Research Article Multilinear Singular and Fractional Integral...

12
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 735795, 11 pages http://dx.doi.org/10.1155/2013/735795 Research Article Multilinear Singular and Fractional Integral Operators on Weighted Morrey Spaces Hua Wang 1 and Wentan Yi 2 1 College of Mathematics and Econometrics, Hunan University, Changsha 410082, China 2 Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, Zhengzhou 450002, China Correspondence should be addressed to Hua Wang; [email protected] Received 2 May 2013; Accepted 12 September 2013 Academic Editor: John R. Akeroyd Copyright © 2013 H. Wang and W. Yi. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We will study the boundedness properties of multilinear Calder´ on-Zygmund operators and multilinear fractional integrals on products of weighted Morrey spaces with multiple weights. 1. Introduction and Main Results Multilinear Calder´ on-Zygmund theory is a natural gener- alization of the linear case. e initial work on the class of multilinear Calder´ on-Zygmund operators was done by Coifman and Meyer in [1] and was later systematically studied by Grafakos and Torres in [24]. Let R be the -dimensional Euclidean space, and let (R ) = R ×⋅⋅⋅× R be the -fold product space (N). We denote by S(R ) the space of all Schwartz functions on R and by S (R ) its dual space, the set of all tempered distributions on R . Let ≥2 and be an -linear operator initially defined on the -fold product of Schwartz spaces, and taking values into the space of tempered distributions, : S (R )×⋅⋅⋅× S (R ) → S (R ). (1) Following [2], for given = ( 1 ,..., ), we say that is an -linear Calder´ on-Zygmund operator if, for some 1 ,..., ∈ [1, ∞) and ∈ (0, ∞) with 1/ = ∑ =1 1/ , it extends to a bounded multilinear operator from 1 (R ⋅⋅⋅× (R ) into (R ) and if there exists a kernel function (, 1 ,..., ) in the class -(, ), defined away from the diagonal = 1 =⋅⋅⋅= in (R ) +1 such that ( ) () = ( 1 ,..., ) () =∫ (R ) (, 1 ,..., ) 1 ( 1 )⋅⋅⋅ ( ) 1 ⋅ ⋅ ⋅ , (2) whenever 1 ,..., S(R ) and ∉⋂ =1 supp . We say that (, 1 ,..., ) is a kernel in the class -(, ) if it satisfies the size condition (, 1 ,..., ) ( 1 +⋅⋅⋅+ ) , (3) for some >0 and all (, 1 ,..., )∈(R ) +1 with ̸ = for some 1≤≤. Moreover, for some >0, it satisfies the regularity condition that (, 1 ,..., ) − ( , 1 ,..., ) ( 1 +⋅⋅⋅+ ) + (4) whenever | − | ≤ (1/2)max 1≤≤ | − | and also that, for each fixed with 1≤≤, (, 1 ,..., ,..., ) − (, 1 ,..., ,..., ) ( 1 +⋅⋅⋅+ ) + (5) whenever | | (1/2)max 1≤≤ | − |. In recent years, many authors have been interested in studying the boundedness of these operators on function spaces; see, for example, [58]. In 2009, the weighted strong and weak type estimates of multilinear Calder´ on-Zygmund singular integral operators were established in [9] by Lerner et al. New more

Transcript of Research Article Multilinear Singular and Fractional Integral...

Page 1: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013 Article ID 735795 11 pageshttpdxdoiorg1011552013735795

Research ArticleMultilinear Singular and Fractional IntegralOperators on Weighted Morrey Spaces

Hua Wang1 and Wentan Yi2

1 College of Mathematics and Econometrics Hunan University Changsha 410082 China2Department of Applied Mathematics Zhengzhou Information Science and Technology Institute Zhengzhou 450002 China

Correspondence should be addressed to Hua Wang wanghuapkueducn

Received 2 May 2013 Accepted 12 September 2013

Academic Editor John R Akeroyd

Copyright copy 2013 H Wang and W Yi This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We will study the boundedness properties of multilinear Calderon-Zygmund operators and multilinear fractional integrals onproducts of weighted Morrey spaces with multiple weights

1 Introduction and Main Results

Multilinear Calderon-Zygmund theory is a natural gener-alization of the linear case The initial work on the classof multilinear Calderon-Zygmund operators was done byCoifman andMeyer in [1] andwas later systematically studiedby Grafakos and Torres in [2ndash4] LetR119899 be the 119899-dimensionalEuclidean space and let (R119899)119898 = R119899 times sdot sdot sdot timesR119899 be the119898-foldproduct space (119898 isin N) We denote by S(R119899) the space of allSchwartz functions on R119899 and by S1015840(R119899) its dual space theset of all tempered distributions onR119899 Let119898 ge 2 and119879 be an119898-linear operator initially defined on the 119898-fold product ofSchwartz spaces and taking values into the space of tempereddistributions

119879 S (R119899

) times sdot sdot sdot timesS (R119899

) 997888rarr S1015840

(R119899

) (1)

Following [2] for given 119891 = (119891

1 119891

119898) we say that

119879 is an 119898-linear Calderon-Zygmund operator if for some1199021 119902

119898isin [1infin) and 119902 isin (0infin) with 1119902 = sum

119898

119896=11119902119896

it extends to a bounded multilinear operator from 1198711199021(R119899) times

sdot sdot sdot times 119871119902119898(R119899) into 119871119902(R119899) and if there exists a kernel function

119870(119909 1199101 119910

119898) in the class119898-119862119885119870(119860 120576) defined away from

the diagonal 119909 = 1199101= sdot sdot sdot = 119910

119898in (R119899)119898+1 such that

119879 (

119891) (119909)

= 119879 (1198911 119891

119898) (119909)

= int

(R119899)119898

119870(119909 1199101 119910

119898) 1198911(1199101) sdot sdot sdot 119891

119898(119910119898) 1198891199101sdot sdot sdot 119889119910119898

(2)

whenever 1198911 119891

119898isin S(R119899) and 119909 notin ⋂119898

119896=1supp 119891

119896 We say

that119870(119909 1199101 119910

119898) is a kernel in the class119898-119862119885119870(119860 120576) if it

satisfies the size condition1003816100381610038161003816119870 (119909 119910

1 119910

119898)1003816100381610038161003816le

119860

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899 (3)

for some 119860 gt 0 and all (119909 1199101 119910

119898) isin (R119899)

119898+1 with 119909 = 119910119896

for some 1 le 119896 le 119898 Moreover for some 120576 gt 0 it satisfies theregularity condition that

10038161003816100381610038161003816119870 (119909 119910

1 119910

119898) minus 119870 (119909

1015840

1199101 119910

119898)

10038161003816100381610038161003816

le

119860 sdot

10038161003816100381610038161003816119909 minus 119909101584010038161003816100381610038161003816

120576

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899+120576

(4)

whenever |119909 minus 1199091015840| le (12)max1le119896le119898

|119909 minus 119910119896| and also that for

each fixed 119896 with 1 le 119896 le 11989810038161003816100381610038161003816119870 (119909 119910

1 119910

119896 119910

119898) minus 119870 (119909 119910

1 119910

1015840

119896 119910

119898)

10038161003816100381610038161003816

le

119860 sdot

10038161003816100381610038161003816119910119896minus 1199101015840

119896

10038161003816100381610038161003816

120576

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899+120576

(5)

whenever |119910119896minus 1199101015840

119896| le (12)max

1le119894le119898|119909 minus 119910

119894| In recent

years many authors have been interested in studying theboundedness of these operators on function spaces see forexample [5ndash8] In 2009 the weighted strong and weak typeestimates ofmultilinear Calderon-Zygmund singular integraloperators were established in [9] by Lerner et al New more

2 Journal of Function Spaces and Applications

refined multilinear maximal function was defined and usedin [9] to characterize the class of multiple 119860

weights

Theorem A (see [9]) Let 119898 ge 2 and 119879 be an 119898-linearCalderon-Zygmund operator If 119901

1 119901

119898isin (1infin) and

119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898)

satisfies the 119860condition then there exists a constant 119862 gt 0

independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119894) (6)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem B (see [9]) Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)

min1199011 119901

119898 = 1 and 119901 isin (0infin) with 1119901 = sum

119898

119896=11119901119896

and = (1199081 119908

119898) satisfies the 119860

condition then there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119894) (7)

where ]= prod119898

119894=1119908119901119901119894

119894

Let119898 ge 2 and let 0 lt 120572 lt 119898119899 For given 119891 = (119891

1 119891

119898)

the119898-linear fractional integral operator is defined by

119868120572(

119891) (119909) = 119868120572(1198911 119891

119898) (119909)

= int

(R119899)119898

1198911(1199101) sdot sdot sdot 119891

119898(119910119898)

1003816100381610038161003816(119909 minus 119910

1 119909 minus 119910

119898)1003816100381610038161003816

119898119899minus1205721198891199101sdot sdot sdot 119889119910119898

(8)

For the boundedness properties of multilinear fractionalintegrals on various function spaces we refer the reader to[10ndash16] In 2009 Moen [17] considered the weighted norminequalities for multilinear fractional integral operators andconstructed the class of multiple 119860

119902weights (see also [18])

TheoremC (see [17 18]) Let119898 ge 2 0 lt 120572 lt 119898119899 and let 119868120572be

an119898-linear fractional integral operator If1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896and 1119902 = 1119901 minus 120572119899 and = (119908

1 119908

119898)

satisfies the 119860119902

condition then there exists a constant 119862 gt 0

independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119901119894

119894) (9)

where ]= prod119898

119894=1119908119894

TheoremD (see [17 18]) Let119898 ge 2 0 lt 120572 lt 119898119899 and let 119868120572be

an119898-linear fractional integral operator If1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896and 1119902 = 1119901 minus 120572119899

and = (1199081 119908

119898) satisfies the 119860

119902condition then there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119901119894

119894) (10)

where ]= prod119898

119894=1119908119894

On the other hand the classical Morrey spaces L119901120582

were originally introduced by Morrey in [19] to study thelocal behavior of solutions to second-order elliptic partialdifferential equations For the boundedness of the Hardy-Littlewood maximal operator the fractional integral opera-tor and the Calderon-Zygmund singular integral operator onthese spaces we refer the reader to [20ndash22] For the propertiesand applications of classical Morrey spaces one can see [23ndash25] and the references therein

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908)which could be viewed as an extensionof weighted Lebesgue spaces and studied the boundedness ofthe above classical operators in Harmonic Analysis on theseweighted spaces Recently in [27ndash34] we have establishedthe continuity properties of some other operators and theircommutators on the weighted Morrey spaces 119871119901120581(119908)

The main purpose of this paper is to establish theboundedness properties of multilinear Calderon-Zygmundoperators and multilinear fractional integrals on productsof weighted Morrey spaces with multiple weights We nowformulate our main results as follows

Theorem 1 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin (1infin) and 119901 isin (0infin)

with 1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin 119860

with

1199081 119908

119898isin 119860infin then for any 0 lt 120581 lt 1 there exists a

constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119879(

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (11)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem 2 Let 119898 ge 2 and 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin 119860

with 119908

1 119908

119898isin 119860infin then for any

0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (12)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem 3 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572

be an 119898-linear fractional integral operator If 1199011 119901

119898isin

(1infin) 1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899 and 1119902 =

sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin 119860

119902with

Journal of Function Spaces and Applications 3

1199081199021

1 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there exists a

constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (13)

where ]= prod119898

119894=1119908119894

Theorem 4 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

119860119902

with11990811990211 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (14)

where ]= prod119898

119894=1119908119894

2 Notations and Definitions

The classical 119860119901

weight theory was first introduced byMuckenhoupt in the study of weighted 119871

119901 boundedness ofHardy-Littlewood maximal functions in [35] A weight119908 is anonnegative locally integrable function onR119899 119861 = 119861(119909

0 119903119861)

denotes the ball with the center 1199090and radius 119903

119861 For 1 lt 119901 lt

infin a weight function 119908 is said to belong to 119860119901if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908 (119909) 119889119909)(

1

|119861|

int

119861

119908(119909)minus1(119901minus1)

119889119909)

119901minus1

le 119862 (15)

where |119861| denotes the Lebesgue measure of 119861 For the case119901 = 1 119908 isin 119860

1 if there is a constant 119862 gt 0 such that for every

ball 119861 sube R119899

1

|119861|

int

119861

119908 (119909) 119889119909 le 119862 sdot ess inf119909isin119861

119908 (119909) (16)

A weight function 119908 isin 119860infinif it satisfies the 119860

119901condition for

some 1 lt 119901 lt infin We also need another weight class 119860119901119902

introduced by Muckenhoupt andWheeden in [36] A weightfunction 119908 belongs to 119860

119901119902for 1 lt 119901 lt 119902 lt infin if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(

1

|119861|

int

119861

119908(119909)minus1199011015840

119889119909)

11199011015840

le 119862 (17)

When 119901 = 1 119908 is in the class 1198601119902

with 1 lt 119902 lt infin if there isa constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(ess sup119909isin119861

1

119908 (119909)

) le 119862 (18)

Now let us recall the definitions of multiple weightsFor 119898 exponents 119901

1 119901

119898 we will write for the vector

= (1199011 119901

119898) Let 119901

1 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Given = (119908

1 119908

119898) set

]= prod119898

119894=1119908119901119901119894

119894 We say that satisfies the 119860

condition if it

satisfies

sup119861

(

1

|119861|

int

119861

](119909) 119889119909)

1119901 119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)1minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(19)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)1minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Let 1199011 119901

119898isin [1infin) let 1119901 = sum

119898

119896=11119901119896 and let 119902 gt

0 Given = (1199081 119908

119898) set ]

= prod119898

119894=1119908119894 We say that

satisfies the 119860119902

condition if it satisfies

sup119861

(

1

|119861|

int

119861

](119909)119902

119889119909)

1119902

times

119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(20)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Given a ball 119861 and 120582 gt 0 120582119861 denotes the ball with thesame center as 119861whose radius is 120582 times that of 119861 For a givenweight function119908 and a measurable set 119864 we also denote theLebesgue measure of 119864 by |119864| and the weighted measure of 119864by 119908(119864) where 119908(119864) = int

119864

119908(119909)119889119909

Lemma 5 (see [37]) Let 119908 isin 119860119901with 1 le 119901 lt infin Then for

any ball 119861 there exists an absolute constant 119862 gt 0 such that

119908 (2119861) le 119862119908 (119861) (21)

Lemma 6 (see [38]) Let 119908 isin 119860infin Then for all balls 119861 sube R119899

the following reverse Jensen inequality holds

int

119861

119908 (119909) 119889119909 le 119862 |119861| sdot exp( 1

|119861|

int

119861

log 119908 (119909) 119889119909) (22)

Lemma 7 (see [37]) Let119908 isin 119860infin Then for all balls 119861 and all

measurable subsets 119864 of 119861 there exists 120575 gt 0 such that

119908 (119864)

119908 (119861)

le 119862(

|119864|

|119861|

)

120575

(23)

Lemma 8 (see [9]) Let 1199011 119901

119898isin [1infin) and let 1119901 =

sum119898

119896=11119901119896 Then = (119908

1 119908

119898) isin 119860if and only if

]isin 119860119898119901

1199081minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(24)

where ]= prod119898

119894=1119908119901119901119894

119894and the condition 1199081minus119901

1015840

119894

119894isin 1198601198981199011015840

119894

in thecase 119901

119894= 1 is understood as 1199081119898

119894isin 1198601

4 Journal of Function Spaces and Applications

Lemma 9 (see [17 18]) Let 0 lt 120572 lt 119898119899 and 1199011 119901

119898isin

[1infin) let 1119901 = sum119898

119896=11119901119896 and let 1119902 = 1119901 minus 120572119899 If =

(1199081 119908

119898) isin 119860119902

then

(])119902

isin 119860119898119902

119908minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(25)

where ]= prod119898

119894=1119908119894

Given a weight function 119908 on R119899 for 0 lt 119901 lt infin theweighted Lebesgue space 119871119901(119908) is defined as the set of allfunctions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119871119901(119908)

= (int

R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

lt infin (26)

We also denote by119882119871119901

(119908) the weighted weak space consist-ing of all measurable functions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119882119871119901(119908)

= sup120582gt0

120582 sdot 119908(119909 isin R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

lt infin

(27)

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908) for 1 le 119901 lt infin In order to deal withthe multilinear case 119898 ge 2 we will define 119871119901120581(119908) for all 0 lt119901 lt infin

Definition 10 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 bea weight function on R119899 Then the weighted Morrey space isdefined by

119871119901120581

(119908) = 119891 isin 119871119901

loc (119908) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

lt infin (28)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

= sup119861

(

1

119908(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

(29)

and the supremum is taken over all balls 119861 in R119899

Definition 11 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 be aweight function onR119899Then theweightedweakMorrey spaceis defined by

119882119871119901120581

(119908) = 119891 measurable 10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

lt infin (30)

where

10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

= sup119861

sup120582gt0

1

119908(119861)120581119901

120582 sdot 119908(119909 isin 119861 1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

(31)

Furthermore in order to deal with the fractional ordercase we need to consider the weighted Morrey spaces withtwo weights

Definition 12 Let 0 lt 119901 lt infin and 0 lt 120581 lt 1 Then for twoweights 119906 and V the weighted Morrey space is defined by

119871119901120581

(119906 V) = 119891 isin 119871119901

loc (119906) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

lt infin (32)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

= sup119861

(

1

V(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119906 (119909) 119889119909)

1119901

(33)

Throughout this paper we will use 119862 to denote a positiveconstant which is independent of the main parameters andnot necessarily the same at each occurrence Moreover wewill denote the conjugate exponent of119901 gt 1 by1199011015840 = 119901(119901minus1)

3 Proofs of Theorems 1 and 2

Before proving the main theorems of this section we need toestablish the following lemma

Lemma 13 Let 119898 ge 2 let 1199011 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Assume that 119908

1 119908

119898isin 119860infin

and ]= prod119898

119894=1119908119901119901119894

119894 then for any ball119861 there exists a constant

119862 gt 0 such that

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862int

119861

](119909) 119889119909 (34)

Proof Since 1199081 119908

119898isin 119860infin then by using Lemma 6 we

have

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862

119898

prod

119894=1

(|119861| sdot exp( 1

|119861|

int

119861

log119908119894(119909) 119889119909))

119901119901119894

= 119862

119898

prod

119894=1

(|119861|119901119901119894sdot exp( 1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909))

= 119862 sdot (|119861|)sum119898

119894=1119901119901119894sdot exp(

119898

sum

119894=1

1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909)

(35)

Note that sum119898119894=1

119901119901119894= 1 and ]

(119909) = prod

119898

119894=1119908119894(119909)119901119901119894 Then by

Jensen inequality we obtain

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862 sdot |119861| sdot exp( 1

|119861|

int

119861

log ](119909) 119889119909)

le 119862int

119861

](119909) 119889119909

(36)

We are done

Journal of Function Spaces and Applications 5

Proof of Theorem 1 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

letting 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898 and

1205942119861

denotes the characteristic function of 2119861 then we write

119898

prod

119894=1

119891119894(119910119894) =

119898

prod

119894=1

(1198910

119894(119910119894) + 119891infin

119894(119910119894))

= sum

1205721120572119898isin0infin

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

=

119898

prod

119894=1

1198910

119894(119910119894) +sum

1015840

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

(37)

where each term of sum1015840 contains at least one 120572119894= 0 Since 119879 is

an119898-linear operator then we have

1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911 119891

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

le

1

](119861)120581119901

(int

119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119901

](119909)119889119909)

1119901

+sum

1015840 1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

= 1198680

+sum

1015840

1198681205721120572119898

(38)

In view of Lemma 8 we have that ]

isin 119860119898119901 Applying

Theorem A and Lemmas 13 and 5 we get

1198680

le 119862 sdot

1

](119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

prod119898

119894=1119908119894(2119861)120581119901119894

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

](2119861)120581119901

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(39)

For the other terms let us first consider the case when 1205721=

sdot sdot sdot = 120572119898= infin By the size condition for any 119909 isin 119861 we obtain

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot+

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(40)

where we have used the notation 119864119898

= 119864 times sdot sdot sdot times 119864Furthermore by using Holderrsquos inequality the multiple 119860

condition and Lemma 13 we deduce that

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119901+sum119898

119894=1(1minus1119901

119894)

](2119895+1119861)1119901

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)119908119894(2119895+1

119861)

120581119901119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

prod119898

119894=1119908119894(2119895+1

119861)

120581119901119894

](2119895+1119861)1119901

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(41)

Since ]isin 119860119898119901

sub 119860infin then it follows directly fromLemma 7

that

](119861)

](2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575

(42)

Hence

119868infininfin

le ](119861)(1minus120581)119901 1003816

100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

|2119895+1119861|

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(43)

where the last inequality holds since 0 lt 120581 lt 1 and 120575 gt 0We now consider the case where exactly ℓ of the 120572

119894are infin

for some 1 le ℓ lt 119898 We only give the arguments for oneof these cases The rest are similar and can easily be obtainedfrom the arguments below by permuting the indices Usingthe size condition again we deduce that for any 119909 isin 119861

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899

times 1198891199101sdot sdot sdot 119889119910119898

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

2 Journal of Function Spaces and Applications

refined multilinear maximal function was defined and usedin [9] to characterize the class of multiple 119860

weights

Theorem A (see [9]) Let 119898 ge 2 and 119879 be an 119898-linearCalderon-Zygmund operator If 119901

1 119901

119898isin (1infin) and

119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898)

satisfies the 119860condition then there exists a constant 119862 gt 0

independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119894) (6)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem B (see [9]) Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)

min1199011 119901

119898 = 1 and 119901 isin (0infin) with 1119901 = sum

119898

119896=11119901119896

and = (1199081 119908

119898) satisfies the 119860

condition then there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119894) (7)

where ]= prod119898

119894=1119908119901119901119894

119894

Let119898 ge 2 and let 0 lt 120572 lt 119898119899 For given 119891 = (119891

1 119891

119898)

the119898-linear fractional integral operator is defined by

119868120572(

119891) (119909) = 119868120572(1198911 119891

119898) (119909)

= int

(R119899)119898

1198911(1199101) sdot sdot sdot 119891

119898(119910119898)

1003816100381610038161003816(119909 minus 119910

1 119909 minus 119910

119898)1003816100381610038161003816

119898119899minus1205721198891199101sdot sdot sdot 119889119910119898

(8)

For the boundedness properties of multilinear fractionalintegrals on various function spaces we refer the reader to[10ndash16] In 2009 Moen [17] considered the weighted norminequalities for multilinear fractional integral operators andconstructed the class of multiple 119860

119902weights (see also [18])

TheoremC (see [17 18]) Let119898 ge 2 0 lt 120572 lt 119898119899 and let 119868120572be

an119898-linear fractional integral operator If1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896and 1119902 = 1119901 minus 120572119899 and = (119908

1 119908

119898)

satisfies the 119860119902

condition then there exists a constant 119862 gt 0

independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119901119894

119894) (9)

where ]= prod119898

119894=1119908119894

TheoremD (see [17 18]) Let119898 ge 2 0 lt 120572 lt 119898119899 and let 119868120572be

an119898-linear fractional integral operator If1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896and 1119902 = 1119901 minus 120572119899

and = (1199081 119908

119898) satisfies the 119860

119902condition then there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894 (119908119901119894

119894) (10)

where ]= prod119898

119894=1119908119894

On the other hand the classical Morrey spaces L119901120582

were originally introduced by Morrey in [19] to study thelocal behavior of solutions to second-order elliptic partialdifferential equations For the boundedness of the Hardy-Littlewood maximal operator the fractional integral opera-tor and the Calderon-Zygmund singular integral operator onthese spaces we refer the reader to [20ndash22] For the propertiesand applications of classical Morrey spaces one can see [23ndash25] and the references therein

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908)which could be viewed as an extensionof weighted Lebesgue spaces and studied the boundedness ofthe above classical operators in Harmonic Analysis on theseweighted spaces Recently in [27ndash34] we have establishedthe continuity properties of some other operators and theircommutators on the weighted Morrey spaces 119871119901120581(119908)

The main purpose of this paper is to establish theboundedness properties of multilinear Calderon-Zygmundoperators and multilinear fractional integrals on productsof weighted Morrey spaces with multiple weights We nowformulate our main results as follows

Theorem 1 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin (1infin) and 119901 isin (0infin)

with 1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin 119860

with

1199081 119908

119898isin 119860infin then for any 0 lt 120581 lt 1 there exists a

constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119879(

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (11)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem 2 Let 119898 ge 2 and 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin 119860

with 119908

1 119908

119898isin 119860infin then for any

0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (12)

where ]= prod119898

119894=1119908119901119901119894

119894

Theorem 3 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572

be an 119898-linear fractional integral operator If 1199011 119901

119898isin

(1infin) 1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899 and 1119902 =

sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin 119860

119902with

Journal of Function Spaces and Applications 3

1199081199021

1 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there exists a

constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (13)

where ]= prod119898

119894=1119908119894

Theorem 4 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

119860119902

with11990811990211 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (14)

where ]= prod119898

119894=1119908119894

2 Notations and Definitions

The classical 119860119901

weight theory was first introduced byMuckenhoupt in the study of weighted 119871

119901 boundedness ofHardy-Littlewood maximal functions in [35] A weight119908 is anonnegative locally integrable function onR119899 119861 = 119861(119909

0 119903119861)

denotes the ball with the center 1199090and radius 119903

119861 For 1 lt 119901 lt

infin a weight function 119908 is said to belong to 119860119901if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908 (119909) 119889119909)(

1

|119861|

int

119861

119908(119909)minus1(119901minus1)

119889119909)

119901minus1

le 119862 (15)

where |119861| denotes the Lebesgue measure of 119861 For the case119901 = 1 119908 isin 119860

1 if there is a constant 119862 gt 0 such that for every

ball 119861 sube R119899

1

|119861|

int

119861

119908 (119909) 119889119909 le 119862 sdot ess inf119909isin119861

119908 (119909) (16)

A weight function 119908 isin 119860infinif it satisfies the 119860

119901condition for

some 1 lt 119901 lt infin We also need another weight class 119860119901119902

introduced by Muckenhoupt andWheeden in [36] A weightfunction 119908 belongs to 119860

119901119902for 1 lt 119901 lt 119902 lt infin if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(

1

|119861|

int

119861

119908(119909)minus1199011015840

119889119909)

11199011015840

le 119862 (17)

When 119901 = 1 119908 is in the class 1198601119902

with 1 lt 119902 lt infin if there isa constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(ess sup119909isin119861

1

119908 (119909)

) le 119862 (18)

Now let us recall the definitions of multiple weightsFor 119898 exponents 119901

1 119901

119898 we will write for the vector

= (1199011 119901

119898) Let 119901

1 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Given = (119908

1 119908

119898) set

]= prod119898

119894=1119908119901119901119894

119894 We say that satisfies the 119860

condition if it

satisfies

sup119861

(

1

|119861|

int

119861

](119909) 119889119909)

1119901 119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)1minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(19)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)1minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Let 1199011 119901

119898isin [1infin) let 1119901 = sum

119898

119896=11119901119896 and let 119902 gt

0 Given = (1199081 119908

119898) set ]

= prod119898

119894=1119908119894 We say that

satisfies the 119860119902

condition if it satisfies

sup119861

(

1

|119861|

int

119861

](119909)119902

119889119909)

1119902

times

119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(20)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Given a ball 119861 and 120582 gt 0 120582119861 denotes the ball with thesame center as 119861whose radius is 120582 times that of 119861 For a givenweight function119908 and a measurable set 119864 we also denote theLebesgue measure of 119864 by |119864| and the weighted measure of 119864by 119908(119864) where 119908(119864) = int

119864

119908(119909)119889119909

Lemma 5 (see [37]) Let 119908 isin 119860119901with 1 le 119901 lt infin Then for

any ball 119861 there exists an absolute constant 119862 gt 0 such that

119908 (2119861) le 119862119908 (119861) (21)

Lemma 6 (see [38]) Let 119908 isin 119860infin Then for all balls 119861 sube R119899

the following reverse Jensen inequality holds

int

119861

119908 (119909) 119889119909 le 119862 |119861| sdot exp( 1

|119861|

int

119861

log 119908 (119909) 119889119909) (22)

Lemma 7 (see [37]) Let119908 isin 119860infin Then for all balls 119861 and all

measurable subsets 119864 of 119861 there exists 120575 gt 0 such that

119908 (119864)

119908 (119861)

le 119862(

|119864|

|119861|

)

120575

(23)

Lemma 8 (see [9]) Let 1199011 119901

119898isin [1infin) and let 1119901 =

sum119898

119896=11119901119896 Then = (119908

1 119908

119898) isin 119860if and only if

]isin 119860119898119901

1199081minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(24)

where ]= prod119898

119894=1119908119901119901119894

119894and the condition 1199081minus119901

1015840

119894

119894isin 1198601198981199011015840

119894

in thecase 119901

119894= 1 is understood as 1199081119898

119894isin 1198601

4 Journal of Function Spaces and Applications

Lemma 9 (see [17 18]) Let 0 lt 120572 lt 119898119899 and 1199011 119901

119898isin

[1infin) let 1119901 = sum119898

119896=11119901119896 and let 1119902 = 1119901 minus 120572119899 If =

(1199081 119908

119898) isin 119860119902

then

(])119902

isin 119860119898119902

119908minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(25)

where ]= prod119898

119894=1119908119894

Given a weight function 119908 on R119899 for 0 lt 119901 lt infin theweighted Lebesgue space 119871119901(119908) is defined as the set of allfunctions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119871119901(119908)

= (int

R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

lt infin (26)

We also denote by119882119871119901

(119908) the weighted weak space consist-ing of all measurable functions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119882119871119901(119908)

= sup120582gt0

120582 sdot 119908(119909 isin R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

lt infin

(27)

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908) for 1 le 119901 lt infin In order to deal withthe multilinear case 119898 ge 2 we will define 119871119901120581(119908) for all 0 lt119901 lt infin

Definition 10 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 bea weight function on R119899 Then the weighted Morrey space isdefined by

119871119901120581

(119908) = 119891 isin 119871119901

loc (119908) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

lt infin (28)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

= sup119861

(

1

119908(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

(29)

and the supremum is taken over all balls 119861 in R119899

Definition 11 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 be aweight function onR119899Then theweightedweakMorrey spaceis defined by

119882119871119901120581

(119908) = 119891 measurable 10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

lt infin (30)

where

10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

= sup119861

sup120582gt0

1

119908(119861)120581119901

120582 sdot 119908(119909 isin 119861 1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

(31)

Furthermore in order to deal with the fractional ordercase we need to consider the weighted Morrey spaces withtwo weights

Definition 12 Let 0 lt 119901 lt infin and 0 lt 120581 lt 1 Then for twoweights 119906 and V the weighted Morrey space is defined by

119871119901120581

(119906 V) = 119891 isin 119871119901

loc (119906) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

lt infin (32)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

= sup119861

(

1

V(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119906 (119909) 119889119909)

1119901

(33)

Throughout this paper we will use 119862 to denote a positiveconstant which is independent of the main parameters andnot necessarily the same at each occurrence Moreover wewill denote the conjugate exponent of119901 gt 1 by1199011015840 = 119901(119901minus1)

3 Proofs of Theorems 1 and 2

Before proving the main theorems of this section we need toestablish the following lemma

Lemma 13 Let 119898 ge 2 let 1199011 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Assume that 119908

1 119908

119898isin 119860infin

and ]= prod119898

119894=1119908119901119901119894

119894 then for any ball119861 there exists a constant

119862 gt 0 such that

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862int

119861

](119909) 119889119909 (34)

Proof Since 1199081 119908

119898isin 119860infin then by using Lemma 6 we

have

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862

119898

prod

119894=1

(|119861| sdot exp( 1

|119861|

int

119861

log119908119894(119909) 119889119909))

119901119901119894

= 119862

119898

prod

119894=1

(|119861|119901119901119894sdot exp( 1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909))

= 119862 sdot (|119861|)sum119898

119894=1119901119901119894sdot exp(

119898

sum

119894=1

1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909)

(35)

Note that sum119898119894=1

119901119901119894= 1 and ]

(119909) = prod

119898

119894=1119908119894(119909)119901119901119894 Then by

Jensen inequality we obtain

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862 sdot |119861| sdot exp( 1

|119861|

int

119861

log ](119909) 119889119909)

le 119862int

119861

](119909) 119889119909

(36)

We are done

Journal of Function Spaces and Applications 5

Proof of Theorem 1 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

letting 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898 and

1205942119861

denotes the characteristic function of 2119861 then we write

119898

prod

119894=1

119891119894(119910119894) =

119898

prod

119894=1

(1198910

119894(119910119894) + 119891infin

119894(119910119894))

= sum

1205721120572119898isin0infin

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

=

119898

prod

119894=1

1198910

119894(119910119894) +sum

1015840

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

(37)

where each term of sum1015840 contains at least one 120572119894= 0 Since 119879 is

an119898-linear operator then we have

1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911 119891

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

le

1

](119861)120581119901

(int

119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119901

](119909)119889119909)

1119901

+sum

1015840 1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

= 1198680

+sum

1015840

1198681205721120572119898

(38)

In view of Lemma 8 we have that ]

isin 119860119898119901 Applying

Theorem A and Lemmas 13 and 5 we get

1198680

le 119862 sdot

1

](119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

prod119898

119894=1119908119894(2119861)120581119901119894

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

](2119861)120581119901

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(39)

For the other terms let us first consider the case when 1205721=

sdot sdot sdot = 120572119898= infin By the size condition for any 119909 isin 119861 we obtain

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot+

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(40)

where we have used the notation 119864119898

= 119864 times sdot sdot sdot times 119864Furthermore by using Holderrsquos inequality the multiple 119860

condition and Lemma 13 we deduce that

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119901+sum119898

119894=1(1minus1119901

119894)

](2119895+1119861)1119901

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)119908119894(2119895+1

119861)

120581119901119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

prod119898

119894=1119908119894(2119895+1

119861)

120581119901119894

](2119895+1119861)1119901

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(41)

Since ]isin 119860119898119901

sub 119860infin then it follows directly fromLemma 7

that

](119861)

](2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575

(42)

Hence

119868infininfin

le ](119861)(1minus120581)119901 1003816

100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

|2119895+1119861|

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(43)

where the last inequality holds since 0 lt 120581 lt 1 and 120575 gt 0We now consider the case where exactly ℓ of the 120572

119894are infin

for some 1 le ℓ lt 119898 We only give the arguments for oneof these cases The rest are similar and can easily be obtainedfrom the arguments below by permuting the indices Usingthe size condition again we deduce that for any 119909 isin 119861

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899

times 1198891199101sdot sdot sdot 119889119910119898

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Journal of Function Spaces and Applications 3

1199081199021

1 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there exists a

constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (13)

where ]= prod119898

119894=1119908119894

Theorem 4 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

119860119902

with11990811990211 119908

119902119898

119898isin 119860infin then for any 0 lt 120581 lt 119901119902 there

exists a constant 119862 gt 0 independent of 119891 = (119891

1 119891

119898) such

that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (14)

where ]= prod119898

119894=1119908119894

2 Notations and Definitions

The classical 119860119901

weight theory was first introduced byMuckenhoupt in the study of weighted 119871

119901 boundedness ofHardy-Littlewood maximal functions in [35] A weight119908 is anonnegative locally integrable function onR119899 119861 = 119861(119909

0 119903119861)

denotes the ball with the center 1199090and radius 119903

119861 For 1 lt 119901 lt

infin a weight function 119908 is said to belong to 119860119901if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908 (119909) 119889119909)(

1

|119861|

int

119861

119908(119909)minus1(119901minus1)

119889119909)

119901minus1

le 119862 (15)

where |119861| denotes the Lebesgue measure of 119861 For the case119901 = 1 119908 isin 119860

1 if there is a constant 119862 gt 0 such that for every

ball 119861 sube R119899

1

|119861|

int

119861

119908 (119909) 119889119909 le 119862 sdot ess inf119909isin119861

119908 (119909) (16)

A weight function 119908 isin 119860infinif it satisfies the 119860

119901condition for

some 1 lt 119901 lt infin We also need another weight class 119860119901119902

introduced by Muckenhoupt andWheeden in [36] A weightfunction 119908 belongs to 119860

119901119902for 1 lt 119901 lt 119902 lt infin if there is a

constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(

1

|119861|

int

119861

119908(119909)minus1199011015840

119889119909)

11199011015840

le 119862 (17)

When 119901 = 1 119908 is in the class 1198601119902

with 1 lt 119902 lt infin if there isa constant 119862 gt 0 such that for every ball 119861 sube R119899

(

1

|119861|

int

119861

119908(119909)119902

119889119909)

1119902

(ess sup119909isin119861

1

119908 (119909)

) le 119862 (18)

Now let us recall the definitions of multiple weightsFor 119898 exponents 119901

1 119901

119898 we will write for the vector

= (1199011 119901

119898) Let 119901

1 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Given = (119908

1 119908

119898) set

]= prod119898

119894=1119908119901119901119894

119894 We say that satisfies the 119860

condition if it

satisfies

sup119861

(

1

|119861|

int

119861

](119909) 119889119909)

1119901 119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)1minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(19)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)1minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Let 1199011 119901

119898isin [1infin) let 1119901 = sum

119898

119896=11119901119896 and let 119902 gt

0 Given = (1199081 119908

119898) set ]

= prod119898

119894=1119908119894 We say that

satisfies the 119860119902

condition if it satisfies

sup119861

(

1

|119861|

int

119861

](119909)119902

119889119909)

1119902

times

119898

prod

119894=1

(

1

|119861|

int

119861

119908119894(119909)minus1199011015840

119894119889119909)

11199011015840

119894

lt infin

(20)

When 119901119894= 1 ((1|119861|) int

119861

119908119894(119909)minus1199011015840

119894119889119909)11199011015840

119894 is understood as(inf119909isin119861

119908119894(119909))minus1

Given a ball 119861 and 120582 gt 0 120582119861 denotes the ball with thesame center as 119861whose radius is 120582 times that of 119861 For a givenweight function119908 and a measurable set 119864 we also denote theLebesgue measure of 119864 by |119864| and the weighted measure of 119864by 119908(119864) where 119908(119864) = int

119864

119908(119909)119889119909

Lemma 5 (see [37]) Let 119908 isin 119860119901with 1 le 119901 lt infin Then for

any ball 119861 there exists an absolute constant 119862 gt 0 such that

119908 (2119861) le 119862119908 (119861) (21)

Lemma 6 (see [38]) Let 119908 isin 119860infin Then for all balls 119861 sube R119899

the following reverse Jensen inequality holds

int

119861

119908 (119909) 119889119909 le 119862 |119861| sdot exp( 1

|119861|

int

119861

log 119908 (119909) 119889119909) (22)

Lemma 7 (see [37]) Let119908 isin 119860infin Then for all balls 119861 and all

measurable subsets 119864 of 119861 there exists 120575 gt 0 such that

119908 (119864)

119908 (119861)

le 119862(

|119864|

|119861|

)

120575

(23)

Lemma 8 (see [9]) Let 1199011 119901

119898isin [1infin) and let 1119901 =

sum119898

119896=11119901119896 Then = (119908

1 119908

119898) isin 119860if and only if

]isin 119860119898119901

1199081minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(24)

where ]= prod119898

119894=1119908119901119901119894

119894and the condition 1199081minus119901

1015840

119894

119894isin 1198601198981199011015840

119894

in thecase 119901

119894= 1 is understood as 1199081119898

119894isin 1198601

4 Journal of Function Spaces and Applications

Lemma 9 (see [17 18]) Let 0 lt 120572 lt 119898119899 and 1199011 119901

119898isin

[1infin) let 1119901 = sum119898

119896=11119901119896 and let 1119902 = 1119901 minus 120572119899 If =

(1199081 119908

119898) isin 119860119902

then

(])119902

isin 119860119898119902

119908minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(25)

where ]= prod119898

119894=1119908119894

Given a weight function 119908 on R119899 for 0 lt 119901 lt infin theweighted Lebesgue space 119871119901(119908) is defined as the set of allfunctions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119871119901(119908)

= (int

R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

lt infin (26)

We also denote by119882119871119901

(119908) the weighted weak space consist-ing of all measurable functions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119882119871119901(119908)

= sup120582gt0

120582 sdot 119908(119909 isin R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

lt infin

(27)

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908) for 1 le 119901 lt infin In order to deal withthe multilinear case 119898 ge 2 we will define 119871119901120581(119908) for all 0 lt119901 lt infin

Definition 10 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 bea weight function on R119899 Then the weighted Morrey space isdefined by

119871119901120581

(119908) = 119891 isin 119871119901

loc (119908) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

lt infin (28)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

= sup119861

(

1

119908(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

(29)

and the supremum is taken over all balls 119861 in R119899

Definition 11 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 be aweight function onR119899Then theweightedweakMorrey spaceis defined by

119882119871119901120581

(119908) = 119891 measurable 10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

lt infin (30)

where

10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

= sup119861

sup120582gt0

1

119908(119861)120581119901

120582 sdot 119908(119909 isin 119861 1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

(31)

Furthermore in order to deal with the fractional ordercase we need to consider the weighted Morrey spaces withtwo weights

Definition 12 Let 0 lt 119901 lt infin and 0 lt 120581 lt 1 Then for twoweights 119906 and V the weighted Morrey space is defined by

119871119901120581

(119906 V) = 119891 isin 119871119901

loc (119906) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

lt infin (32)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

= sup119861

(

1

V(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119906 (119909) 119889119909)

1119901

(33)

Throughout this paper we will use 119862 to denote a positiveconstant which is independent of the main parameters andnot necessarily the same at each occurrence Moreover wewill denote the conjugate exponent of119901 gt 1 by1199011015840 = 119901(119901minus1)

3 Proofs of Theorems 1 and 2

Before proving the main theorems of this section we need toestablish the following lemma

Lemma 13 Let 119898 ge 2 let 1199011 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Assume that 119908

1 119908

119898isin 119860infin

and ]= prod119898

119894=1119908119901119901119894

119894 then for any ball119861 there exists a constant

119862 gt 0 such that

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862int

119861

](119909) 119889119909 (34)

Proof Since 1199081 119908

119898isin 119860infin then by using Lemma 6 we

have

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862

119898

prod

119894=1

(|119861| sdot exp( 1

|119861|

int

119861

log119908119894(119909) 119889119909))

119901119901119894

= 119862

119898

prod

119894=1

(|119861|119901119901119894sdot exp( 1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909))

= 119862 sdot (|119861|)sum119898

119894=1119901119901119894sdot exp(

119898

sum

119894=1

1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909)

(35)

Note that sum119898119894=1

119901119901119894= 1 and ]

(119909) = prod

119898

119894=1119908119894(119909)119901119901119894 Then by

Jensen inequality we obtain

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862 sdot |119861| sdot exp( 1

|119861|

int

119861

log ](119909) 119889119909)

le 119862int

119861

](119909) 119889119909

(36)

We are done

Journal of Function Spaces and Applications 5

Proof of Theorem 1 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

letting 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898 and

1205942119861

denotes the characteristic function of 2119861 then we write

119898

prod

119894=1

119891119894(119910119894) =

119898

prod

119894=1

(1198910

119894(119910119894) + 119891infin

119894(119910119894))

= sum

1205721120572119898isin0infin

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

=

119898

prod

119894=1

1198910

119894(119910119894) +sum

1015840

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

(37)

where each term of sum1015840 contains at least one 120572119894= 0 Since 119879 is

an119898-linear operator then we have

1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911 119891

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

le

1

](119861)120581119901

(int

119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119901

](119909)119889119909)

1119901

+sum

1015840 1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

= 1198680

+sum

1015840

1198681205721120572119898

(38)

In view of Lemma 8 we have that ]

isin 119860119898119901 Applying

Theorem A and Lemmas 13 and 5 we get

1198680

le 119862 sdot

1

](119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

prod119898

119894=1119908119894(2119861)120581119901119894

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

](2119861)120581119901

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(39)

For the other terms let us first consider the case when 1205721=

sdot sdot sdot = 120572119898= infin By the size condition for any 119909 isin 119861 we obtain

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot+

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(40)

where we have used the notation 119864119898

= 119864 times sdot sdot sdot times 119864Furthermore by using Holderrsquos inequality the multiple 119860

condition and Lemma 13 we deduce that

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119901+sum119898

119894=1(1minus1119901

119894)

](2119895+1119861)1119901

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)119908119894(2119895+1

119861)

120581119901119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

prod119898

119894=1119908119894(2119895+1

119861)

120581119901119894

](2119895+1119861)1119901

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(41)

Since ]isin 119860119898119901

sub 119860infin then it follows directly fromLemma 7

that

](119861)

](2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575

(42)

Hence

119868infininfin

le ](119861)(1minus120581)119901 1003816

100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

|2119895+1119861|

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(43)

where the last inequality holds since 0 lt 120581 lt 1 and 120575 gt 0We now consider the case where exactly ℓ of the 120572

119894are infin

for some 1 le ℓ lt 119898 We only give the arguments for oneof these cases The rest are similar and can easily be obtainedfrom the arguments below by permuting the indices Usingthe size condition again we deduce that for any 119909 isin 119861

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899

times 1198891199101sdot sdot sdot 119889119910119898

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

4 Journal of Function Spaces and Applications

Lemma 9 (see [17 18]) Let 0 lt 120572 lt 119898119899 and 1199011 119901

119898isin

[1infin) let 1119901 = sum119898

119896=11119901119896 and let 1119902 = 1119901 minus 120572119899 If =

(1199081 119908

119898) isin 119860119902

then

(])119902

isin 119860119898119902

119908minus1199011015840

119894

119894isin 1198601198981199011015840

119894

119894 = 1 119898

(25)

where ]= prod119898

119894=1119908119894

Given a weight function 119908 on R119899 for 0 lt 119901 lt infin theweighted Lebesgue space 119871119901(119908) is defined as the set of allfunctions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119871119901(119908)

= (int

R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

lt infin (26)

We also denote by119882119871119901

(119908) the weighted weak space consist-ing of all measurable functions 119891 such that

10038171003817100381710038171198911003817100381710038171003817119882119871119901(119908)

= sup120582gt0

120582 sdot 119908(119909 isin R119899

1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

lt infin

(27)

In 2009 Komori and Shirai [26] first defined the weightedMorrey spaces 119871119901120581(119908) for 1 le 119901 lt infin In order to deal withthe multilinear case 119898 ge 2 we will define 119871119901120581(119908) for all 0 lt119901 lt infin

Definition 10 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 bea weight function on R119899 Then the weighted Morrey space isdefined by

119871119901120581

(119908) = 119891 isin 119871119901

loc (119908) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

lt infin (28)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119908)

= sup119861

(

1

119908(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119908 (119909) 119889119909)

1119901

(29)

and the supremum is taken over all balls 119861 in R119899

Definition 11 Let 0 lt 119901 lt infin let 0 lt 120581 lt 1 and let 119908 be aweight function onR119899Then theweightedweakMorrey spaceis defined by

119882119871119901120581

(119908) = 119891 measurable 10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

lt infin (30)

where

10038171003817100381710038171198911003817100381710038171003817119882119871119901120581(119908)

= sup119861

sup120582gt0

1

119908(119861)120581119901

120582 sdot 119908(119909 isin 119861 1003816100381610038161003816119891 (119909)

1003816100381610038161003816gt 120582)1119901

(31)

Furthermore in order to deal with the fractional ordercase we need to consider the weighted Morrey spaces withtwo weights

Definition 12 Let 0 lt 119901 lt infin and 0 lt 120581 lt 1 Then for twoweights 119906 and V the weighted Morrey space is defined by

119871119901120581

(119906 V) = 119891 isin 119871119901

loc (119906) 10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

lt infin (32)

where

10038171003817100381710038171198911003817100381710038171003817119871119901120581(119906V)

= sup119861

(

1

V(119861)120581int

119861

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119906 (119909) 119889119909)

1119901

(33)

Throughout this paper we will use 119862 to denote a positiveconstant which is independent of the main parameters andnot necessarily the same at each occurrence Moreover wewill denote the conjugate exponent of119901 gt 1 by1199011015840 = 119901(119901minus1)

3 Proofs of Theorems 1 and 2

Before proving the main theorems of this section we need toestablish the following lemma

Lemma 13 Let 119898 ge 2 let 1199011 119901

119898isin [1infin) and let 119901 isin

(0infin) with 1119901 = sum119898

119896=11119901119896 Assume that 119908

1 119908

119898isin 119860infin

and ]= prod119898

119894=1119908119901119901119894

119894 then for any ball119861 there exists a constant

119862 gt 0 such that

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862int

119861

](119909) 119889119909 (34)

Proof Since 1199081 119908

119898isin 119860infin then by using Lemma 6 we

have

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862

119898

prod

119894=1

(|119861| sdot exp( 1

|119861|

int

119861

log119908119894(119909) 119889119909))

119901119901119894

= 119862

119898

prod

119894=1

(|119861|119901119901119894sdot exp( 1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909))

= 119862 sdot (|119861|)sum119898

119894=1119901119901119894sdot exp(

119898

sum

119894=1

1

|119861|

int

119861

log119908119894(119909)119901119901119894119889119909)

(35)

Note that sum119898119894=1

119901119901119894= 1 and ]

(119909) = prod

119898

119894=1119908119894(119909)119901119901119894 Then by

Jensen inequality we obtain

119898

prod

119894=1

(int

119861

119908119894(119909) 119889119909)

119901119901119894

le 119862 sdot |119861| sdot exp( 1

|119861|

int

119861

log ](119909) 119889119909)

le 119862int

119861

](119909) 119889119909

(36)

We are done

Journal of Function Spaces and Applications 5

Proof of Theorem 1 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

letting 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898 and

1205942119861

denotes the characteristic function of 2119861 then we write

119898

prod

119894=1

119891119894(119910119894) =

119898

prod

119894=1

(1198910

119894(119910119894) + 119891infin

119894(119910119894))

= sum

1205721120572119898isin0infin

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

=

119898

prod

119894=1

1198910

119894(119910119894) +sum

1015840

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

(37)

where each term of sum1015840 contains at least one 120572119894= 0 Since 119879 is

an119898-linear operator then we have

1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911 119891

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

le

1

](119861)120581119901

(int

119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119901

](119909)119889119909)

1119901

+sum

1015840 1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

= 1198680

+sum

1015840

1198681205721120572119898

(38)

In view of Lemma 8 we have that ]

isin 119860119898119901 Applying

Theorem A and Lemmas 13 and 5 we get

1198680

le 119862 sdot

1

](119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

prod119898

119894=1119908119894(2119861)120581119901119894

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

](2119861)120581119901

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(39)

For the other terms let us first consider the case when 1205721=

sdot sdot sdot = 120572119898= infin By the size condition for any 119909 isin 119861 we obtain

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot+

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(40)

where we have used the notation 119864119898

= 119864 times sdot sdot sdot times 119864Furthermore by using Holderrsquos inequality the multiple 119860

condition and Lemma 13 we deduce that

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119901+sum119898

119894=1(1minus1119901

119894)

](2119895+1119861)1119901

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)119908119894(2119895+1

119861)

120581119901119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

prod119898

119894=1119908119894(2119895+1

119861)

120581119901119894

](2119895+1119861)1119901

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(41)

Since ]isin 119860119898119901

sub 119860infin then it follows directly fromLemma 7

that

](119861)

](2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575

(42)

Hence

119868infininfin

le ](119861)(1minus120581)119901 1003816

100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

|2119895+1119861|

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(43)

where the last inequality holds since 0 lt 120581 lt 1 and 120575 gt 0We now consider the case where exactly ℓ of the 120572

119894are infin

for some 1 le ℓ lt 119898 We only give the arguments for oneof these cases The rest are similar and can easily be obtainedfrom the arguments below by permuting the indices Usingthe size condition again we deduce that for any 119909 isin 119861

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899

times 1198891199101sdot sdot sdot 119889119910119898

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Journal of Function Spaces and Applications 5

Proof of Theorem 1 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

letting 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898 and

1205942119861

denotes the characteristic function of 2119861 then we write

119898

prod

119894=1

119891119894(119910119894) =

119898

prod

119894=1

(1198910

119894(119910119894) + 119891infin

119894(119910119894))

= sum

1205721120572119898isin0infin

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

=

119898

prod

119894=1

1198910

119894(119910119894) +sum

1015840

1198911205721

1(1199101) sdot sdot sdot 119891

120572119898

119898(119910119898)

(37)

where each term of sum1015840 contains at least one 120572119894= 0 Since 119879 is

an119898-linear operator then we have

1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911 119891

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

le

1

](119861)120581119901

(int

119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119901

](119909)119889119909)

1119901

+sum

1015840 1

](119861)120581119901

(int

119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119901

](119909) 119889119909)

1119901

= 1198680

+sum

1015840

1198681205721120572119898

(38)

In view of Lemma 8 we have that ]

isin 119860119898119901 Applying

Theorem A and Lemmas 13 and 5 we get

1198680

le 119862 sdot

1

](119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

prod119898

119894=1119908119894(2119861)120581119901119894

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

](2119861)120581119901

](119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(39)

For the other terms let us first consider the case when 1205721=

sdot sdot sdot = 120572119898= infin By the size condition for any 119909 isin 119861 we obtain

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot+

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)1198981198991198891199101sdot sdot sdot119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(40)

where we have used the notation 119864119898

= 119864 times sdot sdot sdot times 119864Furthermore by using Holderrsquos inequality the multiple 119860

condition and Lemma 13 we deduce that

1003816100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119901+sum119898

119894=1(1minus1119901

119894)

](2119895+1119861)1119901

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)119908119894(2119895+1

119861)

120581119901119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

prod119898

119894=1119908119894(2119895+1

119861)

120581119901119894

](2119895+1119861)1119901

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(41)

Since ]isin 119860119898119901

sub 119860infin then it follows directly fromLemma 7

that

](119861)

](2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575

(42)

Hence

119868infininfin

le ](119861)(1minus120581)119901 1003816

100381610038161003816119879 (119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

|2119895+1119861|

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(43)

where the last inequality holds since 0 lt 120581 lt 1 and 120575 gt 0We now consider the case where exactly ℓ of the 120572

119894are infin

for some 1 le ℓ lt 119898 We only give the arguments for oneof these cases The rest are similar and can easily be obtainedfrom the arguments below by permuting the indices Usingthe size condition again we deduce that for any 119909 isin 119861

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899

times 1198891199101sdot sdot sdot 119889119910119898

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

6 Journal of Function Spaces and Applications

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(44)

and we arrive at the expression considered in the previouscase So for any 119909 isin 119861 we also have

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(45)

Therefore by the inequality (42) and the above pointwiseinequality we have

1198681205721120572119898

le ](119861)(1minus120581)119901

10038161003816100381610038161003816119879 (119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(46)

Combining the above estimates and then taking the supre-mum over all balls 119861 sube R119899 we complete the proof ofTheorem 1

Proof of Theorem 2 For any ball 119861 = 119861(1199090 119903119861) sube R119899 and

decomposing 119891119894= 1198910

119894+ 119891infin

119894 where 1198910

119894= 1198911198941205942119861 119894 = 1 119898

then for any given 120582 gt 0 we can write

](119909 isin 119861

1003816100381610038161003816119879 (1198911 119891

119898)1003816100381610038161003816gt 120582)1119901

le ](119909 isin 119861

10038161003816100381610038161003816119879 (1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119901

+sum

1015840

](119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119901

= 1198680

lowast+sum

1015840

1198681205721120572119898

lowast

(47)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 8

again we know that ]isin 119860119898119901

with 1 le 119898119901 lt infin ApplyingTheorem B and Lemmas 13 and 5 we have

1198680

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909) 119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119894(2119861)120581119901119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(48)

In the proof of Theorem 1 we have already showed thefollowing pointwise estimate (see (40) and (44)) Consider

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(49)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1

Using Holderrsquos inequality the multiple 119860condition and

Lemma 13 we obtain

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894

times ( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894) 119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)1minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

infin

sum

119895=1

](2119895+1

119861)

(120581minus1)119901

(50)

Observe that ]isin 119860119898119901

with 1 le 119898119901 lt infin Thus it followsfrom the inequality (42) that for any 119909 isin 119861

1003816100381610038161003816119879 (1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

](119861)(1minus120581)119901

](2119895+1119861)(1minus120581)119901

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Journal of Function Spaces and Applications 7

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

120575(1minus120581)119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(51)

If 119909 isin 119861 |119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198681205721120572119898

lowastle

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)

(52)

holds trivially Now if instead we suppose that 119909 isin 119861

|119879(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (51) we have

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894)sdot

1

](119861)(1minus120581)119901

(53)

which is equivalent to

](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (54)

Therefore

1198681205721120572119898

lowastle ](119861)1119901

le

119862 sdot ](119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (55)

Summing up all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we completethe proof of Theorem 2

By usingHolderrsquos inequality it is easy to check that if each119908119894is in 119860

119901119894

then

119898

prod

119894=1

119860119901119894

sub 119860 (56)

and this inclusion is strict (see [9]) Thus as direct conse-quences of Theorems 1 and 2 we immediately obtain thefollowing

Corollary 14 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If119901

1 119901

119898isin (1infin) and119901 isin (0infin)with

1119901 = sum119898

119896=11119901119896and = (119908

1 119908

119898) isin prod

119898

119894=1119860119901119894

then forany 0 lt 120581 lt 1 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (57)

where ]= prod119898

119894=1119908119901119901119894

119894

Corollary 15 Let 119898 ge 2 and let 119879 be an 119898-linear Calderon-Zygmund operator If 119901

1 119901

119898isin [1infin)min119901

1 119901

119898 =

1 and 119901 isin (0infin) with 1119901 = sum119898

119896=11119901119896 and =

(1199081 119908

119898) isin prod

119898

119894=1119860119901119894

then for any 0 lt 120581 lt 1 there existsa constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119879 (

119891)

10038171003817100381710038171003817119882119871119901120581(])

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581(119908

119894) (58)

where ]= prod119898

119894=1119908119901119901119894

119894

4 Proofs of Theorems 3 and 4

Following along the same lines as those of Lemma 13 we canalso show the following result which plays an important rolein our proofs of Theorems 3 and 4

Lemma 16 Let 119898 ge 2 1199021 119902

119898isin [1infin) and 119902 isin (0infin)

with 1119902 = sum119898

119896=11119902119896 Assume that 1199081199021

1 119908

119902119898

119898isin 119860infin

and]= prod119898

119894=1119908119894 then for any ball 119861 there exists a constant119862 gt 0

such that119898

prod

119894=1

(int

119861

119908119902119894

119894(119909) 119889119909)

119902119902119894

le 119862int

119861

](119909)119902

119889119909 (59)

Proof of Theorem 3 Arguing as in the proof ofTheorem 1 fixa ball119861 = 119861(119909

0 119903119861) sube R119899 and decompose119891

119894= 1198910

119894+119891infin

119894 where

1198910

119894= 1198911198941205942119861 119894 = 1 119898 Since 119868

120572is an119898-linear operator then

we have1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911 119891

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

le

1

]119902

(119861)120581119901

(int

119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898) (119909)

10038161003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

+sum

1015840 1

]119902

(119861)120581119901

(int

119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

119902

](119909)119902

119889119909)

1119902

= 1198690

+sum

1015840

1198691205721120572119898

(60)

where each term of sum1015840 contains at least one 120572119894= 0 In view of

Lemma 9 we can see that (])119902

isin 119860119898119902 UsingTheoremC and

Lemmas 16 and 5 we get

1198690

le 119862 sdot

1

]119902

(119861)120581119901

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

]119902

(119861)120581119901

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

(prod119898

119894=1119908119902119894

119894(2119861)119902119902119894)

120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

]119902

(2119861)120581119901

]119902

(119861)120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(61)

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

8 Journal of Function Spaces and Applications

For the other terms let us first deal with the case when 1205721=

sdot sdot sdot = 120572119898= infin By the definition of 119868

120572 for any 119909 isin 119861 we

obtain

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

= int

(R119899)119898(2119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

1198891199101sdot sdot sdot119889119910119898

=

infin

sum

119895=1

int

(2119895+1119861)119898(2119895119861)119898

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

infin

sum

119895=1

119898

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

1003816100381610038161003816119909 minus 119910119894

1003816100381610038161003816

119899minus120572119898

119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(62)

Moreover by using Holderrsquos inequality the multiple 119860119902

condition and Lemma 16 we deduce that

1003816100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times (int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

sdot

100381610038161003816100381610038162119895+1

119861

10038161003816100381610038161003816

1119902+sum119898

119894=1(1minus1119901

119894)

]119902

(2119895+1119861)1119902

times

119898

prod

119894=1

(1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)119908119902119894

119894(2119895+1

119861)

120581119902119901119902119894

)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

[

[

[

[

(prod119898

119894=1119908119902119894

119894(2119895+1

119861)

119902119902119894

)

120581119901

]119902

(2119895+1119861)1119902

]

]

]

]

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(63)

Since (])119902

isin 119860119898119902

sub 119860infin then it follows immediately from

Lemma 7 that

]119902

(119861)

]119902

(2119895+1119861)

le 119862(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840

(64)

Hence

119869infininfin

le ]119902

(119861)1119902minus120581119901 1003816

100381610038161003816119868120572(119891infin

1 119891

infin

119898) (119909)

1003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(65)

where in the last inequality we have used the fact that 0 lt 120581 lt119901119902 and 1205751015840 gt 0 We now consider the case where exactly ℓ ofthe 120572119894areinfin for some 1 le ℓ lt 119898 We only give the arguments

for one of these cases The rest are similar and can easily beobtained from the arguments belowby permuting the indicesUsing the definition of 119868

120572again we can see that for any 119909 isin 119861

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

= int

(R119899)ℓ(2119861)ℓ

int

(2119861)119898minusℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

119898(119910119898)1003816100381610038161003816

(1003816100381610038161003816119909 minus 1199101

1003816100381610038161003816+ sdot sdot sdot +

1003816100381610038161003816119909 minus 119910119898

1003816100381610038161003816)119898119899minus120572

times 1198891199101sdot sdot sdot 119889119910119898

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

times int

(2119895+1119861)ℓ(2119895119861)ℓ

10038161003816100381610038161198911(1199101) sdot sdot sdot 119891

ℓ(119910ℓ)10038161003816100381610038161198891199101sdot sdot sdot 119889119910ℓ

le 119862

119898

prod

119894=ℓ+1

int

2119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

infin

sum

119895=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

119898minus120572119899

prod

119894=1

int

2119895+11198612119895119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(66)

and we arrive at the expression considered in the previouscase Thus for any 119909 isin 119861 we also have

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(67)

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Journal of Function Spaces and Applications 9

Therefore by the inequality (64) and the above pointwiseinequality we obtain

1198691205721120572119898

le ]119902

(119861)1119902minus120581119901

10038161003816100381610038161003816119868120572(119891infin

1 119891

infin

ℓ 1198910

ℓ+1 119891

0

119898) (119909)

10038161003816100381610038161003816

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(68)

Summarizing the estimates derived above and then takingthe supremum over all balls 119861 sube R119899 we finish the proof ofTheorem 3

Proof of Theorem 4 As before fix a ball 119861 = 119861(1199090 119903119861) sube R119899

and split119891119894into119891

119894= 1198910

119894+119891infin

119894 where1198910

119894= 1198911198941205942119861 119894 = 1 119898

Then for each fixed 120582 gt 0 we can write

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911 119891

119898)1003816100381610038161003816gt 120582)1119902

le ]119902

(119909 isin 119861

10038161003816100381610038161003816119868120572(1198910

1 119891

0

119898)

10038161003816100381610038161003816gt

120582

2119898)

1119902

+sum

1015840

]119902

(119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898)1003816100381610038161003816gt

120582

2119898)

1119902

= 1198690

lowast+sum

1015840

1198691205721120572119898

lowast

(69)

where each termofsum1015840contains at least one120572119894= 0 By Lemma 9

again we know that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin UsingTheorem D and Lemmas 16 and 5 we have

1198690

lowastle

119862

120582

119898

prod

119894=1

(int

2119861

1003816100381610038161003816119891119894(119909)

1003816100381610038161003816

119901119894

119908119894(119909)119901119894119889119909)

1119901119894

le

119862 sdot prod119898

119894=1119908119902119894

119894(2119861)120581119902119901119902

119894

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(2119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(70)

In the proof of Theorem 3 we have already proved thefollowing pointwise estimate (see (62) and (66)) Consider

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

119898

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

(71)

Without loss of generality we may assume that 1199011= sdot sdot sdot =

119901ℓ

= min1199011 119901

119898 = 1 and 119901

ℓ+1 119901

119898gt 1 By

using Holderrsquos inequality the multiple 119860119902

condition andLemma 16 we obtain1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119889119910119894

le 119862

infin

sum

119895=1

prod

119894=1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

times int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816119908119894(119910119894) 119889119910119894( inf119910119894isin2119895+1119861

119908119894(119910119894))

minus1

times

119898

prod

119894=ℓ+1

1

10038161003816100381610038162119895+11198611003816100381610038161003816

1minus120572119898119899

(int

2119895+1119861

1003816100381610038161003816119891119894(119910119894)1003816100381610038161003816

119901119894

119908119894(119910119894)119901119894

119889119910119894)

1119901119894

times (int

2119895+1119861

119908119894(119910119894)minus1199011015840

119894119889119910119894)

11199011015840

119894

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

infin

sum

119895=1

]119902

(2119895+1

119861)

120581119901minus1119902

(72)

Note that (])119902

isin 119860119898119902

with 1 lt 119898119902 lt infin Hence it followsfrom the inequality (64) that for any 119909 isin 119861

1003816100381610038161003816119868120572(1198911205721

1 119891

120572119898

119898) (119909)

1003816100381610038161003816

= 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

]119902

(119861)1119902minus120581119901

]119902

(2119895+1119861)1119902minus120581119901

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

sdot

1

]119902

(119861)1119902minus120581119901

infin

sum

119895=1

(

|119861|

10038161003816100381610038162119895+11198611003816100381610038161003816

)

1205751015840(1119902minus120581119901)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(73)

If 119909 isin 119861 |119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

= Oslash then theinequality

1198691205721120572119898

lowastle

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(74)

holds trivially Now if instead we assume that 119909 isin 119861

|119868120572(1198911205721

1 119891

120572119898

119898)(119909)| gt 1205822

119898

=Oslash then by the pointwiseinequality (73) we get

120582 lt 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)sdot

1

]119902

(119861)1119902minus120581119901

(75)

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

10 Journal of Function Spaces and Applications

which in turn gives that

]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (76)

Therefore

1198691205721120572119898

lowastle ]119902

(119861)1119902

le

119862 sdot ]119902

(119861)120581119901

120582

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894)

(77)

Collecting all the above estimates and then taking thesupremum over all balls 119861 sube R119899 and all 120582 gt 0 we concludethe proof of Theorem 4

By using Holderrsquos inequality it is easy to verify that if 1 le119901119894lt 119902119894 1119902 = sum119898

119896=11119902119896 and each119908

119894is in119860

119901119894119902119894

thenwe have

119898

prod

119894=1

119860119901119894119902119894

sub 119860119902 (78)

and this inclusion is strict (see [17]) Also recall that119908 isin 119860119901119902

if and only if 119908119902 isin 1198601+119902119901

1015840 sub 119860infin

(see [36]) Thus asstraightforward consequences ofTheorems 3 and 4 we finallyobtain the following

Corollary 17 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin (1infin)

1119901 = sum119898

119896=11119901119896 1119902119896= 1119901

119896minus120572119898119899 and 1119902 = sum119898

119896=11119902119896=

1119901 minus 120572119899 and = (1199081 119908

119898) isin prod

119898

119894=1119860119901119894119902119894

then for any0 lt 120581 lt 119901119902 there exists a constant 119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (79)

where ]= prod119898

119894=1119908119894

Corollary 18 Let 119898 ge 2 let 0 lt 120572 lt 119898119899 and let 119868120572be an

119898-linear fractional integral operator If 1199011 119901

119898isin [1infin)

min1199011 119901

119898 = 1 1119901 = sum

119898

119896=11119901119896 1119902119896= 1119901

119896minus 120572119898119899

and 1119902 = sum119898

119896=11119902119896= 1119901 minus 120572119899 and = (119908

1 119908

119898) isin

prod119898

119894=1119860119901119894119902119894

then for any 0 lt 120581 lt 119901119902 there exists a constant119862 gt 0 independent of

119891 = (1198911 119891

119898) such that

10038171003817100381710038171003817119868120572(

119891)

10038171003817100381710038171003817119882119871119902120581119902119901((])119902)

le 119862

119898

prod

119894=1

1003817100381710038171003817119891119894

1003817100381710038171003817119871119901119894120581119901119894119902119901119902119894 (119908

119901119894

119894119908119902119894

119894) (80)

where ]= prod119898

119894=1119908119894

References

[1] R R Coifman and Y Meyer ldquoOn commutators of singularintegrals and bilinear singular integralsrdquo Transactions of theAmerican Mathematical Society vol 212 pp 315ndash331 1975

[2] L Grafakos and R H Torres ldquoMultilinear Calderon-Zygmundtheoryrdquo Advances in Mathematics vol 165 no 1 pp 124ndash1642002

[3] L Grafakos and R H Torres ldquoMaximal operator and weightednorm inequalities for multilinear singular integralsrdquo IndianaUniversity Mathematics Journal vol 51 no 5 pp 1261ndash12762002

[4] L Grafakos and R H Torres ldquoOnmultilinear singular integralsof Calderon-Zygmund typerdquo Publicacions Matematiques pp57ndash91 2002

[5] L Grafakos and N Kalton ldquoMultilinear Calderon-Zygmundoperators on Hardy spacesrdquo Collectanea Mathematica vol 52no 2 pp 169ndash179 2001

[6] G E Hu and Y Meng ldquoMultilinear Calderon-Zygmund oper-ator on products of Hardy spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 2 pp 281ndash294 2012

[7] W J Li Q Y Xue and K Yabuta ldquoMaximal operator formultilinear Calderon-Zygmund singular integral operators onweighted Hardy spacesrdquo Journal of Mathematical Analysis andApplications vol 373 no 2 pp 384ndash392 2011

[8] W J Li Q Y Xue and K Yabuta ldquoMultilinear Calderon-Zygmund operators on weighted Hardy spacesrdquo Studia Math-ematica vol 199 no 1 pp 1ndash16 2010

[9] A K Lerner S Ombrosi C Perez R H Torres and R Trujillo-Gonzalez ldquoNew maximal functions and multiple weights forthe multilinear Calderon-Zygmund theoryrdquo Advances in Math-ematics vol 220 no 4 pp 1222ndash1264 2009

[10] L Grafakos ldquoOn multilinear fractional integralsrdquo Studia Math-ematica vol 102 no 1 pp 49ndash56 1992

[11] T Iida E Sato Y Sawano and H Tanaka ldquoWeighted norminequalities for multilinear fractional operators on Morreyspacesrdquo Studia Mathematica vol 205 no 2 pp 139ndash170 2011

[12] T Iida E Sato Y Sawano and H Tanaka ldquoMultilinear frac-tional integrals on Morrey spacesrdquo Acta Mathematica Sinica(English Series) vol 28 no 7 pp 1375ndash1384 2012

[13] T Iida E Sato Y Sawano and H Tanaka ldquoSharp boundsfor multilinear fractional integral operators on Morrey typespacesrdquo Positivity vol 16 no 2 pp 339ndash358 2012

[14] C E Kenig and E M Stein ldquoMultilinear estimates and frac-tional integrationrdquo Mathematical Research Letters vol 6 no 1pp 1ndash15 1999

[15] G Pradolini ldquoWeighted inequalities and pointwise estimatesfor the multilinear fractional integral and maximal operatorsrdquoJournal of Mathematical Analysis and Applications vol 367 no2 pp 640ndash656 2010

[16] L Tang ldquoEndpoint estimates for multilinear fractional inte-gralsrdquo Journal of the Australian Mathematical Society vol 84no 3 pp 419ndash429 2008

[17] K Moen ldquoWeighted inequalities for multilinear fractionalintegral operatorsrdquo Collectanea Mathematica vol 60 no 2 pp213ndash238 2009

[18] X Chen and Q Y Xue ldquoWeighted estimates for a class ofmultilinear fractional type operatorsrdquo Journal of MathematicalAnalysis and Applications vol 362 no 2 pp 355ndash373 2010

[19] C B Morrey ldquoOn the solutions of quasi-linear elliptic partialdifferential equationsrdquo Transactions of the AmericanMathemat-ical Society vol 43 no 1 pp 126ndash166 1938

[20] D R Adams ldquoA note on Riesz potentialsrdquo Duke MathematicalJournal vol 42 no 4 pp 765ndash778 1975

[21] F Chiarenza and M Frasca ldquoMorrey spaces and Hardy-Littlewoodmaximal functionrdquo Rendiconti di Matematica e dellesue Applicazioni vol 7 no 3-4 pp 273ndash279 1987

[22] J Peetre ldquoOn the theory of L119901120582

spacesrdquo Journal of FunctionalAnalysis vol 4 pp 71ndash87 1969

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Journal of Function Spaces and Applications 11

[23] D S Fan S Z Lu and D C Yang ldquoRegularity in Morreyspaces of strong solutions to nondivergence elliptic equationswith VMO coefficientsrdquo Georgian Mathematical Journal vol 5no 5 pp 425ndash440 1998

[24] G Di Fazio and M A Ragusa ldquoInterior estimates in Morreyspaces for strong solutions to nondivergence form equationswith discontinuous coefficientsrdquo Journal of Functional Analysisvol 112 no 2 pp 241ndash256 1993

[25] G Di Fazio D K Palagachev and M A Ragusa ldquoGlobalMorrey regularity of strong solutions to the Dirichlet problemfor elliptic equations with discontinuous coefficientsrdquo Journal ofFunctional Analysis vol 166 no 2 pp 179ndash196 1999

[26] Y Komori and S Shirai ldquoWeighted Morrey spaces and asingular integral operatorrdquo Mathematische Nachrichten vol282 no 2 pp 219ndash231 2009

[27] H Wang ldquoSome estimates for commutators of Calderon-Zygmund operators on the weighted Morrey spacesrdquo ScientiaSinica Mathematica vol 42 no 1 pp 31ndash45 2012

[28] H Wang ldquoThe boundedness of some operators with roughkernel on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 4 pp 589ndash600 2012

[29] H Wang ldquoIntrinsic square functions on the weighted Morreyspacesrdquo Journal of Mathematical Analysis and Applications vol396 no 1 pp 302ndash314 2012

[30] H Wang ldquoBoundedness of fractional integral operators withrough kernels on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 175ndash186 2013

[31] H Wang ldquoSome estimates for commutators of fractional inte-gral operators on weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 56 pp 889ndash906 2013

[32] H Wang ldquoSome estimates for commutators of fractional inte-grals associated to operators with Gaussian kernel bounds onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 72ndash85 2013

[33] HWang ldquoWeak type estimates for intrinsic square functions onweighted Morrey spacesrdquo Analysis in Theory and Applicationsvol 29 pp 104ndash119 2013

[34] H Wang and H P Liu ldquoSome estimates for Bochner-Rieszoperators on the weighted Morrey spacesrdquo Acta MathematicaSinica (Chinese Series) vol 55 no 3 pp 551ndash560 2012

[35] B Muckenhoupt ldquoWeighted norm inequalities for the Hardymaximal functionrdquo Transactions of the American MathematicalSociety vol 165 pp 207ndash226 1972

[36] BMuckenhoupt andRWheeden ldquoWeighted norm inequalitiesfor fractional integralsrdquo Transactions of the American Mathe-matical Society vol 192 pp 261ndash274 1974

[37] J Garcıa-Cuerva and J L Rubio de Francia Weighted NormInequalities and Related Topics vol 116 of North-Holland Math-ematics Studies North-Holland Publishing Amsterdam TheNetherlands 1985

[38] J Duoandikoetxea Fourier Analysis vol 29 ofGraduate Studiesin Mathematics American Mathematical Society ProvidenceRI USA 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Multilinear Singular and Fractional Integral …downloads.hindawi.com/journals/jfs/2013/735795.pdf · the above classical operators in Harmonic Analysis on these

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of