Research Article On Hardy-Pachpatte-Copson s...

8
Research Article On Hardy-Pachpatte-Copson’s Inequalities Chang-Jian Zhao 1 and Wing-Sum Cheung 2 1 Department of Mathematics, China Jiliang University, Hangzhou 310018, China 2 Department of Mathematics, e University of Hong Kong, Pokfulam Road, Hong Kong Correspondence should be addressed to Chang-Jian Zhao; [email protected] Received 6 December 2013; Accepted 19 January 2014; Published 18 March 2014 Academic Editors: B. Dragovich and D. Xu Copyright © 2014 C.-J. Zhao and W.-S. Cheung. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish new inequalities similar to Hardy-Pachpatte-Copson’s type inequalities. ese results in special cases yield some of the recent results. 1. Introduction e classical Hardy’s integral inequality is as follows. eorem A. If >1, () ≥ 0 for 0<<∞, and () = (1/) ∫ 0 (), then 0 () < ( −1 ) 0 () , (1) unless ≡0. e constant is the best possible. eorem A was first proved by Hardy [1], in an attempt to give a simple proof of Hilbert’s double series theorem (see [2]). One of the best known and interesting generalization of the inequality (1) given by Hardy [3] himself can be stated as follows. eorem B. If > 1, ̸ =1, () ≥ 0 for 0<<∞, and () is defined by () = ∫ 0 () , > 1; () = ∫ () , < 1, (2) then 0 () < ( | − 1| ) 0 () , (3) unless ≡0. e constant is the best possible. Inequalities (1) and (3) which later went by the name of Hardy’s inequalities led to a great many papers dealing with alternative proofs, various generalizations, and numer- ous variants and applications in analysis (see [415]). In particular, Pachpatte [4] established some generalizations of Hardy inequalities (1) and (3). Very recently, Leng and Feng [16] proved some new Hardy-type integral inequalities. In the present paper we establish new inequalities similar to Hardy’s integral inequalities (1) and (3). ese results provide some new estimates to these types of inequalities and in special cases yield some of the recent results. 2. Main Results Our main results are given in the following theorems. eorem 1. Let <<,<< ,>1,<1, and >0 be constants. Let (, ) be positive and locally absolutely continuous in (, ) × (, ). Let ℎ(, ) be a positive continuous function and let (, ) = ℎ(, ) , Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 607347, 7 pages http://dx.doi.org/10.1155/2014/607347

Transcript of Research Article On Hardy-Pachpatte-Copson s...

Page 1: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

Research ArticleOn Hardy-Pachpatte-Copsonrsquos Inequalities

Chang-Jian Zhao1 and Wing-Sum Cheung2

1 Department of Mathematics China Jiliang University Hangzhou 310018 China2Department of Mathematics The University of Hong Kong Pokfulam Road Hong Kong

Correspondence should be addressed to Chang-Jian Zhao chjzhaoaliyuncom

Received 6 December 2013 Accepted 19 January 2014 Published 18 March 2014

Academic Editors B Dragovich and D Xu

Copyright copy 2014 C-J Zhao and W-S CheungThis is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in anymedium provided the originalwork is properly cited

We establish new inequalities similar to Hardy-Pachpatte-Copsonrsquos type inequalities These results in special cases yield some ofthe recent results

1 Introduction

The classical Hardyrsquos integral inequality is as follows

Theorem A If 119901 gt 1 119891(119909) ge 0 for 0 lt 119909 lt infin and 119865(119909) =

(1119909) int119909

0

119891(119905)119889119905 then

int

infin

0

119865(119909)119901

119889119909 lt (119901

119901 minus 1)

119901

int

infin

0

119891(119909)119901

119889119909 (1)

unless 119891 equiv 0 The constant is the best possible

Theorem A was first proved by Hardy [1] in an attemptto give a simple proof of Hilbertrsquos double series theorem (see[2]) One of the best known and interesting generalization ofthe inequality (1) given by Hardy [3] himself can be stated asfollows

Theorem B If 119901 gt 1 119898 = 1 119891(119909) ge 0 for 0 lt 119909 lt infin and119865(119909) is defined by

119865 (119909) = int

119909

0

119891 (119905) 119889119905 119898 gt 1

119865 (119909) = int

infin

119909

119891 (119905) 119889119905 119898 lt 1

(2)

then

int

infin

0

119909minus119898

119865(119909)119901

119889119909 lt (119901

|119898 minus 1|)

119901

int

infin

0

119909119901minus119898

119891(119909)119901

119889119909 (3)

unless 119891 equiv 0 The constant is the best possible

Inequalities (1) and (3) which later went by the nameof Hardyrsquos inequalities led to a great many papers dealingwith alternative proofs various generalizations and numer-ous variants and applications in analysis (see [4ndash15]) Inparticular Pachpatte [4] established some generalizations ofHardy inequalities (1) and (3) Very recently Leng and Feng[16] proved some newHardy-type integral inequalities In thepresent paper we establish new inequalities similar to Hardyrsquosintegral inequalities (1) and (3) These results provide somenew estimates to these types of inequalities and in specialcases yield some of the recent results

2 Main Results

Our main results are given in the following theorems

Theorem 1 Let 119886 lt 119887 lt 119877 119888 lt 119889 lt 1198771015840

119901 gt 1 119902 lt 1and 120572 gt 0 be constants Let 119908(119909 119910) be positive and locallyabsolutely continuous in (119886 119887) times (119888 119889) Let ℎ(119909 119910) be a positivecontinuous function and let 119867(119909 119910) = int

119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905

Hindawi Publishing Corporatione Scientific World JournalVolume 2014 Article ID 607347 7 pageshttpdxdoiorg1011552014607347

2 The Scientific World Journal

for (119909 119910) isin (119886 119887) times (119888 119889) Let 119891(119909 119910) be nonnegative andmeasurable on (119886 119887) times (119888 119889) If

119863(119909 119910)

= 1 minus1

1 minus 119902

119867 (119909 119910)

ℎ (119909 119910)

1

119908 (119909 119910)

120597119908 (119909 119910)

120597119909log(

119867(119877 1198771015840

)

119867 (119909 119910))

+119901

1 minus 119902

119867 (119909 119910)

ℎ (119909 119910)times

1

119903 (119909 119910)

120597119903 (119909 119910)

120597119909log(

119867(119877 1198771015840

)

119867 (119909 119910))

ge1

120572

(4)

for almost all (119909 119910) isin (119886 119887) times (119888 119889) and if 119865(119909 119910) is definedby

119865 (119909 119910) =1

119903 (119909 119910)int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (5)

for (119909 119910) isin (119886 119887) times (119888 119889) then

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877R1015840)119867 (119909 119910)

))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)1minus119901

119866(119909 119910)119901]

]

119889119909119889119910

(6)

where

ℎ (119909 119910) = int

119910

119888

ℎ (119909 119905) 119889119905

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

(7)

Remark 2 Let 119891(119909 119910) 119908(119909 119910) ℎ(119909 119910) and 119903(119909 119910) reduce to119891(119909) 119908(119909) ℎ(119909) and 119903(119909) respectively and with suitable

modifications in Theorem 1 (6) changes to the followingresult

int

119887

119886

119908 (119909)119867(119909)minus1

ℎ (119909) (log(119867 (119877)

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le [120572(119901

1 minus 119902)]

119901

times int

119887

119886

[(log(119867 (119877)

119867 (119909)))

119901minus119902

times 119908 (119909)119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(8)

This is just a new inequality established by Pachpatte [4]Moreover we note that the inequality established in

Theorem 1 is the further generalizations of the inequalityestablished by Copson [17]

Taking for 119908(119909) = 119903(119909) = 1 119867(119877) = 119877 and 120572 = 1 in (8)(8) changes to the following result

int

119887

119886

119867(119909)minus1

ℎ (119909) (log( 119877

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le (119901

1 minus 119902)

119901

times int

119887

119886

[(log( 119877

119867 (119909)))

119901minus119902

119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(9)

This is just a new inequality established by Love [7]Let ℎ(119909) = 1 119886 rarr 0 119887 rarr infin and log (119877(119909 minus 119886)) = 1

in (9) then (9) changes to the following result

int

infin

0

119909minus1

119865(119909)119901

119889119909 le (119901

1 minus 119902)

119901

int

infin

0

119909119901minus1

119891(119909)119901

119889119909 (10)

This result is obtained in (3) stated in the Introduction

Theorem 3 Let 119886 lt 119887 lt 119877 119888 lt 119889 lt 1198771015840

119901 gt 1 119902 gt 1 and 120573 gt

0 be constants Let 119908(119909 119910) be positive and locally absolutelycontinuous in (119886 119887)times(119888 119889) Let ℎ(119909 119910) be a positive continuousfunction and let 119867(119909 119910) = int

119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin

(119886 119887) times (119888 119889) Let 119891(119909 119910) be nonnegative and measurable on(119886 119887) times (119888 119889) Let

119864 (119909 119910)

= 1 minus1

119902 minus 1

119867 (119909 119910)

ℎ (119909 119910)

1

119908 (119909 119910)

120597119908 (119909 119910)

120597119910log(

119867(119877 1198771015840

)

119867 (119909 119910))

+119901

119902 minus 1

119867 (119909 119910)

ℎ (119909 119910)times

1

119903 (119909 119910)

120597119903 (119909 119910)

120597119910log(

119867(119877 1198771015840

)

119867 (119909 119910))

ge1

120573

(11)

The Scientific World Journal 3

for almost all (119909 119910) isin (119886 119887) times (119888 119889) If 119865(119909 y) is defined by

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (12)

for (119909 119910) isin (119886 119887) times (119888 119889) then

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)1minus119901

119871(119909 119910)119901]

]

119889119909119889119910

(13)

where

ℎ (119909 119910) = int

119909

119886

ℎ (119904 119910) 119889119904

(14)

Remark 4 Let 119891(119909 119910) 119908(119909 119910) ℎ(119909 119910) and 119903(119909 119910) reduceto 119891(119909) 119908(119909) ℎ(119909) and 119903(119909) respectively and with suitablemodifications in Theorem 3 (13) changes to the followingresult

int

119887

119886

119908 (119909)119867(119909)minus1

ℎ (119909) (log(119867 (119877)

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le [120573(119901

119902 minus 1)]

119901

int

119887

119886

[(log(119867(119877)

119867(119909)))

119901minus119902

times 119908 (119909)119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(15)

This is just a new inequality established by Pachpatte [4]On the other hand we note that the inequality established

in Theorem 3 is the further generalizations of the inequalityestablished by Copson [17]

Taking for119908(119909) = 119903(119909) = 1 119867(119877) = 119877 and 120573 = 1 in (15)(15) changes to the following result

int

119887

119886

119867(119909)minus1

ℎ (119909) (log( 119877

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le (119901

119902 minus 1)

119901

int

119887

119886

[(log( 119877

119867 (119909)))

119901minus119902

times 119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(16)

This is just a new inequality established by Love [7]

3 Proof of Theorems

Proof of Theorem 1 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and

in view of

119865 (119909 119910) =1

119903 (119909 119910)int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (17)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119909

=120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

timesint

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(18)

Let

120597V (119909 119910)120597119909

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(19)

where ℎ(119909 119910) = int119910

119888

ℎ(119909 119905)119889119905 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (20)

4 The Scientific World Journal

From (18) (20) and integrating by parts for 119909 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119889

119888

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909=119887

119909=119886

minus int

119887

119886

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119866 (119909 119910) minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

times int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905)

times119891(119904119905)119889119904 119889119905)]119889119909

119889119910

(21)

where

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905 (22)

If 119902 lt 1 then we observe that

int

119889

119888

int

119887

119886

119863(119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le119901

1 minus 119902int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119866 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

1 minus 119902

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

times 119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119866 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(23)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (23) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120572(119901

1 minus 119902)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

1119901

The Scientific World Journal 5

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(24)

Dividing both sides of (24) by the second integral factor onthe right side of (24) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

(25)

Proof of Theorem 3 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and in

view of

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (26)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119910

=120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (minus1

119903 (119909 119910)int

119889

119910

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(27)

Let

120597V (119909 119910)120597119910

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(28)

where ℎ(119909 119910) = int119909

119886

ℎ(119904 119910)119889119904 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (29)

From (27) (29) and integrating by parts for 119910 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119887

119886

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119910=119889

119910=119888

minus int

119889

119888

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119871 (119909 119910) minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)

times int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905)

times119891(119904 119905)119889119904 119889119905)]119889119910

119889119909

(30)

where

119871 (119909 119910) = minus1

119903 (119909 119910)int

119887

119909

119903 (119904 119910) ℎ (119904 119910) 119891 (119904 119910) 119889119904 (31)

If 119902 gt 1 then we observe that

int

119889

119888

int

119887

119886

119864 (119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

2 The Scientific World Journal

for (119909 119910) isin (119886 119887) times (119888 119889) Let 119891(119909 119910) be nonnegative andmeasurable on (119886 119887) times (119888 119889) If

119863(119909 119910)

= 1 minus1

1 minus 119902

119867 (119909 119910)

ℎ (119909 119910)

1

119908 (119909 119910)

120597119908 (119909 119910)

120597119909log(

119867(119877 1198771015840

)

119867 (119909 119910))

+119901

1 minus 119902

119867 (119909 119910)

ℎ (119909 119910)times

1

119903 (119909 119910)

120597119903 (119909 119910)

120597119909log(

119867(119877 1198771015840

)

119867 (119909 119910))

ge1

120572

(4)

for almost all (119909 119910) isin (119886 119887) times (119888 119889) and if 119865(119909 119910) is definedby

119865 (119909 119910) =1

119903 (119909 119910)int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (5)

for (119909 119910) isin (119886 119887) times (119888 119889) then

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877R1015840)119867 (119909 119910)

))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)1minus119901

119866(119909 119910)119901]

]

119889119909119889119910

(6)

where

ℎ (119909 119910) = int

119910

119888

ℎ (119909 119905) 119889119905

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

(7)

Remark 2 Let 119891(119909 119910) 119908(119909 119910) ℎ(119909 119910) and 119903(119909 119910) reduce to119891(119909) 119908(119909) ℎ(119909) and 119903(119909) respectively and with suitable

modifications in Theorem 1 (6) changes to the followingresult

int

119887

119886

119908 (119909)119867(119909)minus1

ℎ (119909) (log(119867 (119877)

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le [120572(119901

1 minus 119902)]

119901

times int

119887

119886

[(log(119867 (119877)

119867 (119909)))

119901minus119902

times 119908 (119909)119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(8)

This is just a new inequality established by Pachpatte [4]Moreover we note that the inequality established in

Theorem 1 is the further generalizations of the inequalityestablished by Copson [17]

Taking for 119908(119909) = 119903(119909) = 1 119867(119877) = 119877 and 120572 = 1 in (8)(8) changes to the following result

int

119887

119886

119867(119909)minus1

ℎ (119909) (log( 119877

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le (119901

1 minus 119902)

119901

times int

119887

119886

[(log( 119877

119867 (119909)))

119901minus119902

119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(9)

This is just a new inequality established by Love [7]Let ℎ(119909) = 1 119886 rarr 0 119887 rarr infin and log (119877(119909 minus 119886)) = 1

in (9) then (9) changes to the following result

int

infin

0

119909minus1

119865(119909)119901

119889119909 le (119901

1 minus 119902)

119901

int

infin

0

119909119901minus1

119891(119909)119901

119889119909 (10)

This result is obtained in (3) stated in the Introduction

Theorem 3 Let 119886 lt 119887 lt 119877 119888 lt 119889 lt 1198771015840

119901 gt 1 119902 gt 1 and 120573 gt

0 be constants Let 119908(119909 119910) be positive and locally absolutelycontinuous in (119886 119887)times(119888 119889) Let ℎ(119909 119910) be a positive continuousfunction and let 119867(119909 119910) = int

119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin

(119886 119887) times (119888 119889) Let 119891(119909 119910) be nonnegative and measurable on(119886 119887) times (119888 119889) Let

119864 (119909 119910)

= 1 minus1

119902 minus 1

119867 (119909 119910)

ℎ (119909 119910)

1

119908 (119909 119910)

120597119908 (119909 119910)

120597119910log(

119867(119877 1198771015840

)

119867 (119909 119910))

+119901

119902 minus 1

119867 (119909 119910)

ℎ (119909 119910)times

1

119903 (119909 119910)

120597119903 (119909 119910)

120597119910log(

119867(119877 1198771015840

)

119867 (119909 119910))

ge1

120573

(11)

The Scientific World Journal 3

for almost all (119909 119910) isin (119886 119887) times (119888 119889) If 119865(119909 y) is defined by

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (12)

for (119909 119910) isin (119886 119887) times (119888 119889) then

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)1minus119901

119871(119909 119910)119901]

]

119889119909119889119910

(13)

where

ℎ (119909 119910) = int

119909

119886

ℎ (119904 119910) 119889119904

(14)

Remark 4 Let 119891(119909 119910) 119908(119909 119910) ℎ(119909 119910) and 119903(119909 119910) reduceto 119891(119909) 119908(119909) ℎ(119909) and 119903(119909) respectively and with suitablemodifications in Theorem 3 (13) changes to the followingresult

int

119887

119886

119908 (119909)119867(119909)minus1

ℎ (119909) (log(119867 (119877)

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le [120573(119901

119902 minus 1)]

119901

int

119887

119886

[(log(119867(119877)

119867(119909)))

119901minus119902

times 119908 (119909)119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(15)

This is just a new inequality established by Pachpatte [4]On the other hand we note that the inequality established

in Theorem 3 is the further generalizations of the inequalityestablished by Copson [17]

Taking for119908(119909) = 119903(119909) = 1 119867(119877) = 119877 and 120573 = 1 in (15)(15) changes to the following result

int

119887

119886

119867(119909)minus1

ℎ (119909) (log( 119877

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le (119901

119902 minus 1)

119901

int

119887

119886

[(log( 119877

119867 (119909)))

119901minus119902

times 119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(16)

This is just a new inequality established by Love [7]

3 Proof of Theorems

Proof of Theorem 1 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and

in view of

119865 (119909 119910) =1

119903 (119909 119910)int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (17)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119909

=120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

timesint

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(18)

Let

120597V (119909 119910)120597119909

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(19)

where ℎ(119909 119910) = int119910

119888

ℎ(119909 119905)119889119905 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (20)

4 The Scientific World Journal

From (18) (20) and integrating by parts for 119909 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119889

119888

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909=119887

119909=119886

minus int

119887

119886

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119866 (119909 119910) minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

times int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905)

times119891(119904119905)119889119904 119889119905)]119889119909

119889119910

(21)

where

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905 (22)

If 119902 lt 1 then we observe that

int

119889

119888

int

119887

119886

119863(119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le119901

1 minus 119902int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119866 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

1 minus 119902

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

times 119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119866 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(23)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (23) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120572(119901

1 minus 119902)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

1119901

The Scientific World Journal 5

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(24)

Dividing both sides of (24) by the second integral factor onthe right side of (24) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

(25)

Proof of Theorem 3 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and in

view of

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (26)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119910

=120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (minus1

119903 (119909 119910)int

119889

119910

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(27)

Let

120597V (119909 119910)120597119910

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(28)

where ℎ(119909 119910) = int119909

119886

ℎ(119904 119910)119889119904 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (29)

From (27) (29) and integrating by parts for 119910 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119887

119886

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119910=119889

119910=119888

minus int

119889

119888

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119871 (119909 119910) minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)

times int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905)

times119891(119904 119905)119889119904 119889119905)]119889119910

119889119909

(30)

where

119871 (119909 119910) = minus1

119903 (119909 119910)int

119887

119909

119903 (119904 119910) ℎ (119904 119910) 119891 (119904 119910) 119889119904 (31)

If 119902 gt 1 then we observe that

int

119889

119888

int

119887

119886

119864 (119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

The Scientific World Journal 3

for almost all (119909 119910) isin (119886 119887) times (119888 119889) If 119865(119909 y) is defined by

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (12)

for (119909 119910) isin (119886 119887) times (119888 119889) then

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)1minus119901

119871(119909 119910)119901]

]

119889119909119889119910

(13)

where

ℎ (119909 119910) = int

119909

119886

ℎ (119904 119910) 119889119904

(14)

Remark 4 Let 119891(119909 119910) 119908(119909 119910) ℎ(119909 119910) and 119903(119909 119910) reduceto 119891(119909) 119908(119909) ℎ(119909) and 119903(119909) respectively and with suitablemodifications in Theorem 3 (13) changes to the followingresult

int

119887

119886

119908 (119909)119867(119909)minus1

ℎ (119909) (log(119867 (119877)

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le [120573(119901

119902 minus 1)]

119901

int

119887

119886

[(log(119867(119877)

119867(119909)))

119901minus119902

times 119908 (119909)119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(15)

This is just a new inequality established by Pachpatte [4]On the other hand we note that the inequality established

in Theorem 3 is the further generalizations of the inequalityestablished by Copson [17]

Taking for119908(119909) = 119903(119909) = 1 119867(119877) = 119877 and 120573 = 1 in (15)(15) changes to the following result

int

119887

119886

119867(119909)minus1

ℎ (119909) (log( 119877

119867 (119909)))

minus119902

119865(119909)119901

119889119909

le (119901

119902 minus 1)

119901

int

119887

119886

[(log( 119877

119867 (119909)))

119901minus119902

times 119867(119909)119901minus1

ℎ (119909) 119891(119909)119901

]119889119909

(16)

This is just a new inequality established by Love [7]

3 Proof of Theorems

Proof of Theorem 1 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and

in view of

119865 (119909 119910) =1

119903 (119909 119910)int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (17)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119909

=120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

timesint

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(18)

Let

120597V (119909 119910)120597119909

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(19)

where ℎ(119909 119910) = int119910

119888

ℎ(119909 119905)119889119905 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (20)

4 The Scientific World Journal

From (18) (20) and integrating by parts for 119909 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119889

119888

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909=119887

119909=119886

minus int

119887

119886

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119866 (119909 119910) minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

times int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905)

times119891(119904119905)119889119904 119889119905)]119889119909

119889119910

(21)

where

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905 (22)

If 119902 lt 1 then we observe that

int

119889

119888

int

119887

119886

119863(119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le119901

1 minus 119902int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119866 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

1 minus 119902

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

times 119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119866 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(23)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (23) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120572(119901

1 minus 119902)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

1119901

The Scientific World Journal 5

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(24)

Dividing both sides of (24) by the second integral factor onthe right side of (24) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

(25)

Proof of Theorem 3 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and in

view of

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (26)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119910

=120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (minus1

119903 (119909 119910)int

119889

119910

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(27)

Let

120597V (119909 119910)120597119910

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(28)

where ℎ(119909 119910) = int119909

119886

ℎ(119904 119910)119889119904 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (29)

From (27) (29) and integrating by parts for 119910 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119887

119886

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119910=119889

119910=119888

minus int

119889

119888

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119871 (119909 119910) minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)

times int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905)

times119891(119904 119905)119889119904 119889119905)]119889119910

119889119909

(30)

where

119871 (119909 119910) = minus1

119903 (119909 119910)int

119887

119909

119903 (119904 119910) ℎ (119904 119910) 119891 (119904 119910) 119889119904 (31)

If 119902 gt 1 then we observe that

int

119889

119888

int

119887

119886

119864 (119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

4 The Scientific World Journal

From (18) (20) and integrating by parts for 119909 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119889

119888

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119909=119887

119909=119886

minus int

119887

119886

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119909119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119866 (119909 119910) minus120597119903 (119909 119910) 120597119909

1199032 (119909 119910)

times int

119909

119886

int

119910

119888

119903 (119904 119905) ℎ (119904 119905)

times119891(119904119905)119889119904 119889119905)]119889119909

119889119910

(21)

where

119866 (119909 119910) =1

119903 (119909 119910)int

119910

119888

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905 (22)

If 119902 lt 1 then we observe that

int

119889

119888

int

119887

119886

119863(119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le119901

1 minus 119902int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119866 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

1 minus 119902

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

times 119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119866 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(23)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (23) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120572(119901

1 minus 119902)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

1119901

The Scientific World Journal 5

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(24)

Dividing both sides of (24) by the second integral factor onthe right side of (24) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

(25)

Proof of Theorem 3 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and in

view of

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (26)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119910

=120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (minus1

119903 (119909 119910)int

119889

119910

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(27)

Let

120597V (119909 119910)120597119910

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(28)

where ℎ(119909 119910) = int119909

119886

ℎ(119904 119910)119889119904 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (29)

From (27) (29) and integrating by parts for 119910 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119887

119886

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119910=119889

119910=119888

minus int

119889

119888

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119871 (119909 119910) minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)

times int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905)

times119891(119904 119905)119889119904 119889119905)]119889119910

119889119909

(30)

where

119871 (119909 119910) = minus1

119903 (119909 119910)int

119887

119909

119903 (119904 119910) ℎ (119904 119910) 119891 (119904 119910) 119889119904 (31)

If 119902 gt 1 then we observe that

int

119889

119888

int

119887

119886

119864 (119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

The Scientific World Journal 5

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(24)

Dividing both sides of (24) by the second integral factor onthe right side of (24) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le [120572(119901

1 minus 119902)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

times 119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119866(119909 119910)119901]

]

119889119909119889119910

(25)

Proof of Theorem 3 If we let 119906(119909 119910) = 119908(119909 119910)119865(119909 119910)119901 and in

view of

119865 (119909 119910) =1

119903 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905 (26)

for (119909 119910) isin (119886 119887) times (119888 119889) then

120597119906 (119909 119910)

120597119910

=120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (minus1

119903 (119909 119910)int

119889

119910

119903 (119909 119905) ℎ (119909 119905) 119891 (119909 119905) 119889119905

minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905) 119891 (119904 119905) 119889119904 119889119905)

(27)

Let

120597V (119909 119910)120597119910

= 119867(119909 119910)minus1

ℎ (119909 119910) [log(119867(119877 119877

1015840

)

119867 (119909 119910))]

minus119902

(28)

where ℎ(119909 119910) = int119909

119886

ℎ(119904 119910)119889119904 and in view of 119867(119909 119910) =

int119909

119886

int119910

119888

ℎ(119904 119905)119889119904 119889119905 for (119909 119910) isin (119886 119887) times (119888 119889) then

V (119909 119910) = minus[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

(minus119902 + 1) (29)

From (27) (29) and integrating by parts for 119910 we have

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

= minusint

119887

119886

119908(119909 119910) 119865(119909 119910)119901

times[log (119867 (119877 119877

1015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119910=119889

119910=119888

minus int

119889

119888

[log (119867 (119877 1198771015840

) 119867 (119909 119910))]minus119902+1

minus119902 + 1

times [120597119908 (119909 119910)

120597119910119865(119909 119910)

119901

+ 119908 (119909 119910) 119901119865(119909 119910)119901minus1

times (119871 (119909 119910) minus120597119903 (119909 119910) 120597119910

1199032 (119909 119910)

times int

119887

119909

int

119889

119910

119903 (119904 119905) ℎ (119904 119905)

times119891(119904 119905)119889119904 119889119905)]119889119910

119889119909

(30)

where

119871 (119909 119910) = minus1

119903 (119909 119910)int

119887

119909

119903 (119904 119910) ℎ (119904 119910) 119891 (119904 119910) 119889119904 (31)

If 119902 gt 1 then we observe that

int

119889

119888

int

119887

119886

119864 (119909 119910)119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

6 The Scientific World Journal

le119901

119902 minus 1int

119889

119888

int

119887

119886

[

[

119908 (119909 119910)(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902+1

times 119871 (119909 119910) 119865(119909 119910)119901minus1]

]

119889119909119889119910

=119901

119902 minus 1

times int

119889

119888

int

119887

119886

[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

1119901

times log(119867(119877 119877

1015840

)

119867 (119909 119910))119908(119909 119910)

1119901

119867(119909 119910)(119901minus1)119901

times ℎ(119909 119910)minus(119901minus1)119901

119871 (119909 119910)]]

]

times[[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

(119901minus1)119901

times 119908(119909 119910)(119901minus1)119901

times [119867(119909 119910)minus1

times ℎ (119909 119910)](119901minus1)119901

times 119865(119909 119910)119901minus1]

]

]

119889119909119889119910

(32)

By applying Holderrsquos inequality with indices 119901 119901(119901 minus 1) onthe right side of (32) we obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

119865(119909 119910)119901

119889119909 119889119910

le 120573(119901

119902 minus 1)

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

1119901

times

int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119908 (119909 119910)119867(119909 119910)minus1

times ℎ (119909 119910) 119865(119909 119910)119901]

]

119889119909119889119910

(119901minus1)119901

(33)

Dividing both sides of (33) by the second integral factor onthe right side of (33) and raising both sides to the 119901th powerwe obtain

int

119889

119888

int

119887

119886

119908 (119909 119910)119867(119909 119910)minus1

ℎ (119909 119910)

times (log(119867(119877 119877

1015840

)

119867 (119909 119910)))

minus119902

times 119865(119909 119910)119901

119889119909 119889119910

le [120573(119901

119902 minus 1)]

119901

times int

119889

119888

int

119887

119886

[

[

(log(119867(119877 119877

1015840

)

119867 (119909 119910)))

119901minus119902

119908 (119909 119910)119867(119909 119910)119901minus1

times ℎ(119909 119910)minus(119901minus1)

119871(119909 119910)119901]

]

119889119909119889119910

(34)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Chang-Jian Zhaorsquos research is supported by National NaturalScience Foundation of China (11371334)Wing-sumCheungrsquosresearch is partially supported by HKU URG grant

References

[1] G H Hardy ldquoNote on a theorem of Hilbertrdquo MathematischeZeitschrift vol 6 no 3-4 pp 314ndash317 1920

[2] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[3] G H Hardy ldquoNotes on some points in the integral calculusrdquoMessenger of Mathematics vol 57 pp 12ndash16 1928

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

The Scientific World Journal 7

[4] B G Pachpatte ldquoOn some generalizations of Hardyrsquos integralinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 234 no 1 pp 15ndash30 1999

[5] B G Pachpatte ldquoOn Hardy type integral inequalities forfunctions of two variablesrdquo Demonstratio Mathematica vol 28no 2 pp 239ndash244 1995

[6] J E Pecaric andE R Love ldquoStillmore generalizations ofHardyrsquosinequalityrdquo Journal of the Australian Mathematical Society vol58 pp 1ndash11 1995

[7] E R Love ldquoGeneralizations of Hardys inequalityrdquo Proceedingsof the Royal Society of Edinburgh vol 100 pp 237ndash262 1985

[8] B C Yang I Brnetic M Krnic and J Pecaric ldquoGeneralizationof Hilbert and Hardy-Hilbert integral inequalitiesrdquo Mathemat-ical Inequalities amp Applications vol 8 pp 259ndash272 2005

[9] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[10] K Jichang and L Debnath ldquoOn new generalizations of Hilbertrsquosinequality and their applicationsrdquo Journal of MathematicalAnalysis and Applications vol 245 no 1 pp 248ndash265 2000

[11] M Z Sarikaya and H Yildirim ldquoSome Hardy type integralinequalitiesrdquo Journal of Inequalities in Pure and Applied Mathe-matics vol 7 no 5 article 178 2006

[12] C J Zhao and L Debnath ldquoSome new inverse type Hilbertintegral inequalitiesrdquo Journal of Mathematical Analysis andApplications vol 262 pp 411ndash418 2001

[13] V M Miklyukov and M K Vuorinen ldquoHardyrsquos inequality forw11199010-functions on riemannian manifoldsrdquo Proceedings of the

American Mathematical Society vol 127 no 9 pp 2745ndash27541999

[14] B Opic and A Kufner Hardy-Type Inequalities LongmanEssex UK 1990

[15] A Kufner and L E Persson Weighted Inequalities of HardyType World Scientific 2003

[16] T Leng and Y Feng ldquoOn Hardy-type integral inequalitiesrdquoApplied Mathematics and Mechanics vol 34 no 10 pp 1297ndash1304 2013

[17] E T Copson ldquoSome integral inequalitiesrdquo Proceedings of theRoyal Society of Edinburgh vol 75 pp 157ndash164 1976

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article On Hardy-Pachpatte-Copson s Inequalitiesdownloads.hindawi.com/journals/tswj/2014/607347.pdfInequalities ( )and( )whichlaterwentbythename of Hardy s inequalities led

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of