    +𝑓34cosΞ©4𝑇0) 𝑒32

    βˆ’ 𝛾1𝑒2

    11𝑒21βˆ’ 𝛾2𝑒2

    11𝑒31βˆ’ 𝛾3𝑒2

    21𝑒11

    βˆ’ 𝛾4𝑒2

    21𝑒31βˆ’ 𝛾5𝑒2

    31𝑒11βˆ’ 𝛾6𝑒2

    31𝑒21

    βˆ’ 𝛾7𝑒3

    11βˆ’ 𝛾8𝑒3

    21βˆ’ 𝛾9𝑒3

    31βˆ’ 𝛾10𝑒11𝑒21𝑒31.

    (11c)

    The general solutions of (9a), (9b), and (9c) can be written inthe form

    𝑒11= 𝐴1(𝑇1, 𝑇2) exp (π‘–πœ”

    1𝑇0) + 𝑐𝑐, (12a)

    𝑒21= 𝐴2(𝑇1, 𝑇2) exp (π‘–πœ”

    2𝑇0) + 𝑐𝑐, (12b)

    𝑒31= 𝐴3(𝑇1, 𝑇2) exp (π‘–πœ”

    3𝑇0) + 𝑐𝑐, (12c)

    where𝐴1,𝐴2, and𝐴

    3are a complex function in𝑇

    1, 𝑇2which

    can be determined from eliminating the secular terms at thenext approximation and 𝑐𝑐 stands for the complex conjugateof the preceding terms. Substituting (12a), (12b), and (12c)into (10a), (10b), and (10c) and eliminating the secular terms,then the first-order approximations are given by

    𝑒12= 𝐸1exp (π‘–πœ”

    1𝑇0) + 𝐸2exp (𝑖 (Ξ©

    1+ πœ”1) 𝑇0)

    + 𝐸3exp (𝑖 (Ξ©

    1βˆ’ πœ”1) 𝑇0) + 𝐸4exp (𝑖 (Ξ©

    2+ πœ”1) 𝑇0)

    + 𝐸5exp (𝑖 (Ξ©

    2βˆ’ πœ”1) 𝑇0) + 𝐸6exp (𝑖 (Ξ©

    4+ πœ”1) 𝑇0)

    + 𝐸7exp (𝑖 (Ξ©

    4βˆ’ πœ”1) 𝑇0) + 𝑐𝑐,

    (13a)

    𝑒22= 𝐸8exp (π‘–πœ”

    2𝑇0) + 𝐸9exp (𝑖 (Ξ©

    1+ πœ”2) 𝑇0)

    + 𝐸10exp (𝑖 (Ξ©

    1βˆ’ πœ”2) 𝑇0) + 𝐸11exp (𝑖 (Ξ©

    2+ πœ”2) 𝑇0)

    + 𝐸12exp (𝑖 (Ξ©

    2βˆ’ πœ”2) 𝑇0) + 𝐸13exp (𝑖 (Ξ©

    4+ πœ”2) 𝑇0)

    + 𝐸14exp (𝑖 (Ξ©

    4βˆ’ πœ”2) 𝑇0) + 𝑐𝑐,

    (13b)

    𝑒32= 𝐸15exp (π‘–πœ”

    3𝑇0) + 𝐸16exp (𝑖 (Ξ©

    1+ πœ”3) 𝑇0)

    + 𝐸17exp (𝑖 (Ξ©

    1βˆ’ πœ”3) 𝑇0) + 𝐸18exp (𝑖 (Ξ©

    2+ πœ”3) 𝑇0)

    + 𝐸19exp (𝑖 (Ξ©

    2βˆ’ πœ”3) 𝑇0) + 𝐸20exp (𝑖 (Ξ©

    4+ πœ”3) 𝑇0)

    + 𝐸21exp (𝑖 (Ξ©

    4βˆ’ πœ”3) 𝑇0) + 𝐸22exp (𝑖Ω

    3𝑇0) + 𝑐𝑐,

    (13c)

    where 𝐸𝑖(𝑖 = 1, 2, . . . , 22) are the complex functions in 𝑇

    1

    and 𝑇2. From (12a)–(13c) into (11a), (11b), and (11c) and elim-

    inating the secular terms, the second-order approximation isgiven by

    𝑒13(𝑇0, 𝑇1, 𝑇2) = 𝐻

    1exp (π‘–πœ”

    2𝑇0) + 𝐻2exp (π‘–πœ”

    3𝑇0)

    + 𝐻3exp (3π‘–πœ”

    1𝑇0) + 𝐻4exp (3π‘–πœ”

    2𝑇0)

    + 𝐻5exp (3π‘–πœ”

    3𝑇0)

    + 𝐻6exp (𝑖 (πœ”

    2Β± 2πœ”1) 𝑇0)

    + 𝐻7exp (𝑖 (πœ”

    3Β± 2πœ”1) 𝑇0)

    + 𝐻8exp (𝑖 (2πœ”

    2Β± πœ”1) 𝑇0)

    + 𝐻9exp (𝑖 (2πœ”

    3Β± πœ”1) 𝑇0)

    + 𝐻10exp (𝑖 (πœ”

    2Β± 2πœ”3) 𝑇0)

    + 𝐻11exp (𝑖 (πœ”

    3Β± 2πœ”2) 𝑇0)

    + 𝐻12exp (𝑖 (πœ”

    3Β± πœ”2Β± πœ”1) 𝑇0)

    + 𝐻13exp (𝑖Ω

    3𝑇0)

    + 𝐻14exp (𝑖 (Ξ©

    3Β± Ξ©1) 𝑇0)

    + 𝐻15exp (𝑖 (Ξ©

    3Β± Ξ©2) 𝑇0)

    + 𝐻16exp (𝑖 (Ξ©

    3Β± Ξ©4) 𝑇0)

    + 𝐻17exp (𝑖 (Ξ©

    1Β± πœ”1) 𝑇0)

    + 𝐻18exp (𝑖 (Ξ©

    2Β± πœ”1) 𝑇0)

    + 𝐻19exp (𝑖 (Ξ©

    4Β± πœ”1) 𝑇0)

    + 𝐻20exp (𝑖 (2Ξ©

    1Β± πœ”1) 𝑇0)

    + 𝐻21exp (𝑖 (2Ξ©

    2Β± πœ”1) 𝑇0)

    + 𝐻22exp (𝑖 (2Ξ©

    4Β± πœ”1) 𝑇0)

    + 𝐻23exp (𝑖 (Ξ©

    2Β± Ξ©1Β± πœ”1) 𝑇0)

    + 𝐻24exp (𝑖 (Ξ©

    4Β± Ξ©1Β± πœ”1) 𝑇0)

    + 𝐻25exp (𝑖 (Ξ©

    4Β± Ξ©2Β± πœ”1) 𝑇0) + 𝑐𝑐,

    (14a)𝑒23(𝑇0, 𝑇1, 𝑇2) = 𝐻

    26exp (π‘–πœ”

    1𝑇0) + 𝐻27exp (π‘–πœ”

    3𝑇0)

    + 𝐻28exp (3π‘–πœ”

    1𝑇0) + 𝐻29exp (3π‘–πœ”

    2𝑇0)

  • 6 Mathematical Problems in Engineering

    + 𝐻30exp (3π‘–πœ”

    3𝑇0)

    + 𝐻31exp (𝑖 (πœ”

    2Β± 2πœ”1) 𝑇0)

    + 𝐻32exp (𝑖 (2πœ”

    2Β± πœ”1) 𝑇0)

    + 𝐻33exp (𝑖 (πœ”

    3Β± 2πœ”1) 𝑇0)

    + 𝐻34exp (𝑖 (2πœ”

    3Β± πœ”1) 𝑇0)

    + 𝐻35exp (𝑖 (πœ”

    2Β± 2πœ”3) 𝑇0)

    + 𝐻36exp (𝑖 (2πœ”

    2Β± πœ”3) 𝑇0)

    + 𝐻37exp (𝑖 (πœ”

    3Β± πœ”2Β± πœ”1) 𝑇0)

    + 𝐻38exp (𝑖Ω

    3𝑇0)

    + 𝐻39exp (𝑖 (Ξ©

    3Β± Ξ©1) 𝑇0)

    + 𝐻40exp (𝑖 (Ξ©

    3Β± Ξ©2) 𝑇0)

    + 𝐻41exp (𝑖 (Ξ©

    4Β± Ξ©3) 𝑇0)

    + 𝐻42exp (𝑖 (Ξ©

    1Β± πœ”2) 𝑇0)

    + 𝐻43exp (𝑖 (Ξ©

    2Β± πœ”2) 𝑇0)

    + 𝐻44exp (𝑖 (Ξ©

    4Β± πœ”2) 𝑇0)

    + 𝐻45exp (𝑖 (2Ξ©

    1Β± πœ”2) 𝑇0)

    + 𝐻46exp (𝑖 (2Ξ©

    2Β± πœ”2) 𝑇0)

    + 𝐻47exp (𝑖 (2Ξ©

    4Β± πœ”2) 𝑇0)

    + 𝐻48exp (𝑖 (Ξ©

    2Β± Ξ©1Β± πœ”2) 𝑇0)

    + 𝐻49exp (𝑖 (Ξ©

    4Β± Ξ©1Β± πœ”2) 𝑇0)

    + 𝐻50exp (𝑖 (Ξ©

    4Β± Ξ©2Β± πœ”2) 𝑇0) + 𝑐𝑐,

    (14b)𝑒33(𝑇0, 𝑇1, 𝑇2) = 𝐻

    51exp (3π‘–πœ”

    3𝑇0) + 𝐻52exp (π‘–πœ”

    1𝑇0)

    + 𝐻53exp (3π‘–πœ”

    1𝑇0) + 𝐻54exp (π‘–πœ”

    2𝑇0)

    + 𝐻55exp (3π‘–πœ”

    2𝑇0)

    + 𝐻56exp (𝑖 (πœ”

    2Β± 2πœ”1) 𝑇0)

    + 𝐻57exp (𝑖 (2πœ”

    2Β± πœ”1) 𝑇0)

    + 𝐻58exp (𝑖 (πœ”

    3Β± 2πœ”1) 𝑇0)

    + 𝐻59exp (𝑖 (2πœ”

    3Β± πœ”1) 𝑇0)

    + 𝐻60exp (𝑖 (πœ”

    2Β± 2πœ”3) 𝑇0)

    + 𝐻61exp (𝑖 (2πœ”

    2Β± πœ”3) 𝑇0)

    + 𝐻62exp (𝑖 (πœ”

    3Β± πœ”2Β± πœ”1) 𝑇0)

    + 𝐻63exp (𝑖Ω

    3𝑇0)

    + 𝐻64exp (𝑖 (Ξ©

    3Β± Ξ©1) 𝑇0)

    + 𝐻65exp (𝑖 (Ξ©

    3Β± Ξ©2) 𝑇0)

    + 𝐻66exp (𝑖 (Ξ©

    3Β± Ξ©4) 𝑇0)

    + 𝐻67exp (𝑖 (Ξ©

    1Β± πœ”3) 𝑇0)

    + 𝐻68exp (𝑖 (Ξ©

    2Β± πœ”3) 𝑇0)

    + 𝐻69exp (𝑖 (Ξ©

    4Β± πœ”3) 𝑇0)

    + 𝐻70exp (𝑖 (2Ξ©

    1Β± πœ”3) 𝑇0)

    + 𝐻71exp (𝑖 (2Ξ©

    2Β± πœ”3) 𝑇0)

    + 𝐻72exp (𝑖 (2Ξ©

    4Β± πœ”3) 𝑇0)

    + 𝐻73exp (𝑖 (Ξ©

    2Β± Ξ©1Β± πœ”3) 𝑇0)

    + 𝐻74exp (𝑖 (Ξ©

    4Β± Ξ©1Β± πœ”3) 𝑇0)

    + 𝐻75exp (𝑖 (Ξ©

    4Β± Ξ©2Β± πœ”3) 𝑇0) + 𝑐𝑐,

    (14c)

    where 𝐻𝑖(𝑖 = 1, 2, . . . , 75) are the complex functions in 𝑇

    1

    and 𝑇2. From the above derived solutions, the reported

    resonance cases are the following.

    (i) Primary resonance:Ξ©1β‰… πœ”π‘›,Ξ©2β‰… πœ”π‘›,Ξ©3β‰… πœ”π‘›,Ξ©4β‰…

    πœ”π‘›, and 𝑛 = 1, 2, 3.

    (ii) Subharmonic resonance: Ξ©1β‰… 2πœ”π‘›, Ξ©2β‰… 2πœ”π‘›, Ξ©4β‰…

    2πœ”π‘›, and 𝑛 = 1, 2, 3.

    (iii) Internal or secondary resonance: πœ”1β‰… πœ”2, πœ”2β‰… πœ”3,

    πœ”3β‰… πœ”1, πœ”1β‰… 3πœ”π‘ , πœ”2β‰… 3πœ”π‘Ÿ, πœ”3β‰… 3πœ”π‘š, 𝑠 = 2, 3,

    π‘Ÿ = 1, 3, andπ‘š = 1, 2.(iv) Combined resonance: πœ”

    3Β± πœ”2β‰… 2πœ”1, πœ”3Β± πœ”1β‰… 2πœ”2,

    πœ”1Β±πœ”2β‰… 2πœ”3,πœ”2Β±2πœ”3β‰… πœ”1,πœ”3Β±2πœ”2β‰… πœ”1,πœ”3Β±2πœ”1β‰…

    πœ”2, πœ”1Β± 2πœ”3β‰… πœ”2, πœ”2Β± 2πœ”1β‰… πœ”3, πœ”1Β± 2πœ”2β‰… πœ”3,

    Ξ©3Β± Ω𝑑≅ πœ”π‘›, Ξ©4Β± Ξ©π‘šβ‰… 2πœ”π‘›, Ξ©2Β± Ξ©1β‰… 2πœ”π‘›,

    𝑑 = 1, 2, 4, π‘š = 1, 2, and 𝑛 = 1, 2, 3.(v) Simultaneous or incident resonance.

    Any combination of the previous resonance cases is con-sidered as simultaneous resonance.

    3. Stability Analysis

    Thebehavior of such a system can be very complex, especiallywhen the natural frequencies and the forcing frequency sat-isfy certain internal and external resonance conditions. Thestudy is focused on the case of 1 : 1 : 3 primary resonance andinternal resonance, where Ξ©

    3β‰… πœ”1, πœ”2β‰… πœ”1, and πœ”

    3β‰… 3πœ”1.

    To describe how close the frequencies are to the resonanceconditions, we introduce detuning parameters as follows:

    Ξ©3= πœ”1+ 𝜎1= πœ”1+ πœ€οΏ½Μ‚οΏ½1,

    πœ”2= πœ”1+ 𝜎2= πœ”1+ πœ€οΏ½Μ‚οΏ½2,

    πœ”3= 3πœ”1+ 𝜎3= 3πœ”1+ πœ€οΏ½Μ‚οΏ½3,

    (15)

  • Mathematical Problems in Engineering 7

    where𝜎1and𝜎2,𝜎3are called the external and internal detun-

    ing parameters, respectively. Eliminating the secular termsleads to solvability conditions for the first- and second-orderexpansions as follows:

    2π‘–πœ”1𝐷1𝐴1= βˆ’π‘–πœ‡

    1πœ”1𝐴1+𝑓1

    2exp (𝑖�̂�

    1𝑇1) , (16a)

    2π‘–πœ”2𝐷1𝐴2= βˆ’π‘–πœ‡

    2πœ”2𝐴2+𝑓2

    2exp (𝑖 (οΏ½Μ‚οΏ½

    1βˆ’ οΏ½Μ‚οΏ½2) 𝑇1) , (16b)

    2π‘–πœ”3𝐷1𝐴3= βˆ’π‘–πœ‡

    3πœ”3𝐴3, (16c)

    2π‘–πœ”1𝐷2𝐴1

    = βˆ’π·2

    1𝐴1βˆ’ πœ‡1𝐷1𝐴1

    βˆ’ {𝑓2

    11

    2 (Ξ©2

    1βˆ’ 4πœ”2

    1)+

    𝑓2

    12

    2 (Ξ©2

    2βˆ’ 4πœ”2

    1)+

    𝑓2

    14

    2 (Ξ©2

    4βˆ’ 4πœ”2

    1)}𝐴1

    βˆ’ {2𝛼1𝐴1𝐴1+ 2𝛼6𝐴3𝐴3+ 3𝛼8𝐴2𝐴2}𝐴2exp (𝑖�̂�

    2𝑇1)

    βˆ’ 𝛼1𝐴2

    1𝐴2exp (βˆ’π‘–οΏ½Μ‚οΏ½

    2𝑇1) βˆ’ 𝛼2𝐴2

    1𝐴3exp (𝑖�̂�

    3𝑇1)

    βˆ’ {2𝛼3𝐴2𝐴2+ 2𝛼5𝐴3𝐴3+ 3𝛼7𝐴1𝐴1}𝐴1

    βˆ’ 𝛼4𝐴2

    2𝐴3exp (𝑖 (οΏ½Μ‚οΏ½

    3βˆ’ 2οΏ½Μ‚οΏ½2) 𝑇1)

    βˆ’ 𝛼10𝐴1𝐴2𝐴3exp (𝑖 (οΏ½Μ‚οΏ½

    3βˆ’ οΏ½Μ‚οΏ½2) 𝑇1) ,

    (17a)2π‘–πœ”2𝐷2𝐴2

    = βˆ’π·2

    1𝐴2βˆ’ πœ‡2𝐷1𝐴2

    βˆ’ {𝑓2

    21

    2 (Ξ©2

    1βˆ’ 4πœ”2

    2)+

    𝑓2

    22

    2 (Ξ©2

    2βˆ’ 4πœ”2

    2)+

    𝑓2

    24

    2 (Ξ©2

    4βˆ’ 4πœ”2

    2)}𝐴2

    βˆ’ {2𝛽3𝐴2𝐴2+ 2𝛽5𝐴3𝐴3+ 3𝛽7𝐴1𝐴1}

    Γ— 𝐴1exp (βˆ’π‘–οΏ½Μ‚οΏ½

    2𝑇1)

    βˆ’ 𝛽3𝐴2

    2𝐴1exp (𝑖�̂�

    2𝑇1) βˆ’ 𝛽1𝐴2

    1𝐴2exp (βˆ’2𝑖�̂�

    2𝑇1)

    βˆ’ {2𝛽6𝐴3𝐴3+ 2𝛽1𝐴1𝐴1+ 3𝛽8𝐴2𝐴2}𝐴2

    βˆ’ 𝛽2𝐴2

    1𝐴3exp (𝑖 (οΏ½Μ‚οΏ½

    3βˆ’ οΏ½Μ‚οΏ½2) 𝑇1)

    βˆ’ 𝛽10𝐴1𝐴2𝐴3exp (𝑖 (οΏ½Μ‚οΏ½

    3βˆ’ 2οΏ½Μ‚οΏ½2) 𝑇1)

    βˆ’ 𝛽4𝐴2

    2𝐴3exp (𝑖 (οΏ½Μ‚οΏ½

    3βˆ’ 3οΏ½Μ‚οΏ½2) 𝑇1) ,

    (17b)2π‘–πœ”3𝐷2𝐴3

    = βˆ’π·2

    1𝐴3βˆ’ πœ‡3𝐷1𝐴3

    βˆ’ {𝑓2

    31

    2 (Ξ©2

    1βˆ’ 4πœ”2

    3)+

    𝑓2

    32

    2 (Ξ©2

    2βˆ’ 4πœ”2

    3)+

    𝑓2

    34

    2 (Ξ©2

    4βˆ’ 4πœ”2

    3)}𝐴3

    βˆ’ 𝛾10𝐴1𝐴2𝐴3exp (βˆ’π‘–οΏ½Μ‚οΏ½

    2𝑇1)

    βˆ’ 𝛾10𝐴1𝐴2𝐴3exp (𝑖�̂�

    2𝑇1)

    βˆ’ 𝛾7𝐴3

    1exp (βˆ’π‘–οΏ½Μ‚οΏ½

    3𝑇1)

    βˆ’ {2𝛾2𝐴1𝐴1+ 2𝛾4𝐴2𝐴2+ 3𝛾9𝐴3𝐴3}𝐴3

    βˆ’ 𝛾1𝐴2

    1𝐴2exp (𝑖 (οΏ½Μ‚οΏ½

    2βˆ’ οΏ½Μ‚οΏ½3) 𝑇1)

    βˆ’ 𝛾3𝐴2

    2𝐴1exp (𝑖 (2οΏ½Μ‚οΏ½

    2βˆ’ οΏ½Μ‚οΏ½3) 𝑇1)

    βˆ’ 𝛾8𝐴3

    2exp (𝑖 (3οΏ½Μ‚οΏ½

    2βˆ’ οΏ½Μ‚οΏ½3) 𝑇1) .

    (17c)

    From (7a), multiplying both sides by 2π‘–πœ”π‘›, we get

    2π‘–πœ”π‘›

    𝑑𝐴𝑛

    𝑑𝑑= πœ€2π‘–πœ”

    𝑛𝐷1𝐴𝑛+ πœ€22π‘–πœ”π‘›π·2𝐴𝑛,

    𝑛 = 1, 2, 3.

    (18)

    To analyze the solutions of (16a)–(17c), we express 𝐴𝑛in the

    polar form as follows:

    𝐴𝑛(𝑇1, 𝑇2) =

    π‘Žπ‘›

    2exp (π‘–πœ‘

    𝑛) ,

    π‘Žπ‘›= πœ€π‘Žπ‘›, (𝑛 = 1, 2, 3) ,

    (19)

    where π‘Žπ‘›and πœ‘

    𝑛are the steady-state amplitudes and phases

    of the motion, respectively. Substituting (16a)–(17c) and (19)into (18) and equating the real and imaginary parts, we obtainthe following equations describing the modulation of theamplitudes and phases of the response:

    Μ‡π‘Ž1= βˆ’

    πœ‡1

    2π‘Ž1+ {

    𝑓1

    2πœ”1

    βˆ’πœŽ1𝑓1

    4πœ”2

    1

    } sin πœƒ1

    +πœ‡1𝑓1

    8πœ”2

    1

    cos πœƒ1βˆ’π›Ό1

    8πœ”1

    π‘Ž2

    1π‘Ž2sin πœƒ2

    βˆ’π›Ό2

    8πœ”1

    π‘Ž2

    1π‘Ž3sin πœƒ3βˆ’π›Ό4

    8πœ”1

    π‘Ž2

    2π‘Ž3sin (πœƒ3βˆ’ 2πœƒ2)

    βˆ’π›Ό6

    4πœ”1

    π‘Ž2

    3π‘Ž2sin πœƒ2βˆ’3𝛼8

    8πœ”1

    π‘Ž3

    2sin πœƒ2

    βˆ’π›Ό10

    8πœ”1

    π‘Ž1π‘Ž2π‘Ž3sin (πœƒ3βˆ’ πœƒ2) ,

    π‘Ž1οΏ½Μ‡οΏ½1= {βˆ’

    πœ‡2

    1

    8πœ”1

    +Ξ“1

    2πœ”1

    }π‘Ž1βˆ’ {

    𝑓1

    2πœ”1

    βˆ’πœŽ1𝑓1

    4πœ”2

    1

    } cos πœƒ1

    +πœ‡1𝑓1

    8πœ”2

    1

    sin πœƒ1+3𝛼1

    8πœ”1

    π‘Ž2

    1π‘Ž2cos πœƒ2+𝛼2

    8πœ”1

    π‘Ž2

    1π‘Ž3cos πœƒ3

    +𝛼3

    4πœ”1

    π‘Ž1π‘Ž2

    2+𝛼4

    8πœ”1

    π‘Ž2

    2π‘Ž3cos (πœƒ

    3βˆ’ 2πœƒ2)

    +𝛼5

    4πœ”1

    π‘Ž1π‘Ž2

    3+𝛼6

    4πœ”1

    π‘Ž2

    3π‘Ž2cos πœƒ2+3𝛼7

    8πœ”1

    π‘Ž3

    1

  • 8 Mathematical Problems in Engineering

    +3𝛼8

    8πœ”1

    π‘Ž3

    2cos πœƒ2+𝛼10

    8πœ”1

    π‘Ž1π‘Ž2π‘Ž3cos (πœƒ

    3βˆ’ πœƒ2) ,

    Μ‡π‘Ž2= βˆ’

    πœ‡2

    2π‘Ž2+ {

    𝑓2

    2πœ”2

    βˆ’(𝜎1βˆ’ 𝜎2) 𝑓2

    4πœ”2

    2

    } sin (πœƒ1βˆ’ πœƒ2)

    +πœ‡2𝑓2

    8πœ”2

    2

    cos (πœƒ1βˆ’ πœƒ2) +

    𝛽1

    8πœ”2

    π‘Ž2

    1π‘Ž2sin 2πœƒ

    2

    βˆ’π›½2

    8πœ”2

    π‘Ž2

    1π‘Ž3sin (πœƒ3βˆ’ πœƒ2) +

    𝛽3

    8πœ”2

    π‘Ž2

    2π‘Ž1sin πœƒ2

    βˆ’π›½4

    8πœ”2

    π‘Ž2

    2π‘Ž3sin (πœƒ3βˆ’ 3πœƒ2) +

    𝛽5

    4πœ”2

    π‘Ž2

    3π‘Ž1sin πœƒ2

    +3𝛽7

    8πœ”2

    π‘Ž3

    1sin πœƒ2βˆ’π›½10

    8πœ”2

    π‘Ž1π‘Ž2π‘Ž3sin (πœƒ3βˆ’ 2πœƒ2) ,

    π‘Ž2οΏ½Μ‡οΏ½2= {βˆ’

    πœ‡2

    2

    8πœ”2

    +Ξ“2

    2πœ”2

    }π‘Ž2

    + {(𝜎1βˆ’ 𝜎2) 𝑓2

    4πœ”2

    2

    βˆ’π‘“2

    2πœ”2

    } cos (πœƒ1βˆ’ πœƒ2)

    +πœ‡2𝑓2

    8πœ”2

    2

    sin (πœƒ1βˆ’ πœƒ2) +

    𝛽1

    8πœ”2

    π‘Ž2

    1π‘Ž2cos 2πœƒ

    2

    +𝛽1

    4πœ”2

    π‘Ž2

    1π‘Ž2+𝛽2

    8πœ”2

    π‘Ž2

    1π‘Ž3cos (πœƒ

    3βˆ’ πœƒ2)

    +3𝛽3

    8πœ”2

    π‘Ž2

    2π‘Ž1cos πœƒ2+𝛽4

    8πœ”2

    π‘Ž2

    2π‘Ž3cos (πœƒ

    3βˆ’ 3πœƒ2)

    +𝛽5

    4πœ”2

    π‘Ž2

    3π‘Ž1cos πœƒ2+𝛽6

    4πœ”2

    π‘Ž2

    3π‘Ž2+3𝛽7

    8πœ”2

    π‘Ž3

    1cos πœƒ2

    +3𝛽8

    8πœ”2

    π‘Ž3

    2+𝛽10

    8πœ”2

    π‘Ž1π‘Ž2π‘Ž3cos (πœƒ

    3βˆ’ 2πœƒ2) ,

    Μ‡π‘Ž3= βˆ’

    πœ‡3

    2π‘Ž3βˆ’π›Ύ1

    8πœ”3

    π‘Ž2

    1π‘Ž2sin (πœƒ2βˆ’ πœƒ3)

    βˆ’π›Ύ3

    8πœ”3

    π‘Ž2

    2π‘Ž1sin (2πœƒ

    2βˆ’ πœƒ3) +

    𝛾7

    8πœ”3

    π‘Ž3

    1sin πœƒ3

    βˆ’π›Ύ8

    8πœ”3

    π‘Ž3

    2sin (3πœƒ

    2βˆ’ πœƒ3) ,

    π‘Ž3οΏ½Μ‡οΏ½3= {βˆ’

    πœ‡2

    3

    8πœ”3

    +Ξ“3

    2πœ”3

    }π‘Ž3+𝛾1

    8πœ”3

    π‘Ž2

    1π‘Ž2cos (πœƒ

    2βˆ’ πœƒ3)

    +𝛾2

    4πœ”3

    π‘Ž2

    1π‘Ž3+𝛾3

    8πœ”3

    π‘Ž2

    2π‘Ž1cos (2πœƒ

    2βˆ’ πœƒ3)

    +𝛾4

    4πœ”3

    π‘Ž2

    2π‘Ž3+𝛾7

    8πœ”3

    π‘Ž3

    1cos πœƒ3

    +𝛾8

    8πœ”3

    π‘Ž3

    2cos (3πœƒ

    2βˆ’ πœƒ3) +

    3𝛾9

    8πœ”3

    π‘Ž3

    3

    +𝛾10

    4πœ”3

    π‘Ž1π‘Ž2π‘Ž3cos πœƒ2,

    (20)

    where

    Γ𝑛= {

    𝑓2

    𝑛1

    2 (Ξ©2

    1βˆ’ 4πœ”2𝑛)+

    𝑓2

    𝑛2

    2 (Ξ©2

    2βˆ’ 4πœ”2𝑛)+

    𝑓2

    𝑛4

    2 (Ξ©2

    4βˆ’ 4πœ”2𝑛)} ,

    𝑛 = 1, 2, 3,

    πœƒ1= οΏ½Μ‚οΏ½1𝑇1βˆ’ πœ‘1,

    πœƒ2= οΏ½Μ‚οΏ½2𝑇1+ πœ‘2βˆ’ πœ‘1,

    πœƒ3= οΏ½Μ‚οΏ½3𝑇1+ πœ‘3βˆ’ 3πœ‘1.

    (21)

    Steady-state solutions of the system correspond to the fixedpoints of (20), which in turn correspond to

    οΏ½Μ‡οΏ½1= 𝜎1,

    οΏ½Μ‡οΏ½2= 𝜎1βˆ’ 𝜎2,

    οΏ½Μ‡οΏ½3= 3𝜎1βˆ’ 𝜎3.

    (22)

    Hence, the fixed points of (20) are given by

    βˆ’πœ‡1

    2π‘Ž1+ {

    𝑓1

    2πœ”1

    βˆ’πœŽ1𝑓1

    4πœ”2

    1

    } sin πœƒ1

    +πœ‡1𝑓1

    8πœ”2

    1

    cos πœƒ1βˆ’π›Ό1

    8πœ”1

    π‘Ž2

    1π‘Ž2sin πœƒ2

    βˆ’π›Ό2

    8πœ”1

    π‘Ž2

    1π‘Ž3sin πœƒ3βˆ’π›Ό4

    8πœ”1

    π‘Ž2

    2π‘Ž3sin (πœƒ3βˆ’ 2πœƒ2)

    βˆ’π›Ό6

    4πœ”1

    π‘Ž2

    3π‘Ž2sin πœƒ2βˆ’3𝛼8

    8πœ”1

    π‘Ž3

    2sin πœƒ2

    βˆ’π›Ό10

    8πœ”1

    π‘Ž1π‘Ž2π‘Ž3sin (πœƒ3βˆ’ πœƒ2) = 0,

    π‘Ž1𝜎1+ {

    πœ‡2

    1

    8πœ”1

    βˆ’Ξ“1

    2πœ”1

    }π‘Ž1

    + {𝑓1

    2πœ”1

    βˆ’πœŽ1𝑓1

    4πœ”2

    1

    } cos πœƒ1βˆ’πœ‡1𝑓1

    8πœ”2

    1

    sin πœƒ1

    βˆ’3𝛼1

    8πœ”1

    π‘Ž2

    1π‘Ž2cos πœƒ2βˆ’π›Ό2

    8πœ”1

    π‘Ž2

    1π‘Ž3cos πœƒ3

    βˆ’π›Ό3

    4πœ”1

    π‘Ž1π‘Ž2

    2βˆ’π›Ό4

    8πœ”1

    π‘Ž2

    2π‘Ž3cos (πœƒ

    3βˆ’ 2πœƒ2) βˆ’

    𝛼5

    4πœ”1

    π‘Ž1π‘Ž2

    3

    βˆ’π›Ό6

    4πœ”1

    π‘Ž2

    3π‘Ž2cos πœƒ2βˆ’3𝛼7

    8πœ”1

    π‘Ž3

    1βˆ’3𝛼8

    8πœ”1

    π‘Ž3

    2cos πœƒ2

    βˆ’π›Ό10

    8πœ”1

    π‘Ž1π‘Ž2π‘Ž3cos (πœƒ

    3βˆ’ πœƒ2) = 0,

    βˆ’πœ‡2

    2π‘Ž2+ {

    𝑓2

    2πœ”2

    βˆ’(𝜎1βˆ’ 𝜎2) 𝑓2

    4πœ”2

    2

    } sin (πœƒ1βˆ’ πœƒ2)

    +πœ‡2𝑓2

    8πœ”2

    2

    cos (πœƒ1βˆ’ πœƒ2)

    +𝛽1

    8πœ”2

    π‘Ž2

    1π‘Ž2sin 2πœƒ

    2βˆ’π›½2

    8πœ”2

    π‘Ž2

    1π‘Ž3sin (πœƒ3βˆ’ πœƒ2)

  • Mathematical Problems in Engineering 9

    +𝛽3

    8πœ”2

    π‘Ž2

    2π‘Ž1sin πœƒ2βˆ’π›½4

    8πœ”2

    π‘Ž2

    2π‘Ž3sin (πœƒ3βˆ’ 3πœƒ2)

    +𝛽5

    4πœ”2

    π‘Ž2

    3π‘Ž1sin πœƒ2+3𝛽7

    8πœ”2

    π‘Ž3

    1sin πœƒ2

    βˆ’π›½10

    8πœ”2

    π‘Ž1π‘Ž2π‘Ž3sin (πœƒ3βˆ’ 2πœƒ2) = 0,

    π‘Ž2(𝜎2βˆ’ 𝜎1) βˆ’ {

    πœ‡2

    2

    8πœ”2

    βˆ’Ξ“2

    2πœ”2

    }π‘Ž2

    + {(𝜎1βˆ’ 𝜎2) 𝑓2

    4πœ”2

    2

    βˆ’π‘“2

    2πœ”2

    } cos (πœƒ1βˆ’ πœƒ2)

    +πœ‡2𝑓2

    8πœ”2

    2

    sin (πœƒ1βˆ’ πœƒ2) +

    𝛽1

    8πœ”2

    π‘Ž2

    1π‘Ž2cos 2πœƒ

    2

    +𝛽1

    4πœ”2

    π‘Ž2

    1π‘Ž2+𝛽2

    8πœ”2

    π‘Ž2

    1π‘Ž3cos (πœƒ

    3βˆ’ πœƒ2)

    +3𝛽3

    8πœ”2

    π‘Ž2

    2π‘Ž1cos πœƒ2+𝛽4

    8πœ”2

    π‘Ž2

    2π‘Ž3cos (πœƒ

    3βˆ’ 3πœƒ2)

    +𝛽5

    4πœ”2

    π‘Ž2

    3π‘Ž1cos πœƒ2+𝛽6

    4πœ”2

    π‘Ž2

    3π‘Ž2+3𝛽7

    8πœ”2

    π‘Ž3

    1cos πœƒ2

    +3𝛽8

    8πœ”2

    π‘Ž3

    2+𝛽10

    8πœ”2

    π‘Ž1π‘Ž2π‘Ž3cos (πœƒ

    3βˆ’ 2πœƒ2) = 0,

    βˆ’πœ‡3

    2π‘Ž3βˆ’π›Ύ1

    8πœ”3

    π‘Ž2

    1π‘Ž2sin (πœƒ2βˆ’ πœƒ3) βˆ’

    𝛾3

    8πœ”3

    π‘Ž2

    2π‘Ž1sin (2πœƒ

    2βˆ’ πœƒ3)

    +𝛾7

    8πœ”3

    π‘Ž3

    1sin πœƒ3βˆ’π›Ύ8

    8πœ”3

    π‘Ž3

    2sin (3πœƒ

    2βˆ’ πœƒ3) = 0,

    π‘Ž3(𝜎3βˆ’ 3𝜎1) βˆ’ {

    πœ‡2

    3

    8πœ”3

    βˆ’Ξ“3

    2πœ”3

    }π‘Ž3+𝛾1

    8πœ”3

    π‘Ž2

    1π‘Ž2cos (πœƒ

    2βˆ’ πœƒ3)

    +𝛾2

    4πœ”3

    π‘Ž2

    1π‘Ž3+𝛾3

    8πœ”3

    π‘Ž2

    2π‘Ž1cos (2πœƒ

    2βˆ’ πœƒ3)

    +𝛾4

    4πœ”3

    π‘Ž2

    2π‘Ž3+𝛾7

    8πœ”3

    π‘Ž3

    1cos πœƒ3+𝛾8

    8πœ”3

    π‘Ž3

    2cos (3πœƒ

    2βˆ’ πœƒ3)

    +3𝛾9

    8πœ”3

    π‘Ž3

    3+𝛾10

    4πœ”3

    π‘Ž1π‘Ž2π‘Ž3cos πœƒ2= 0.

    (23)

    There are six possibilities besides the trivial solution asfollows:

    (1) π‘Ž1ΜΈ= 0, π‘Ž2= 0, π‘Ž

    3= 0 (single mode),

    (2) π‘Ž2ΜΈ= 0, π‘Ž1= 0, π‘Ž

    3= 0 (single mode),

    (3) π‘Ž1ΜΈ= 0, π‘Ž2ΜΈ= 0, π‘Ž3= 0 (two modes),

    (4) π‘Ž1ΜΈ= 0, π‘Ž3ΜΈ= 0, π‘Ž2= 0 (two modes),

    (5) π‘Ž2ΜΈ= 0, π‘Ž3ΜΈ= 0, π‘Ž1= 0 (two modes),

    (6) π‘Ž1ΜΈ= 0, π‘Ž2ΜΈ= 0, π‘Ž3ΜΈ= 0 (three modes).

    Case 1. In this case, where π‘Ž2= 0, π‘Ž

    3= 0, the frequency

    response equation is given by

    9𝛼2

    7

    64πœ”2

    1

    π‘Ž6

    1+ [𝑅3+3𝛼7𝜎1

    4πœ”1

    ] π‘Ž4

    1+ [𝑅2+ 𝜎2

    1+πœ‡2

    1𝜎1

    4πœ”1

    βˆ’Ξ“1𝜎1

    πœ”1

    ] π‘Ž2

    1

    βˆ’πœ‡2

    1𝑓2

    1

    64πœ”4

    1

    βˆ’ 𝑅2

    1= 0.

    (24)

    Case 2. In this case, where π‘Ž1= 0, π‘Ž

    3= 0, the frequency

    response equation is given by

    9𝛽2

    8

    64πœ”2

    2

    π‘Ž6

    2+ [𝑄3+3𝛽8(𝜎2βˆ’ 𝜎1)

    4πœ”2

    ] π‘Ž4

    2

    + [𝑄2+ (𝜎2βˆ’ 𝜎1)2βˆ’πœ‡2

    2(𝜎2βˆ’ 𝜎1)

    4πœ”2

    +Ξ“2(𝜎2βˆ’ 𝜎1)

    πœ”2

    ] π‘Ž2

    2

    βˆ’πœ‡2

    2𝑓2

    2

    64πœ”4

    2

    βˆ’ 𝑄2

    1= 0.

    (25)

    Case 3. In this case, where π‘Ž3= 0, the frequency response

    equations are given by

    9𝛼2

    7

    64πœ”2

    1

    π‘Ž6

    1+ [𝑅3+3𝛼7𝜎1

    4πœ”1

    ] π‘Ž4

    1+ [𝑅2+ 𝜎2

    1+πœ‡2

    1𝜎1

    4πœ”1

    βˆ’Ξ“1𝜎1

    πœ”1

    ] π‘Ž2

    1

    βˆ’πœ‡2

    1𝑓2

    1

    64πœ”4

    1

    βˆ’ 𝑅2

    1βˆ’9𝛼2

    1

    64πœ”2

    1

    π‘Ž4

    1π‘Ž2

    2βˆ’9𝛼1𝛼8

    32πœ”2

    1

    π‘Ž2

    1π‘Ž4

    2

    βˆ’9𝛼2

    8

    64πœ”2

    1

    π‘Ž6

    2+3𝑅1𝛼8

    4πœ”1

    π‘Ž3

    2+3𝑅1𝛼1

    4πœ”1

    π‘Ž2

    1π‘Ž2= 0,

    9𝛽2

    8

    64πœ”2

    2

    π‘Ž6

    2+ [𝑄3+3𝛽8(𝜎2βˆ’ 𝜎1)

    4πœ”2

    ] π‘Ž4

    2

    + [𝑄2+ (𝜎2βˆ’ 𝜎1)2βˆ’πœ‡2

    2(𝜎2βˆ’ 𝜎1)

    4πœ”2

    +Ξ“2(𝜎2βˆ’ 𝜎1)

    πœ”2

    ] π‘Ž2

    2

    βˆ’πœ‡2

    2𝑓2

    2

    64πœ”4

    2

    βˆ’ 𝑄2

    1+3𝑄1𝛽3

    4πœ”2

    π‘Ž2

    2π‘Ž1+3𝑄1𝛽7

    4πœ”2

    π‘Ž3

    1+𝑄1𝛽1

    4πœ”2

    π‘Ž2

    1π‘Ž2

    βˆ’9𝛽2

    3

    64πœ”2

    2

    π‘Ž4

    2π‘Ž2

    1βˆ’ [

    𝛽2

    1

    64πœ”2

    2

    +9𝛽3𝛽7

    32πœ”2

    2

    ] π‘Ž4

    1π‘Ž2

    2βˆ’9𝛽2

    7

    64πœ”2

    2

    π‘Ž6

    1

    βˆ’3𝛽1𝛽7

    32πœ”2

    2

    π‘Ž5

    1π‘Ž2βˆ’3𝛽1𝛽3

    32πœ”2

    2

    π‘Ž3

    1π‘Ž3

    2= 0.

    (26)

    Case 4. In this case, where π‘Ž2= 0, the frequency response

    equations are given by

    9𝛼2

    7

    64πœ”2

    1

    π‘Ž6

    1+ [𝑅3+3𝛼7𝜎1

    4πœ”1

    ] π‘Ž4

    1+ [𝑅2+ 𝜎2

    1+πœ‡2

    1𝜎1

    4πœ”1

    βˆ’Ξ“1𝜎1

    πœ”1

    ] π‘Ž2

    1

    βˆ’πœ‡2

    1𝑓2

    1

    64πœ”4

    1

    βˆ’ 𝑅2

    1βˆ’π›Ό2

    2

    64πœ”2

    1

    π‘Ž4

    1π‘Ž2

    3+𝑅1𝛼2

    4πœ”1

    π‘Ž2

    1π‘Ž3= 0,

  • 10 Mathematical Problems in Engineering

    0 50 100 150 200βˆ’1

    βˆ’0.5

    0

    0.5

    1

    Timeβˆ’0.4 βˆ’0.2 0 0.2 0.4

    βˆ’4

    βˆ’2

    0

    2

    4

    Velo

    city

    0 50 100 150 200βˆ’0.4

    βˆ’0.2

    0

    0.2

    0.4

    Timeβˆ’0.2 βˆ’0.1 0 0.1 0.2

    βˆ’1

    βˆ’0.5

    0

    0.5

    1

    Velo

    city

    0 50 100 150 200βˆ’0.4

    βˆ’0.2

    0

    0.2

    0.4

    Timeβˆ’0.2 βˆ’0.1 0 0.1 0.2βˆ’1

    βˆ’0.5

    0

    0.5

    1Ve

    loci

    ty

    Am

    plitu

    deu1

    Am

    plitu

    deu2

    Am

    plitu

    deu3

    u1

    u2

    u3

    Figure 2: Time response and phase-plane diagrams of the system for nonresonance case.

    9𝛾2

    9

    64πœ”2

    3

    π‘Ž6

    3+ [𝐾2+3𝛾9(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    ] π‘Ž4

    3

    + [𝐾1+ (𝜎3βˆ’ 3𝜎1)2βˆ’πœ‡2

    3(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    +Ξ“3(𝜎3βˆ’ 3𝜎1)

    πœ”3

    ] π‘Ž2

    3

    βˆ’π›Ύ2

    7

    64πœ”2

    3

    π‘Ž6

    1= 0.

    (27)

    Case 5. In this case, where π‘Ž1= 0, the frequency response

    equations are given by

    9𝛽2

    8

    64πœ”2

    2

    π‘Ž6

    2+ [𝑄3+3𝛽8(𝜎2βˆ’ 𝜎1)

    4πœ”2

    ] π‘Ž4

    2

    + [𝑄2+ (𝜎2βˆ’ 𝜎1)2βˆ’πœ‡2

    2(𝜎2βˆ’ 𝜎1)

    4πœ”2

    +Ξ“2(𝜎2βˆ’ 𝜎1)

    πœ”2

    ] π‘Ž2

    2

    βˆ’πœ‡2

    2𝑓2

    2

    64πœ”4

    2

    βˆ’ 𝑄2

    1+𝑄1𝛽4

    4πœ”2

    π‘Ž2

    2π‘Ž3βˆ’π›½2

    4

    64πœ”2

    2

    π‘Ž4

    2π‘Ž2

    3= 0,

    9𝛾2

    9

    64πœ”2

    3

    π‘Ž6

    3+ [𝐾2+3𝛾9(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    ] π‘Ž4

    3

    + [𝐾1+ (𝜎3βˆ’ 3𝜎1)2βˆ’πœ‡2

    3(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    +Ξ“3(𝜎3βˆ’ 3𝜎1)

    πœ”3

    ] π‘Ž2

    3

    βˆ’π›Ύ2

    8

    64πœ”2

    3

    π‘Ž6

    2= 0.

    (28)

    Case 6. In this case, where π‘Ž1ΜΈ= 0, π‘Ž2ΜΈ= 0, and π‘Ž

    3ΜΈ= 0, this is the

    practical case, the frequency response equations are given by

    9𝛼2

    7

    64πœ”2

    1

    π‘Ž6

    1+ [𝑅3+3𝛼7𝜎1

    4πœ”1

    ] π‘Ž4

    1+ [𝑅2+ 𝜎2

    1+πœ‡2

    1𝜎1

    4πœ”1

    βˆ’Ξ“1𝜎1

    πœ”1

    ] π‘Ž2

    1

    βˆ’πœ‡2

    1𝑓2

    1

    64πœ”4

    1

    βˆ’ 𝑅2

    1+𝑅1𝛼2

    4πœ”1

    π‘Ž2

    1π‘Ž3+𝑅1𝛼6

    2πœ”1

    π‘Ž2π‘Ž2

    3+𝑅1𝛼4

    4πœ”1

    π‘Ž2

    2π‘Ž3

    +3𝑅1𝛼8

    4πœ”1

    π‘Ž3

    2+3𝑅1𝛼1

    4πœ”1

    π‘Ž2

    1π‘Ž2+𝑅1𝛼10

    4πœ”1

    π‘Ž1π‘Ž2π‘Ž3βˆ’π›Ό2

    6

    16πœ”2

    1

    π‘Ž2

    2π‘Ž4

    3

  • Mathematical Problems in Engineering 11A

    mpl

    itude

    u3

    0 50 100 150 200βˆ’2

    βˆ’1

    0

    1

    2

    Timeβˆ’2 βˆ’1 0 1 2

    βˆ’10

    0

    10

    Velo

    city

    0 50 100 150 200βˆ’2

    βˆ’1

    0

    1

    2

    Time

    βˆ’2 βˆ’1 0 1 2βˆ’10

    βˆ’5

    0

    5

    10

    Velo

    city

    0 50 100 150 200βˆ’0.5

    0

    0.5

    Timeβˆ’0.4 βˆ’0.2 0 0.2 0.4

    βˆ’10

    βˆ’5

    0

    5

    10Ve

    loci

    ty

    Am

    plitu

    deu1

    Am

    plitu

    deu2

    u1

    u2

    u3

    Figure 3: Time response and phase-plane diagrams of the system at simultaneous resonance case, Ξ©3β‰… πœ”1, πœ”2β‰… πœ”1, and πœ”

    3β‰… 3πœ”1.

    βˆ’π›Ό4𝛼6

    16πœ”2

    1

    π‘Ž3

    2π‘Ž3

    3βˆ’π›Ό2

    2

    64πœ”2

    1

    π‘Ž4

    1π‘Ž2

    3βˆ’9𝛼2

    1

    64πœ”2

    1

    π‘Ž4

    1π‘Ž2

    2βˆ’9𝛼1𝛼8

    32πœ”2

    1

    π‘Ž2

    1π‘Ž4

    2

    βˆ’9𝛼2

    8

    64πœ”2

    1

    π‘Ž6

    2βˆ’3𝛼4𝛼8

    32πœ”2

    1

    π‘Ž5

    2π‘Ž3βˆ’3𝛼8𝛼10

    32πœ”2

    1

    π‘Ž1π‘Ž4

    2π‘Ž3βˆ’π›Ό2𝛼10

    32πœ”2

    1

    π‘Ž3

    1π‘Ž2π‘Ž2

    3

    βˆ’π›Ό4𝛼10

    32πœ”2

    1

    π‘Ž1π‘Ž3

    2π‘Ž2

    3βˆ’π›Ό6𝛼10

    16πœ”2

    1

    π‘Ž1π‘Ž2

    2π‘Ž3

    3βˆ’π›Ό2𝛼6

    16πœ”2

    1

    π‘Ž2

    1π‘Ž2π‘Ž3

    3

    βˆ’3𝛼1𝛼10

    32πœ”2

    1

    π‘Ž3

    1π‘Ž2

    2π‘Ž3βˆ’3𝛼1𝛼2

    32πœ”2

    1

    π‘Ž4

    1π‘Ž2π‘Ž3βˆ’ 𝑅4π‘Ž2

    1π‘Ž2

    2π‘Ž2

    3

    βˆ’ 𝑅5π‘Ž4

    2π‘Ž2

    3βˆ’ 𝑅6π‘Ž3

    2π‘Ž2

    1π‘Ž3= 0,

    9𝛽2

    8

    64πœ”2

    2

    π‘Ž6

    2+ [𝑄3+3𝛽8(𝜎2βˆ’ 𝜎1)

    4πœ”2

    ] π‘Ž4

    2

    + [𝑄2+ (𝜎2βˆ’ 𝜎1)2βˆ’πœ‡2

    2(𝜎2βˆ’ 𝜎1)

    4πœ”2

    +Ξ“2(𝜎2βˆ’ 𝜎1)

    πœ”2

    ] π‘Ž2

    2

    βˆ’πœ‡2

    2𝑓2

    2

    64πœ”4

    2

    βˆ’ 𝑄2

    1+3𝑄1𝛽3

    4πœ”2

    π‘Ž2

    2π‘Ž1+3𝑄1𝛽7

    4πœ”2

    π‘Ž3

    1+𝑄1𝛽1

    4πœ”2

    π‘Ž2

    1π‘Ž2

    +𝑄1𝛽4

    4πœ”2

    π‘Ž2

    2π‘Ž3+𝑄1𝛽5

    2πœ”2

    π‘Ž1π‘Ž2

    3+𝑄1𝛽2

    4πœ”2

    π‘Ž2

    1π‘Ž3+𝑄1𝛽10

    4πœ”2

    π‘Ž1π‘Ž2π‘Ž3

    βˆ’3𝛽1𝛽7

    32πœ”2

    2

    π‘Ž5

    1π‘Ž2βˆ’9𝛽2

    3

    64πœ”2

    2

    π‘Ž4

    2π‘Ž2

    1βˆ’9𝛽2

    7

    64πœ”2

    2

    π‘Ž6

    1βˆ’π›½2

    4

    64πœ”2

    2

    π‘Ž4

    2π‘Ž2

    3

    βˆ’3𝛽1𝛽3

    32πœ”2

    2

    π‘Ž3

    1π‘Ž3

    2βˆ’π›½2

    5

    16πœ”2

    2

    π‘Ž2

    1π‘Ž4

    3βˆ’π›½2𝛽5

    16πœ”2

    2

    π‘Ž3

    1π‘Ž3

    3βˆ’3𝛽3𝛽4

    32πœ”2

    2

    π‘Ž1π‘Ž4

    2π‘Ž3

    βˆ’3𝛽2𝛽7

    32πœ”2

    2

    π‘Ž5

    1π‘Ž3βˆ’π›½4𝛽5

    16πœ”2

    2

    π‘Ž1π‘Ž2

    2π‘Ž3

    3βˆ’π›½5𝛽10

    16πœ”2

    2

    π‘Ž2

    1π‘Ž2π‘Ž3

    2βˆ’π›½4𝛽10

    32πœ”2

    2

    π‘Ž1π‘Ž3

    2π‘Ž2

    3

    βˆ’ 𝑄4π‘Ž2

    1π‘Ž2

    2π‘Ž2

    3βˆ’ 𝑄5π‘Ž4

    1π‘Ž2

    2βˆ’ 𝑄6π‘Ž4

    1π‘Ž2

    3βˆ’ 𝑄7π‘Ž3

    1π‘Ž2

    2π‘Ž3βˆ’ 𝑄8π‘Ž2

    1π‘Ž3

    2π‘Ž3

    βˆ’ 𝑄9π‘Ž3

    1π‘Ž2π‘Ž2

    3βˆ’ 𝑄10π‘Ž4

    1π‘Ž2π‘Ž3= 0,

    9𝛾2

    9

    64πœ”2

    3

    π‘Ž6

    3+ [𝐾2+3𝛾9(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    ] π‘Ž4

    3

    +[𝐾1+ (𝜎3βˆ’3𝜎1)2βˆ’πœ‡2

    3(𝜎3βˆ’ 3𝜎1)

    4πœ”3

    +Ξ“3(𝜎3βˆ’ 3𝜎1)

    πœ”3

    ] π‘Ž2

    3

  • 12 Mathematical Problems in Engineering

    0 50 100 150 200βˆ’2

    βˆ’1

    0

    1

    2

    3

    Time0 50 100 150 200

    βˆ’3

    βˆ’2

    βˆ’1

    0

    1

    2

    3

    Time

    0 50 100 150 200

    βˆ’0.4

    βˆ’0.2

    0

    0.2

    0.4

    0.6

    0.8

    Time

    Numerical solutionπ‘Ž1(𝑑) perturbation solution

    Numerical solutionπ‘Ž2(𝑑) perturbation solution

    Numerical solutionπ‘Ž3(𝑑) perturbation solution

    Am

    plitu

    deu1

    Am

    plitu

    deu2

    Am

    plitu

    deu3

    Figure 4: Comparison between numerical solution (using RKM) and analytical solution (using perturbation method) of the system atresonance case, Ξ©

    3β‰… πœ”1, πœ”2β‰… πœ”1, and πœ”

    3β‰… 3πœ”1.

    βˆ’π›Ύ2

    8

    64πœ”2

    3

    π‘Ž6

    2βˆ’

    𝛾2

    7

    64πœ”2

    3

    π‘Ž6

    1βˆ’π›Ύ1𝛾7

    32πœ”2

    3

    π‘Ž5

    1π‘Ž2βˆ’π›Ύ3𝛾8

    32πœ”2

    3

    π‘Ž1π‘Ž5

    2

    βˆ’ 𝐾3π‘Ž4

    1π‘Ž2

    2βˆ’ 𝐾4π‘Ž2

    1π‘Ž4

    2βˆ’ 𝐾5π‘Ž3

    1π‘Ž2

    2= 0,

    (29)

    where

    𝑅1= [

    𝑓1

    2πœ”1

    βˆ’πœŽ1𝑓1

    4πœ”2

    1

    ] ,

    𝑅2= [

    πœ‡2

    1

    4+πœ‡4

    1

    64πœ”2

    1

    +Ξ“2

    1

    4πœ”2

    1

    βˆ’Ξ“1πœ‡2

    1

    8πœ”2

    1

    ] ,

    𝑅3= [

    3𝛼7πœ‡2

    1

    32πœ”2

    1

    βˆ’3𝛼7Ξ“1

    8πœ”2

    1

    ] ,

    𝑅4= [

    𝛼2

    10

    64πœ”2

    1

    +3𝛼1𝛼6

    16πœ”2

    1

    +𝛼2𝛼4

    32πœ”2

    1

    ] ,

    𝑅5= [

    3𝛼6𝛼8

    16πœ”2

    1

    +𝛼2

    4

    64πœ”2

    1

    ] ,

    𝑅6= [

    3𝛼1𝛼4

    32πœ”2

    1

    +3𝛼2𝛼8

    32πœ”2

    1

    ] ,

    𝑄1= [

    𝑓2

    2πœ”2

    βˆ’(𝜎1βˆ’ 𝜎2) 𝑓2

    4πœ”2

    2

    ] ,

  • Mathematical Problems in Engineering 13

    200 200.5 201 201.5 202 202.5 203βˆ’0.5

    0

    0.5

    Time200 200.5 201 201.5 202 202.5 203

    βˆ’0.2

    βˆ’0.1

    0

    0.1

    0.2

    Time

    200 200.5 201 201.5 202 202.5 203βˆ’0.2

    βˆ’0.1

    0

    0.1

    0.2

    Time

    RKMFDM

    RKMFDM

    RKMFDM

    Am

    plitu

    deu1

    Am

    plitu

    deu2

    Am

    plitu

    deu3

    Figure 5: Time response of composite laminated rectangular plate using RKM and FDM.

    𝑄2= [

    πœ‡2

    2

    4+πœ‡4

    2

    64πœ”2

    2

    +Ξ“2

    2

    4πœ”2

    2

    βˆ’Ξ“2πœ‡2

    2

    8πœ”2

    2

    ] ,

    𝑄3= [

    3𝛽8Ξ“2

    8πœ”2

    2

    βˆ’3𝛽8πœ‡2

    2

    32πœ”2

    2

    ] ,

    𝑄4= [

    𝛽2

    10

    64πœ”2

    2

    +3𝛽3𝛽5

    16πœ”2

    2

    +𝛽2𝛽4

    32πœ”2

    2

    ] ,

    𝑄5= [

    𝛽2

    1

    64πœ”2

    2

    +9𝛽3𝛽7

    32πœ”2

    2

    ] ,

    𝑄6= [

    𝛽2

    2

    64πœ”2

    2

    +3𝛽5𝛽7

    16πœ”2

    2

    ] ,

    𝑄7= [

    3𝛽2𝛽3

    32πœ”2

    2

    +3𝛽4𝛽7

    32πœ”2

    2

    +𝛽1𝛽10

    32πœ”2

    2

    ] ,

    𝑄8= [

    3𝛽3𝛽10

    32πœ”2

    2

    +𝛽1𝛽4

    32πœ”2

    2

    ] ,

    𝑄9= [

    𝛽2𝛽10

    32πœ”2

    2

    +𝛽1𝛽5

    16πœ”2

    2

    ] ,

    𝑄10= [

    3𝛽7𝛽10

    32πœ”2

    2

    +𝛽1𝛽2

    32πœ”2

    2

    ] ,

    𝐾1= [

    πœ‡2

    3

    4+πœ‡4

    3

    64πœ”2

    3

    +Ξ“2

    3

    4πœ”2

    3

    βˆ’Ξ“3πœ‡2

    3

    8πœ”2

    3

    ] ,

    𝐾2= [

    3𝛾9Ξ“3

    8πœ”2

    3

    βˆ’3𝛾9πœ‡2

    3

    32πœ”2

    3

    ] ,

    𝐾3= [

    𝛾2

    1

    64πœ”2

    3

    +𝛾3𝛾7

    32πœ”2

    3

    ] ,

    𝐾4= [

    𝛾2

    3

    64πœ”2

    3

    +𝛾1𝛾8

    32πœ”2

    3

    ] ,

    𝐾5= [

    𝛾1𝛾3

    32πœ”2

    3

    +𝛾7𝛾8

    32πœ”2

    3

    ] .

    (30)

  • 14 Mathematical Problems in Engineering

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    2

    4

    6

    8

    10

    Analytical solutionNumerical solution

    𝜎1a 1

    Figure 6: Comparison between analytical prediction using multiple time scale and numerical integration of the first mode.

    βˆ’1 βˆ’0.5 0 0.5 1

    5

    10

    15

    20

    0.2

    0.1

    0.3

    a 1

    𝜎1

    Figure 7: Effects of the linear damping πœ‡1.

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    2

    4

    6

    8

    10

    12

    141.7

    2.3

    4.3

    a 1

    𝜎1

    Figure 8: Effects of the natural frequency πœ”1.

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    5

    10

    15

    20

    4

    8

    3

    a 1

    𝜎1

    Figure 9: Effects of the external excitation 𝑓1.

  • Mathematical Problems in Engineering 15

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    2

    4

    6

    8

    10

    12

    0.06

    βˆ’0.06

    0.01

    a 1𝜎1

    Figure 10: Effects of the nonlinear parameter 𝛼7.

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    2

    4

    6

    8

    10

    0.5510

    a 1

    𝜎1

    Figure 11: Effects of the parametric excitation 𝑓14.

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.5

    123456

    Analytical solutionNumerical solution

    a 2

    𝜎2

    Figure 12: Comparison between analytical prediction using multiple time scale and numerical integration of the second mode.

    βˆ’1.5 βˆ’1 βˆ’0.5

    βˆ’0.08

    0

    0.2

    0.5 1 1.50

    2

    0.01

    4

    6

    a 2

    𝜎2

    Figure 13: Effects of the nonlinear parameter 𝛽8.

  • 16 Mathematical Problems in Engineering

    βˆ’1 βˆ’0.5 0 0.5

    0.1

    0.2

    0.3

    10

    4

    8

    a 2

    𝜎2

    Figure 14: Effects of the linear damping πœ‡2.

    βˆ’1.5 βˆ’1 βˆ’0.5 0

    4

    2.2

    0.5 1 1.50

    2

    4

    6

    8

    a 2

    𝜎2

    Figure 15: Effects of the natural frequency πœ”2.

    βˆ’1.5 βˆ’1 βˆ’0.5 0 0.5 1 1.50

    2

    4

    6

    8

    2

    4

    6

    a 2

    𝜎2

    Figure 16: Effects of the external excitation 𝑓2.

    In the frequency response curves, the stable (unstable)steady-state solutions have been represented by solid (dotted)lines.

    4. Numerical Results and Discussion

    To study the behavior of the system, the Runge-Kutta fourth-order method (RKM) was applied to (4a), (4b), and (4c)

    governing the oscillating system. A good criterion of bothstability and dynamic chaos is the phase plane trajectories.Figure 2 illustrates the response and the phase-plane for thenonresonant system at some practical values of the equationparameters: πœ‡

    1= 0.05, πœ‡

    2= 0.05, πœ‡

    3= 0.05, 𝛼

    1= 𝛽1= 𝛾1=

    1.5, 𝛼2= 𝛽2= 𝛾2= 1.9, 𝛼

    3= 𝛽3= 𝛾3= 0.4, 𝛼

    4= 𝛽4= 𝛾4=

    0.6, 𝛼5= 𝛽5= 𝛾5= 0.6, 𝛼

    6= 𝛽6= 𝛾6= 0.2, 𝛼

    7= 𝛽7= 𝛾7=

    0.01, 𝛼8= 𝛽8= 𝛾8= 0.01, 𝛼

    9= 𝛽9= 𝛾9= 0.4, 𝛼

    10= 𝛽10=

    𝛾10= 1.8, Ξ©

    1= 6.4, Ξ©

    2= 6.1, Ξ©

    3= 5.7, Ξ©

    4= 2, πœ”

    1= 4.7,

  • Mathematical Problems in Engineering 17

    βˆ’2 βˆ’1 0 1 20

    2

    4

    6

    Am

    plitu

    des

    𝜎1

    a1

    a1

    a2a2

    a3a3

    Figure 17: Effects of the detuning parameter 𝜎1.

    βˆ’1 0 1

    4

    6

    1

    βˆ’1 0 10.5

    1.5

    2.5

    1

    βˆ’1 0 1

    0.2

    0.6

    1

    1.4

    1

    f1 = 10

    f1 = 10

    f1 = 10

    a 1

    a 2

    a 3

    𝜎1

    𝜎1𝜎1

    Figure 18: Effects of the external excitation force 𝑓1.

    πœ”2= 2.7, πœ”

    3= 13.1, 𝑓

    1= 𝑓2= 4, 𝑓

    3= 20.5, 𝑓

    11= 𝑓21= 𝑓31=

    0.1,𝑓12= 𝑓22= 𝑓32= 0.2, and𝑓

    14= 𝑓24= 𝑓34= 0.5. Figure 3

    shows the steady-state amplitudes and phase plane of thesystem at simultaneous resonance caseΞ©

    3β‰… πœ”1,πœ”2β‰… πœ”1, and

    πœ”3β‰… 3πœ”1. It is clear from Figure 3 that the steady-state ampli-

    tude of the first, second, and thirdmodes is increased to about

    370%, 890%, and 260%, respectively, of its value shown inFigure 2. Also, it can be seen that the time response of thesystem is tuned with multilimit cycle.

    It is quite clear that such case is undesirable in thedesign of such system because it represents one of the worstbehaviors of the system. Such case should be avoided as

  • 18 Mathematical Problems in Engineering

    βˆ’2 βˆ’1 0 1 22

    3

    4

    5

    6

    7

    2.5

    1.5

    βˆ’2 0 10.5

    1.5

    2.5

    3.5

    4.5

    1.5

    2.5

    0 1

    0.2

    0.6

    1.2

    2.5

    1.5

    βˆ’1

    βˆ’1

    a 2a 1

    a 3

    𝜎1

    𝜎1𝜎1

    𝛼1 = 0.5

    𝛽1 = 0.5

    𝛾1 = 0.5

    Figure 19: Effects of the nonlinear parameters (𝛼1, 𝛽1, and 𝛾

    1coupling terms).

    working condition for the system. It is advised for such systemnot to have πœ”

    2= πœ”1or πœ”3= 3πœ”1. Figure 4 shows the com-

    parison between numerical integration for the system equa-tion (4a), (4b), and (4c) solid lines and the amplitude-phase modulating equation (20) dashed lines. We foundthat all predictions from analytical solutions dashed linesare in good agreement with the numerical simulation solidlines.

    4.1. FDM with Approximation O(𝑐2). The infinite equations(2a)–(2e) will be solved via a finite differencemethod (FDM).We briefly describe the procedure here. More details areavailable in [23, 26].The infinite dimensional equations (2a)–(2e) can be reduced to the finite dimensional one via the finitedifference method with second-order approximation 𝑂(𝑐2).Namely, at each mesh node the following system of ordinary

    differential equations is obtained:

    𝐿1,𝑐(𝑁π‘₯π‘₯, 𝑁π‘₯𝑦) = 𝐼0(�̈�0)𝑖,𝑗+ 𝐽1( Μˆπœ™π‘₯)𝑖,𝑗

    βˆ’2

    3β„Ž2𝑐𝐼3((�̈�0)𝑖+1,𝑗

    βˆ’ (�̈�0)π‘–βˆ’1,𝑗

    ) ,

    𝐿2,𝑐(𝑁π‘₯𝑦, 𝑁𝑦𝑦) = 𝐼0(V̈0)𝑖,𝑗+ 𝐽1( Μˆπœ™π‘¦)𝑖,𝑗

    βˆ’2

    3β„Ž2𝑐𝐼3((�̈�0)𝑖,𝑗+1

    βˆ’ (�̈�0)𝑖,π‘—βˆ’1

    ) ,

    𝐿3,𝑐(𝑄π‘₯, 𝑄𝑦, 𝑁π‘₯π‘₯, 𝑀0, 𝑁π‘₯𝑦)

    = 𝐼0(�̈�0)𝑖,π‘—βˆ’

    16

    9β„Ž4𝑐2𝐼6((�̈�0)𝑖+1,𝑗

    βˆ’ 2(�̈�0)𝑖,𝑗+ (�̈�0)𝑖+1,𝑗

    +(�̈�0)𝑖,𝑗+1

    βˆ’2(�̈�0)𝑖,𝑗+(�̈�0)𝑖,𝑗+1

    )

  • Mathematical Problems in Engineering 19

    βˆ’2 βˆ’1 0 1

    3

    4

    5

    6

    10

    5

    βˆ’1 0 10.5

    1

    1.5

    2

    2.5

    5

    10

    βˆ’2 βˆ’1 0 1

    0.2

    0.6

    1

    5

    10

    𝜎1

    𝜎1𝜎1

    a 2a1

    a 3

    𝛼2 = 0.1𝛽2 = 0.1

    𝛾2 = 0.1

    Figure 20: Effects of the nonlinear parameters (𝛼2, 𝛽2, and 𝛾

    2coupling terms).

    +4

    3β„Ž2𝑐2𝐼3((�̈�0)𝑖+1,𝑗

    βˆ’ (�̈�0)π‘–βˆ’1,𝑗

    + (V̈0)𝑖,𝑗+1

    βˆ’ (V̈0)𝑖,π‘—βˆ’1

    )

    +𝐽4

    2𝑐(( Μˆπœ™π‘₯)𝑖+1,𝑗

    βˆ’ ( Μˆπœ™π‘₯)π‘–βˆ’1,𝑗

    + ( Μˆπœ™π‘¦)𝑖,𝑗+1

    βˆ’ ( Μˆπœ™π‘¦)𝑖,π‘—βˆ’1

    ) ,

    𝐿4,𝑐(𝑀π‘₯π‘₯,𝑀π‘₯𝑦) = 𝐽1(�̈�0)𝑖,𝑗+ π‘˜2( Μˆπœ™π‘₯)𝑖,𝑗

    βˆ’2𝐽4

    3β„Ž2𝑐((�̈�0)𝑖+1,𝑗

    βˆ’ (�̈�0)π‘–βˆ’1,𝑗

    ) ,

    𝐿5,𝑐(𝑀π‘₯𝑦,𝑀𝑦𝑦) = 𝐽1(V̈0)𝑖,𝑗+ π‘˜2( Μˆπœ™π‘¦)𝑖,𝑗

    βˆ’2𝐽4

    3β„Ž2𝑐((�̈�0)𝑖,𝑗+1

    βˆ’ (�̈�0)𝑖,π‘—βˆ’1

    ) ,

    (𝑖 = 1, 2, . . . , 𝑛) , (𝑗 = 1, 2, . . . , 𝑛) ,

    (31)

    where 𝑛 denotes the partition number regarding a spatialcoordinate, 𝑐 is the computational step regarding spatialcoordinate, and 𝐿

    1,𝑐(β‹…), 𝐿2,𝑐(β‹…), 𝐿3,𝑐(β‹…), 𝐿4,𝑐(β‹…), and 𝐿

    5,𝑐(β‹…) are

    the difference operators as follows:

    𝐿1,𝑐(𝑁π‘₯π‘₯, 𝑁π‘₯𝑦) =

    1

    2𝑐((𝑁π‘₯π‘₯)𝑖+1,𝑗

    βˆ’ (𝑁π‘₯π‘₯)π‘–βˆ’1,𝑗

    + (𝑁π‘₯𝑦)𝑖,𝑗+1

    βˆ’ (𝑁π‘₯𝑦)𝑖,π‘—βˆ’1

    ) ,

    𝐿2,𝑐(𝑁π‘₯𝑦, 𝑁𝑦𝑦) =

    1

    2𝑐((𝑁π‘₯𝑦)𝑖+1,𝑗

    βˆ’ (𝑁π‘₯𝑦)π‘–βˆ’1,𝑗

    + (𝑁𝑦𝑦)𝑖,𝑗+1

    βˆ’ (𝑁𝑦𝑦)𝑖,π‘—βˆ’1

    ) ,

  • 20 Mathematical Problems in Engineering

    𝐿3,𝑐(𝑄π‘₯, 𝑄𝑦, 𝑁π‘₯π‘₯, 𝑀0, 𝑁π‘₯𝑦) =

    1

    2𝑐((𝑄π‘₯)𝑖+1,𝑗

    βˆ’ (𝑄π‘₯)π‘–βˆ’1,𝑗

    + (𝑄𝑦)𝑖,𝑗+1

    βˆ’ (𝑄𝑦)𝑖,π‘—βˆ’1

    )

    + 𝑁π‘₯π‘₯(

    (𝑀0)π‘–βˆ’1,𝑗

    βˆ’ 2(𝑀0)𝑖,𝑗+ (𝑀0)𝑖+1,𝑗

    𝑐2) + (

    (𝑀0)𝑖+1,𝑗

    βˆ’ (𝑀0)π‘–βˆ’1,𝑗

    2𝑐)(

    (𝑁π‘₯π‘₯)𝑖+1,𝑗

    βˆ’ (𝑁π‘₯π‘₯)π‘–βˆ’1,𝑗

    2𝑐)

    + 𝑁π‘₯𝑦(

    ((𝑀0)𝑗+1,𝑖+1

    βˆ’ 2(𝑀0)𝑗+1,π‘–βˆ’1

    ) ((𝑀0)π‘—βˆ’1,𝑖+1

    βˆ’ 2(𝑀0)π‘—βˆ’1,π‘–βˆ’1

    )

    4𝑐2)

    + (

    (𝑀0)𝑖,𝑗+1

    βˆ’ (𝑀0)𝑖,π‘—βˆ’1

    2𝑐)(

    (𝑁π‘₯𝑦)𝑖+1,𝑗

    βˆ’ (𝑁π‘₯𝑦)π‘–βˆ’1,𝑗

    2𝑐)

    + 𝑁π‘₯𝑦(

    ((𝑀0)𝑖+1,𝑗+1

    βˆ’ (𝑀0)𝑖+1,π‘—βˆ’1

    ) βˆ’ ((𝑀0)π‘–βˆ’1,𝑗+1

    βˆ’ (𝑀0)π‘–βˆ’1,π‘—βˆ’1

    )

    8𝑐3)

    + (

    (𝑀0)𝑖+1,𝑗

    βˆ’ (𝑀0)π‘–βˆ’1,𝑗

    2𝑐)(

    (𝑁𝑦𝑦)𝑖,𝑗+1

    βˆ’ (𝑁𝑦𝑦)𝑖,π‘—βˆ’1

    2𝑐) + 𝑁

    𝑦𝑦(

    (𝑀0)𝑖,π‘—βˆ’1

    βˆ’ 2(𝑀0)𝑖,𝑗+ (𝑀0)𝑖,𝑗+1

    𝑐2)

    + (

    (𝑀0)𝑖,𝑗+1

    βˆ’ (𝑀0)𝑖,π‘—βˆ’1

    2𝑐)(

    (𝑁𝑦𝑦)𝑖,𝑗+1

    βˆ’ (𝑁𝑦𝑦)𝑖,π‘—βˆ’1

    2𝑐) +

    4

    3β„Ž2(

    (𝑃π‘₯π‘₯)π‘–βˆ’1,𝑗

    βˆ’ 2(𝑃π‘₯π‘₯)𝑖,𝑗+ (𝑃π‘₯π‘₯)𝑖+1,𝑗

    𝑐2)

    +4

    3β„Ž2(2(

    ((𝑃π‘₯𝑦)𝑖+1,𝑗+1

    βˆ’ (𝑃π‘₯𝑦)π‘–βˆ’1,𝑗+1

    ) βˆ’ ((𝑃π‘₯𝑦)𝑖+1,π‘—βˆ’1

    βˆ’ (𝑃π‘₯𝑦)π‘–βˆ’1,π‘—βˆ’1

    )

    8𝑐3)+

    (𝑃𝑦𝑦)𝑖,π‘—βˆ’1

    βˆ’ 2(𝑃𝑦𝑦)𝑖,𝑗+ (𝑃𝑦𝑦)𝑖,𝑗+1

    𝑐2)+ π‘ž,

    𝐿4,𝑐(𝑀π‘₯π‘₯,𝑀π‘₯𝑦) =

    1

    2𝑐((𝑀π‘₯π‘₯)𝑖+1,𝑗

    βˆ’ (𝑀π‘₯π‘₯)π‘–βˆ’1,𝑗

    + (𝑀π‘₯𝑦)𝑖,𝑗+1

    βˆ’ (𝑀π‘₯𝑦)𝑖,π‘—βˆ’1

    ) βˆ’ 𝑄π‘₯,

    𝐿5,𝑐(𝑀π‘₯𝑦,𝑀𝑦𝑦) =

    1

    2𝑐((𝑀π‘₯𝑦)𝑖+1,𝑗

    βˆ’ (𝑀π‘₯𝑦)π‘–βˆ’1,𝑗

    + (𝑀𝑦𝑦)𝑖,𝑗+1

    βˆ’ (𝑀𝑦𝑦)𝑖,π‘—βˆ’1

    ) βˆ’ 𝑄𝑦.

    (32)

    The obtained system of (31) with the supplemented boundaryconditions equation and the initial conditions equation issolved by the fourth-order Runge-Kutta method. Figure 5shows a comparison between the time responses of the systemequations (4a), (4b), and (4c) using the Runge-Kutta offourth-order method and the time response of the problems(31), using the finite difference method at the same values ofthe parameters shown in Figure 2.

    4.2. Frequency Response Curves. When the amplitudeachieves a constant nontrivial value, a steady-state vibrationexists. Using the frequency response equations we can assessthe influence of the damping coefficients, the nonlinear para-meters, and the excitation amplitude on the steady-stateamplitudes. The frequency response equations (24)–(29) arenonlinear equations in π‘Ž

    1, π‘Ž2, and π‘Ž

    3which are solved

    numerically.Thenumerical results are shown in Figures 6–25,and in all figures the region of stability of the nonlinearsolutions is determined by applying the Routh-Hurwitz

    criterion.The solid lines stand for the stable solution, and thedotted lines stand for the unstable solution. From the geo-metry of the figures, we observe that each curve is continuousand has stable and unstable solutions.

    4.2.1. Response Curve of Case 1. To check the accuracy ofthe analytical solution derived by the multiple time scalein predicting the amplitude of the first mode, we comparethe amplitude of the first mode obtained from frequencyresponse equation of Case 1 with values obtained fromnumerical integration of (4a). Figure 6 shows a comparisonof these outputs for the first mode.The effects of the detuningparameter 𝜎

    1on the steady-state amplitude of the first mode

    for the stability first case, where π‘Ž1ΜΈ= 0, π‘Ž2= 0, and π‘Ž

    3= 0, for

    the parameters πœ‡1= 0.2, 𝛼

    7= 0.01, πœ”

    1= 2.3, 𝑓

    1= 4, 𝑓

    11=

    0.1, 𝑓12= 0.2, 𝑓

    14= 0.5, Ξ©

    1= 1, Ξ©

    2= 1.2, and Ξ©

    4= 1.4, as

    shown in Figure 6.Figures 7–11, show the effects of the damping coeffi-

    cient πœ‡1, the first mode natural frequency πœ”

    1, the external

  • Mathematical Problems in Engineering 21

    βˆ’1 0 12

    4

    63

    8

    βˆ’2 0 2

    1.5

    2.5

    3.5

    8

    3

    βˆ’2 0 2

    0.2

    0.6

    1

    8

    3

    𝜎1

    𝜎1𝜎1

    a 2

    a 1

    a 3

    𝛼8 = 1.5

    𝛽8 = 1.5

    𝛾8 = 1.5

    Figure 21: Effects of the nonlinear parameters (𝛼8, 𝛽8, and 𝛾

    8coupling terms).

    excitation amplitude𝑓1, the nonlinear spring stiffness 𝛼

    7, and

    the parametric excitation 𝑓14. Figures 7 and 8 show that the

    steady-state amplitude π‘Ž1is inversely proportional to πœ‡

    1and

    πœ”1, and also for decreasingπœ‡

    1orπœ”1the curve is bending to the

    left. It is clear from Figure 9 that the steady-state amplitudeπ‘Ž1is increasing for increasing value of external excitation

    force 𝑓1, and the zone of instability is increased. Figure 10

    shows that as the nonlinear spring stiffness 𝛼7is increased;

    the continuous curve ismoved downwards. Also, the negativeand positive values of 𝛼

    7produce either hard or soft spring,

    respectively, as the curve is either bent to the right or to theleft, leading to the appearance of the jump phenomenon.Theregion of stability is increased for increasing value of𝛼

    7. From

    Figure 11, we observe that for increasing value of parametricexcitation amplitude 𝑓

    14, the steady-state amplitude of the

    first mode is increased, and the curve is shifted to the left.

    4.2.2. Response Curve of Case 2. Figures 12–16, show thefrequency response curves for the stability of the second case,where π‘Ž

    2ΜΈ= 0, π‘Ž

    1= 0, and π‘Ž

    3= 0. Figure 12 shows a com-

    parison of these outputs for the second mode. The effects ofthe detuning parameter 𝜎

    2on the steady-state amplitude of

    the second mode for the stability second case, where π‘Ž2ΜΈ= 0,

    π‘Ž1= 0, π‘Ž

    3= 0, for the parameters: πœ‡

    2= 0.2, 𝛽

    8= 0.01,

    πœ”2= 4, 𝑓

    2= 4, 𝑓

    21= 0.1, 𝑓

    22= 0.2, 𝑓

    24= 0.5, Ξ©

    1= 1, Ξ©

    2=

    1.2, and Ξ©4= 1.4, as shown in Figure 12. It can be seen from

    the figure thatmaximum steady-state amplitude occurs whenπœ”2β‰… πœ”1. Figure 13 shows that as the nonlinear spring stiffness

    𝛽8is increased, the continuous curve is moved downwards.

    Also, the positive and negative values of 𝛽8produce either

    soft or hard spring, respectively, as the curve is either bent tothe left or to the right, leading to the appearance of the jumpphenomenon. Figures 14, 15, and 16 show that the steady-state amplitude π‘Ž

    2is inversely proportional to πœ‡

    2, πœ”2and

    directly proportional to the external excitation 𝑓2. Also, for

    decreasing πœ‡2, πœ”2the curve is bending to the left.

    4.2.3. Response Curve of Case 6. Figures 17, 18, 19, 20, 21,22, 23, 24, and 25 show that the frequency response curvesfor practical case stability, where π‘Ž

    1ΜΈ= 0, π‘Ž2ΜΈ= 0, and π‘Ž

    3ΜΈ= 0.

  • 22 Mathematical Problems in Engineering

    βˆ’2 0 22

    4

    6

    8

    10

    1

    βˆ’2 0 2

    0.5

    1.5

    2.5

    3.5

    4.5

    0.01

    βˆ’2 0 2

    0.2

    0.6

    1

    1.4

    0.01

    a 3

    a 2

    a 1

    𝜎1𝜎1

    𝜎1

    𝛼7 = 0.01𝛽7 = 1

    𝛾7 = 1

    Figure 22: Effects of the nonlinear parameters (𝛼7, 𝛽7, and 𝛾

    7coupling terms).

    Figure 17 shows that the effects of the detuning parameter𝜎1on the amplitudes of the three modes. From this figure,

    we observe that these modes intersect, and for positive valueof the detuning parameter 𝜎

    1the amplitudes are stable. For

    negative value of the detuning parameter 𝜎1down to and

    including βˆ’0.5 the system becomes unstable.Figure 18 shows that the steady-state amplitudes of the

    three modes π‘Ž1, π‘Ž2, and π‘Ž

    3are directly proportional to

    the external excitation force 𝑓1. Also, form this figure we

    show that the stability region is decreased for increasing 𝑓1.

    Figures 19–21 show that the steady-state amplitudes andstability of the threemodes π‘Ž

    1, π‘Ž2, and π‘Ž

    3are inversely propor-

    tional to the nonlinear parameters (𝛼1, 𝛼2, 𝛼8), (𝛽1, 𝛽2, 𝛽8),

    and (𝛾1, 𝛾2, 𝛾8), respectively.

    Figures 22–24, show the effects of the nonlinear param-eters (𝛼

    7, 𝛽7, 𝛾7), (𝛼3, 𝛽3, 𝛾3), and (𝛼

    5,𝛽5, 𝛾5) on the steady-

    state amplitudes of the three modes. It is clear that thestability regions are increased for increasing these nonlinear

    parameters. For increasing value of linear viscous dampingcoefficients, we note that the steady-state amplitudes areincreasing or decreasing for the first, second, and thirdmodes, respectively, as shown in Figure 25. The region ofstability system is increased for decreasing value of dampingcoefficients.

    4.3. Comparison Study. In the previous work [11], the chaoticdynamics of a six-dimensional nonlinear system whichrepresents the averaged equation of a composite laminatedpiezoelectric rectangular plate subjected to the transverse, in-plane excitations and the excitation loaded by piezoelectriclayers are analyzed. The case of 1 : 2 : 4 internal resonances isconsidered.

    In our study, the nonlinear analysis and stability ofa composite laminated piezoelectric rectangular thin plateunder simultaneous external and parametric excitation forces

  • Mathematical Problems in Engineering 23

    βˆ’2 βˆ’1 0 1 20

    2

    4

    6

    8

    5

    10

    1.5

    βˆ’2 βˆ’1 0 1 20.5

    1.5

    2.5

    3.5

    5

    βˆ’1

    βˆ’1 βˆ’0.5 0 0.50

    0.5

    1

    1.5

    2

    5

    1.5-1

    𝜎1

    𝜎1𝜎1

    a 3

    a 2

    a 1

    𝛼3 = βˆ’1

    𝛽3 = 10

    𝛾3 = 10

    Figure 23: Effects of the nonlinear parameters (𝛼3, 𝛽3, and 𝛾

    3coupling terms).

    are investigated.The second-order approximation is obtainedto consider the influence of the cubic terms on nonlin-ear dynamic characteristics of the composite laminatedpiezoelectric rectangular plate using the multiple scalemethod. All possible resonance cases are extracted at thisapproximation order. The case of 1 : 1 : 3 internal resonanceand primary resonance is considered. The stability of thesystem and the effects of different parameters on systembehavior have been studied using phase plane and frequencyresponse curves. The analytical results given by the methodof multiple time scale are verified by comparison with resultsfrom numerical integration of the modal equations. Reliabil-ity of the obtained results is verified by comparison betweenthe finite difference method (FDM) and Runge-Kuttamethod (RKM). Variation of the some parameters leads tomultivalued amplitudes and hence to jump phenomena. It isquite clear that some of the simultaneous resonance cases areundesirable in the design of such system. Such cases shouldbe avoided as working conditions for the system.

    5. Conclusions

    Multiple time scale perturbation method is applied to deter-mine second-order approximate solutions for rectangularsymmetric cross-ply laminated composite thin plate sub-jected to external and parametric excitations. Second-orderapproximate solutions are obtained to study the influenceof the cubic terms on nonlinear dynamic characteristics ofthe composite laminated piezoelectric rectangular plate. Allpossible resonance cases are extracted at this approximationorder. The study is focused on the case of 1 : 1 : 3 primary res-onance and internal resonance, whereΞ©

    3β‰… πœ”1, πœ”2β‰… πœ”1, and

    πœ”3β‰… 3πœ”1.The analytical results given by themethod ofmulti-

    ple time scale are verified by comparison with results fromnumerical integration of the modal equations. Reliability ofthe obtained results is verified by comparison between thefinite difference method (FDM) and Runge-Kutta method(RKM). The stability of a composite laminated piezoelectricrectangular thin plate is investigated. The phase-plane

  • 24 Mathematical Problems in Engineering

    βˆ’2 βˆ’1 0 12

    3

    4

    5

    6

    40

    βˆ’2 βˆ’1 0 10.5

    1.5

    2.5

    3.5

    20

    βˆ’1 0 10.2

    0.6

    1

    40

    𝜎1

    𝜎1𝜎1

    a 3

    a 2a 1

    𝛼5 = 20

    𝛽5 = 40

    𝛾5 = 20

    Figure 24: Effects of the nonlinear parameters (𝛼5, 𝛽5, and 𝛾

    5coupling terms).

    method and frequency response curves are applied to studythe stability of the system. From the previous study thefollowing may be concluded.

    (1) The simultaneous resonance case Ξ©3β‰… πœ”1, πœ”2β‰… πœ”1,

    and πœ”3β‰… 3πœ”

    1is one of the worst case, and they

    should be avoided in design of such system.Of course,the excitation frequencyΞ©

    3is out of control. But this

    case should be avoided through having πœ”2ΜΈ= πœ”1or

    πœ”3ΜΈ= 3πœ”1.

    (2) A comparison between the solutions obtained numer-ically with that prediction from the multiple scalesshows an excellent agreement.

    (3) Reliability of the obtained results is verified by com-parison between the finite difference method (FDM)and Runge-Kutta method (RKM).

    (4) Variation of the parameters πœ‡1, πœ‡2, 𝛼7, 𝛽8, πœ”1, πœ”2, 𝑓1,

    𝑓2leads tomultivalued amplitudes and hence to jump

    phenomena.

    (5) For the first and second modes, the steady-stateamplitudes π‘Ž

    1and π‘Ž2are directly proportional to the

    excitation amplitude 𝑓1and 𝑓

    2and inversely propor-

    tional to the linear damping πœ‡1and πœ‡

    2, respectively.

    (6) The negative and positive values of nonlinear stiffness𝛼7, 𝛽8produce either hard or soft spring, respectively,

    as the curve is either bent to the right or to the left.(7) The region of instability increase, which is undesir-

    able, for increasing excitation amplitudes 𝑓1, 𝑓2and

    for negative values of nonlinear stiffness 𝛼7, 𝛽8.

    (8) The multivalued solutions are disappeared forincreasing linear damping coefficients πœ‡

    1, πœ‡2.

    (9) The region of stability increases, which is desirablefor decreasing excitation amplitude 𝑓

    1, nonlinear

    parameters (𝛼1, 𝛽1, 𝛾1), (𝛼2, 𝛽2, 𝛾2), and for increasing

    nonlinear stiffness (𝛼7, 𝛽7, 𝛾7).

    (10) The steady-state amplitudes of the three modes π‘Ž1,

    π‘Ž2, and π‘Ž

    3are directly proportional to the exci-

    tation amplitude 𝑓1and inversely proportional to

  • Mathematical Problems in Engineering 25

    βˆ’1 0 13

    4

    5

    6

    0.5

    0.2

    βˆ’1 0 1

    0.5

    1.5

    2.5

    0.5

    0.2

    βˆ’2 βˆ’1 0 1

    0.4

    0.8

    1.2

    1.6

    0.5

    0.2

    𝜎1

    𝜎1𝜎1

    a 3

    a 2

    a 1

    πœ‡1 = 1.2

    πœ‡2 = 1.2

    πœ‡3 = 1.2

    Figure 25: Effects of the linear damping coefficients.

    the nonlinear parameters (𝛼1, 𝛼2, 𝛼8), (𝛽1, 𝛽2, 𝛽8), and

    (𝛾1, 𝛾2, 𝛾8), respectively.

    For further work, we intend to extend our work to explorethe modeling formulation by investigating the role staticloading (in addition to the dynamic component).

    Acknowledgment

    The authors would like to thank the anonymous reviewers fortheir valuable comments and suggestions for improving thequality of this paper.

    References

    [1] M. Ye, J. Lu,W. Zhang, andQ.Ding, β€œLocal and global nonlineardynamics of a parametrically excited rectangular symmetriccross-ply laminated composite plate,”Chaos, Solitons&Fractals,vol. 26, no. 1, pp. 195–213, 2005.

    [2] W. Zhang, β€œGlobal and chaotic dynamics for a parametricallyexcited thin plate,” Journal of Sound and Vibration, vol. 239, no.5, pp. 1013–1036, 2001.

    [3] X. Y. Guo, W. Zhang, and M. Yao, β€œNonlinear dynamics ofangle-ply composite laminated thin plate with third-order sheardeformation,” Science China Technological Sciences, vol. 53, no.3, pp. 612–622, 2010.

    [4] W. Zhang, Z. Liu, and P. Yu, β€œGlobal dynamics of a parametri-cally and externally excited thin plate,”Nonlinear Dynamics, vol.24, no. 3, pp. 245–268, 2001.

    [5] W. M. Tien, N. S. Namachchivaya, and A. K. Bajaj, β€œNon-linear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonance,” International Journal of Non-LinearMechanics, vol. 29, no. 3, pp. 349–366, 1994.

    [6] M. Sayed and A. A. Mousa, β€œSecond-order approximation ofangle-ply composite laminated thin plate under combined exci-tations,” Communications in Nonlinear Science and NumericalSimulation, vol. 17, no. 12, pp. 5201–5216, 2012.

    [7] W. Zhang, C. Song, and M. Ye, β€œFurther studies on nonlinearoscillations and chaos of a symmetric cross-ply laminated thin

  • 26 Mathematical Problems in Engineering

    plate under parametric excitation,” International Journal ofBifurcation and Chaos in Applied Sciences and Engineering, vol.16, no. 2, pp. 325–347, 2006.

    [8] W. Zhang, J. Yang, and Y. Hao, β€œChaotic vibrations of anorthotropic FGM rectangular plate based on third-order sheardeformation theory,” Nonlinear Dynamics, vol. 59, no. 4, pp.619–660, 2010.

    [9] W. Zhang, Z. Yao, and M. Yao, β€œPeriodic and chaotic dynamicsof composite laminated piezoelectric rectangular plate withone-to-two internal resonance,” Science in China, Series E, vol.52, no. 3, pp. 731–742, 2009.

    [10] W. Zhang and S. B. Li, β€œResonant chaotic motions of a buckledrectangular thin plate with parametrically and externally exci-tations,” Nonlinear Dynamics, vol. 62, no. 3, pp. 673–686, 2010.

    [11] W. Zhang, M. Gao, M. Yao, and Z. Yao, β€œHigher-dimensionalchaotic dynamics of a composite laminated piezoelectric rect-angular plate,” Science in China, Series G, vol. 52, no. 12, pp.1989–2000, 2009.

    [12] W. Zhang and W. L. Hao, β€œMulti-pulse chaotic dynamicsof six-dimensional non-autonomous nonlinear system for acomposite laminated piezoelectric rectangular plate,”NonlinearDynamics, 2013.

    [13] X. Y. Guo and W. Zhang, β€œNonlinear dynamics of compositelaminated thin plate with 1:2:3 inner resonance,” in Proceedingsof the 2nd International Conference on Mechanic Automationand Control Engineering (MACE ’11), pp. 7479–7482, July 2011.

    [14] M. Eissa and M. Sayed, β€œA comparison between active andpassive vibration control of non-linear simple pendulum. I.,”Mathematical & Computational Applications, vol. 11, no. 2, pp.137–149, 2006.

    [15] M. Eissa and M. Sayed, β€œA comparison between active andpassive vibration control of non-linear simple pendulum. II.Longitudinal tuned absorber and negative 𝐺�̈� and πΊπœ‘π‘› feed-back,” Mathematical & Computational Applications, vol. 11, no.2, pp. 151–162, 2006.

    [16] M. Eissa and M. Sayed, β€œVibration reduction of a three DOFnon-linear spring pendulum,” Communications in NonlinearScience and Numerical Simulation, vol. 13, no. 2, pp. 465–488,2008.

    [17] M. Sayed, Improving the mathematical solutions of nonlineardifferential equations using different control methods [Ph.D.thesis], Menoufia University, Menoufia, Egypt, 2006.

    [18] M. Sayed and M. Kamel, β€œStability study and control ofhelicopter blade flapping vibrations,” Applied MathematicalModelling, vol. 35, no. 6, pp. 2820–2837, 2011.

    [19] M. Sayed and M. Kamel, β€œ1:2 and 1:3 internal resonance activeabsorber for non-linear vibrating system,” Applied Mathemati-cal Modelling, vol. 36, no. 1, pp. 310–332, 2012.

    [20] M. Sayed andY. S.Hamed, β€œStability and response of a nonlinearcoupled pitch-roll ship model under parametric and harmonicexcitations,” Nonlinear Dynamics, vol. 64, no. 3, pp. 207–220,2011.

    [21] Y. A. Amer,H. S. Bauomy, andM. Sayed, β€œVibration suppressionin a twin-tail system to parametric and external excitations,”Computers and Mathematics with Applications, vol. 58, no. 10,pp. 1947–1964, 2009.

    [22] Y. S. Hamed, M. Sayed, D.-X. Cao, and W. Zhang, β€œNonlinearstudy of the dynamic behavior of a string-beam coupled systemunder combined excitations,”ActaMechanica Sinica, vol. 27, no.6, pp. 1034–1051, 2011.

    [23] J. Awrejcewicz, V. A. Krysko, I. V. Papkova, and A. V. Krysko,β€œRoutes to chaos in continuous mechanical systems. Part 1:mathematical models and solution methods,” Chaos, Solitons &Fractals, vol. 45, pp. 687–708, 2012.

    [24] A. V. Krysko, J. Awrejcewicz, I. V. Papkova, and V. A. Krysko,β€œRoutes to chaos in continuous mechanical systems. Part 2:modelling transitions from regular to chaotic dynamics,”Chaos,Solitons & Fractals, vol. 45, pp. 709–720, 2012.

    [25] J. Awrejcewicz, A. V. Krysko, I. V. Papkova, and V. A. Krysko,β€œRoutes to chaos in continuous mechanical systems. Part 3: theLyapunov exponents, hyper, hyper-hyper and spatial-temporalchaos,” Chaos, Solitons & Fractals, vol. 45, pp. 721–736, 2012.

    [26] J. Awrejcewicz, A. V. Krysko, J. Mrozowski, O. A. Saltykova, andM. V. Zhigalov, β€œAnalysis of regular and chaotic dynamics of theEuler-Bernoulli beams using finite difference and finite elementmethods,” Acta Mechanica Sinica, vol. 27, no. 1, pp. 36–43, 2011.

    [27] J. N. Reddy, β€œA refined nonlinear theory of plates with transverseshear deformation,” International Journal of Solids and Struc-tures, vol. 20, no. 9-10, pp. 881–896, 1984.

    [28] Z. G. Yao, W. Zhang, and L. H. Chen, β€œPeriodic and chaoticoscillations of laminated composite piezoelectric rectangularplate with 1:2:3 internal resonances,” in Proceedings of the 5thInternational Conference on Nonlinear Mechanics, pp. 720–725,Shanghai, China, 2007.

    [29] A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York, NY, USA, 1981.

    [30] A. H. Nayfeh, Nonlinear Interactions: Analytical, Computa-tional, and Experimental Methods, Wiley Series in NonlinearScience, Wiley-Interscience, New York, NY, USA, 2000.

    [31] A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, NewYork, NY, USA, 1973.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Space