Research Article Mathematical Model of MDR-TB and XDR-TB...

22
Research Article Mathematical Model of MDR-TB and XDR-TB with Isolation and Lost to Follow-Up F. B. Agusto, J. Cook, P. D. Shelton, and M. G. Wickers Department of Mathematics and Statistics, Austin Peay State University, Clarksville, TN 37044, USA Correspondence should be addressed to F. B. Agusto; [email protected] Received 24 February 2015; Accepted 31 May 2015 Academic Editor: Juan-Carlos Cortยด es Copyright ยฉ 2015 F. B. Agusto et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a deterministic model with isolation and lost to follow-up for the transmission dynamics of three strains of Mycobacterium tuberculosis (TB), namely, the drug sensitive, multi-drug-resistant (MDR), and extensively-drug-resistant (XDR) TB strains. e model is analyzed to gain insights into the qualitative features of its associated equilibria. Some of the theoretical and epidemiological ๏ฌndings indicate that the model has locally asymptotically stable (LAS) disease-free equilibrium when the associated reproduction number is less than unity. Furthermore, the model undergoes in the presence of disease reinfection the phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model coexists with a stable endemic equilibrium when the associated reproduction number is less than unity. Further analysis of the model indicates that the disease- free equilibrium is globally asymptotically stable (GAS) in the absence of disease reinfection. e result of the global sensitivity analysis indicates that the dominant parameters are the disease progression rate, the recovery rate, the infectivity parameter, the isolation rate, the rate of lost to follow-up, and fraction of fast progression rates. Our results also show that increase in isolation rate leads to a decrease in the total number of individuals who are lost to follow-up. 1. Introduction Mycobacterium tuberculosis (TB) is caused by bacteria that are transmitted from person to person through the air by an infected personโ€™s coughing, sneezing, speaking, or singing [1]. TB usually a๏ฌ€ects the lungs, but it can also a๏ฌ€ect other parts of the body, such as the brain, the kidneys, or the spine [1]. e TB bacteria can stay in the air for several hours, depending on the environment. In 2013, 9 million people were ill with TB, and 1.5 million mortalities occurred from the disease [2]; over 95% of deaths occurred in low- and middle-income countries [2]. About one-third of the worldโ€™s population has latent TB [2]. TB is also among the top three causes of death in women aged 15 to 44 [2]. Tuberculosis is second only to HIV/AIDS as the greatest killer worldwide due to a single infectious agent [2]. ose who have a compromised immune system, like those who are living with HIV, malnutrition, or diabetes, or people who use tobacco products, have a much higher risk of falling ill. Individuals who develop TB are provided with a six-month course of four antimicrobial drugs along with supervision and support by a health worker. Improper treatment compliance or use of poor quality medicines can all lead to the development of drug-resistant tuberculosis [2]. Multi-drug-resistant (MDR) TB is a form of TB caused by bacteria that do not respond to, at least, isoniazid and rifampicin, which are the two most powerful, standard anti- tuberculosis drugs. MDR-TB is treatable and curable by using second-line drugs [3]. However, these treatment options are limited and recommended medicines are not always available [3]. In some cases, more severe drug resistance can develop. Extensively-drug-resistant (XDR) TB is a form of multi-drug- resistant TB that responds to even fewer available medicines, including the second-line drugs [3]. In 2013, there were about 480,000 cases of MDR-TB present in the world [4]; it was estimated that about 9%-10% of these cases were XDR-TB [2, 4โ€“6]. e increase in drug-resistant TB strains has called for an increased urgency for isolating individuals infected with such strains of TB [7]. High priority is being placed on identifying and curing these individuals. With proper identi๏ฌcation and treatment, about 40% of XDR-TB cases could potentially be cured [6, 8]. However, only 10% of MDR-TB cases are ever Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2015, Article ID 828461, 21 pages http://dx.doi.org/10.1155/2015/828461

Transcript of Research Article Mathematical Model of MDR-TB and XDR-TB...

  • Research ArticleMathematical Model of MDR-TB and XDR-TB with Isolationand Lost to Follow-Up

    F. B. Agusto, J. Cook, P. D. Shelton, and M. G. Wickers

    Department of Mathematics and Statistics, Austin Peay State University, Clarksville, TN 37044, USA

    Correspondence should be addressed to F. B. Agusto; [email protected]

    Received 24 February 2015; Accepted 31 May 2015

    Academic Editor: Juan-Carlos Corteฬs

    Copyright ยฉ 2015 F. B. Agusto et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    We present a deterministic model with isolation and lost to follow-up for the transmission dynamics of three strains ofMycobacterium tuberculosis (TB), namely, the drug sensitive, multi-drug-resistant (MDR), and extensively-drug-resistant (XDR)TB strains. The model is analyzed to gain insights into the qualitative features of its associated equilibria. Some of the theoreticaland epidemiological findings indicate that the model has locally asymptotically stable (LAS) disease-free equilibrium when theassociated reproduction number is less than unity. Furthermore, the model undergoes in the presence of disease reinfection thephenomenon of backward bifurcation, where the stable disease-free equilibrium of the model coexists with a stable endemicequilibrium when the associated reproduction number is less than unity. Further analysis of the model indicates that the disease-free equilibrium is globally asymptotically stable (GAS) in the absence of disease reinfection. The result of the global sensitivityanalysis indicates that the dominant parameters are the disease progression rate, the recovery rate, the infectivity parameter, theisolation rate, the rate of lost to follow-up, and fraction of fast progression rates. Our results also show that increase in isolation rateleads to a decrease in the total number of individuals who are lost to follow-up.

    1. Introduction

    Mycobacterium tuberculosis (TB) is caused by bacteria thatare transmitted from person to person through the air by aninfected personโ€™s coughing, sneezing, speaking, or singing [1].TB usually affects the lungs, but it can also affect other parts ofthe body, such as the brain, the kidneys, or the spine [1]. TheTB bacteria can stay in the air for several hours, depending onthe environment. In 2013, 9 million people were ill with TB,and 1.5millionmortalities occurred from the disease [2]; over95% of deaths occurred in low- andmiddle-income countries[2]. About one-third of the worldโ€™s population has latent TB[2]. TB is also among the top three causes of death in womenaged 15 to 44 [2]. Tuberculosis is second only to HIV/AIDSas the greatest killer worldwide due to a single infectiousagent [2]. Those who have a compromised immune system,like those who are living with HIV, malnutrition, or diabetes,or people who use tobacco products, have a much higherrisk of falling ill. Individuals who develop TB are providedwith a six-month course of four antimicrobial drugs alongwith supervision and support by a health worker. Improper

    treatment compliance or use of poor quality medicines canall lead to the development of drug-resistant tuberculosis [2].

    Multi-drug-resistant (MDR) TB is a form of TB causedby bacteria that do not respond to, at least, isoniazid andrifampicin, which are the two most powerful, standard anti-tuberculosis drugs.MDR-TB is treatable and curable by usingsecond-line drugs [3]. However, these treatment options arelimited and recommendedmedicines are not always available[3]. In some cases, more severe drug resistance can develop.Extensively-drug-resistant (XDR)TB is a formofmulti-drug-resistant TB that responds to even fewer available medicines,including the second-line drugs [3]. In 2013, there were about480,000 cases of MDR-TB present in the world [4]; it wasestimated that about 9%-10% of these cases were XDR-TB[2, 4โ€“6].

    The increase in drug-resistant TB strains has called for anincreased urgency for isolating individuals infected with suchstrains of TB [7]. High priority is being placed on identifyingand curing these individuals. With proper identification andtreatment, about 40% of XDR-TB cases could potentially becured [6, 8]. However, only 10% of MDR-TB cases are ever

    Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2015, Article ID 828461, 21 pageshttp://dx.doi.org/10.1155/2015/828461

  • 2 Abstract and Applied Analysis

    identified, leaving the potential development of XDR-TB tobecome more prevalent worldwide [2]. The need for a mod-ern and effective approach to curtail the rise of drug-resistantTB strains is being sought after, one of which is constructedisolation, whether it is an at-home isolation or isolation ata medical facility [6]. An event that portrays the need forcarefully constructed isolation was the identification of anindividual infected with MDR-TB in Atlanta InternationalAirport in 2007 [9]. The individual had flown to Atlantaafter visiting Paris, Greece, Italy, CzechRepublic, andCanada.The individual unknowingly was infected withMDR-TB and,after twelve days of travel, the individual was involuntarilyisolated by the CDC in Atlanta under the Public HealthService Act [9]. The CDC held the individual in isolationfor one week and then moved him to a hospital in Denver,Colorado [9]. In this case, there are no reported infectionsresulting from the travel of the individual, perhaps due tothe slightly lower infection rate of MDR-TB as comparedto drug sensitive TB strains [9]. It should be noted herethat the isolation of this individual, albeit brief, potentiallyhelped prevent a rise in drug-resistant TB in the UnitedStates, which is currently at admittedly low levels [10]. Anoccurrence such as this one clearly demonstrates the need forcarefully executed isolation procedures for individuals withdrug-resistant TB strains.

    Several reports have shown the effectiveness of isola-tion in reducing the number of people with TB [6, 7, 26,27]. Weis et al. [27] showed the effectiveness of isolation,reporting lower occurrences of primary and acquired drugresistance among individuals with TB. Historically, to treatthe infection, individuals were isolated in a sanatoriumwherethey would receive proper nutrition and a constant supplyof fresh air [28]. However, while this method is successfulin certain situations, this treatment methodology is difficultto implement without proper infrastructure in place [29].Locations without proper facilities such as South Africa havepoor treatment and success rates [29]; effective isolation isessential in areas such as these which have high treatmentfailure rates. Sutton et al. [26] studied three hospitals inCalifornia; they found that implementing the CDC isolationguidelines for hospitals was feasible; however, since not everyhospital could afford the necessary equipment, the isolationwas not the same for each hospital. Even though the resultsvaried, it is noticeably more efficient to isolate patients whoare infected with TB.

    According to the National Committee of Fight againstTuberculosis of Cameroon [30], about 10% of infectious indi-viduals who start the recommended WHO DOTS treatmenttherapy in the hospital do not return to the hospital for therest of sputumexaminations and check-up and are thus lost tofollow-up.This can be attributed to the long duration of treat-ment regimen, negligence, or lack of information about TB[30], a brief relief from the long term treatment [22], poverty,and so forth. As such, health-care personnel do not knowtheir epidemiological status, that is, if they died, recovered,or are still infectious and this lack of epidemiological status ofthese individuals can affect the spread of TB in a population[30]. A number of mathematical models for tuberculosisdeveloped account for this population by the inclusion of

    either the lost sight class [23, 30โ€“32] or lost to follow-up class[22].

    The aim of this study is to develop a new deterministictransmission model for TB to gain qualitative insight intothe effects of isolation in the presence of individuals who arelost to follow-up on TB transmission dynamics. A notablefeature of themodel is the incorporation of isolated and lost tofollow-up classes for the three TB strains. The paper is orga-nized as follows.Themodel formulation and analysis is givenin Section 2. Sensitivity analysis of the model is considered inSection 3. Analysis of the reproduction number is carried outin Section 4.The effect of isolation is numerically investigatedin Section 5. The key theoretical and epidemiological resultsfrom this study are summarized in Section 6.

    2. Model Formulation

    Themodel is formulated as follows: the population is dividedinto susceptible (๐‘†), latently infected (๐ธ

    ๐‘–), symptomatically

    infectious with drug sensitive strain (๐‘‡), MDR strain (๐‘€),XDR strain (๐‘‹), symptomatically infectious individuals whoare lost to follow-up (๐ฟ

    ๐‘–), isolated (๐ฝ), and recovered (๐‘…),

    where ๐‘– = ๐‘‡,๐‘€,๐‘‹. Thus, the total population is ๐‘(๐‘ก) =๐‘†(๐‘ก) + ๐ธ

    ๐‘‡(๐‘ก) + ๐‘‡(๐‘ก) + ๐ธ

    ๐‘€(๐‘ก) + ๐‘€(๐‘ก) + ๐ธ

    ๐‘‹(๐‘ก) + ๐‘‹(๐‘ก) +

    ๐ฟ๐‘‡(๐‘ก) + ๐ฟ

    ๐‘€(๐‘ก) + ๐ฟ

    ๐‘‹(๐‘ก) + ๐ฝ(๐‘ก) + ๐‘…(๐‘ก).

    As the disease evolves individuals move from one class tothe other with respect to their disease status. The populationof susceptible (๐‘†) is generated by new recruits (either via birthor immigration) who enter the population at a rate ๐œ‹. Theparameter ๐œ‹ denotes the recruitment rate. It is assumed thatthere is no vertical transmission or immigration of infectious;thus, these new inflow does not enter the infectious classes.All individuals, whatever their status, are subject to naturaldeath, which occurs at a rate ๐œ‡. The susceptible population isreduced by infection following effective contact with infectedindividuals with drug sensitive, MDR-, and XDR-TB strainsat the rates ๐œ†

    ๐‘‡, ๐œ†๐‘€, and ๐œ†

    ๐‘‹, where

    ๐œ†๐‘‡=๐›ฝ๐‘‡(๐‘‡ + ๐œ‚

    ๐‘‡๐ฟ๐‘‡)

    ๐‘,

    ๐œ†๐‘€=๐›ฝ๐‘€(๐‘€ + ๐œ‚

    ๐‘€๐ฟ๐‘€)

    ๐‘,

    ๐œ†๐‘‹=๐›ฝ๐‘‹(๐‘‹ + ๐œ‚

    ๐‘‹๐ฟ๐‘‹)

    ๐‘.

    (1)

    The parameters ๐›ฝ๐‘‡, ๐›ฝ๐‘€, and ๐›ฝ

    ๐‘‹are the effective transmission

    probability per contact; we assume that ๐›ฝ๐‘‹

    < ๐›ฝ๐‘€

    < ๐›ฝ๐‘‡

    [9] and the parameters ๐œ‚๐‘‡

    > 1, ๐œ‚๐‘€

    > 1, and ๐œ‚๐‘‹

    > 1are the modification parameter that indicates the increasedinfectivity of individuals who are lost to follow-up.

    A fraction ๐‘™๐‘‡1 of the newly infected individuals with drug

    sensitive strainmove into the latently infected class (๐ธ๐‘‡), with

    ๐‘™๐‘‡2 fractionmoving into the symptomatic-infectious class (๐‘‡)and the other fraction [1 โˆ’ (๐‘™

    ๐‘‡1 + ๐‘™๐‘‡2)] moving into the lostto follow-up class (๐ฟ

    ๐‘‡) with ๐‘™

    ๐‘‡1 + ๐‘™๐‘‡2 < 1. The latentlyinfected individuals become actively infectious as a result ofendogenous reactivation of the latent bacilli at the rate ๐œŽ

    ๐‘‡.

    Similarly a fraction ๐‘™๐‘€1 of the newly infected individuals

    with MDR stain move into the latently infected class with

  • Abstract and Applied Analysis 3

    MDR (๐ธ๐‘€), with ๐‘™

    ๐‘€2 fractions moving into the symptomat-ically infectious class (๐‘€) and the other fraction [1 โˆ’ (๐‘™

    ๐‘€1 +๐‘™๐‘€2)] moving into the symptomatically infectious lost tofollow-up class (๐ฟ

    ๐‘€) with ๐‘™

    ๐‘€1 + ๐‘™๐‘€2 < 1.The latently infectedindividuals with MDR strain become actively infectious as aresult of endogenous reactivation of the latent bacilli at therate ๐œŽ

    ๐‘€.

    Lastly, a fraction ๐‘™๐‘‹1 of the newly infected individualswith

    XDR stain moves into the latently infected class with XDR(๐ธ๐‘‹), with ๐‘™

    ๐‘‹2 fractions moving into the symptomaticallyinfectious class (๐‘‹) and the other fraction [1 โˆ’ (๐‘™

    ๐‘‹1 + ๐‘™๐‘‹2)]moving into the symptomatically infectious lost to follow-upclass (๐ฟ

    ๐‘‹) with ๐‘™

    ๐‘‹1 + ๐‘™๐‘‹2 < 1.The latently infected individualswith XDR strain become actively infectious as a result ofendogenous reactivation at the rate ๐œŽ

    ๐‘‹.

    Members of the symptomatically infectious class withthe drug sensitive strain (๐‘‡) are lost to follow-up at therate ๐œ™

    ๐‘‡and move to the class of lost to follow-up with

    drug sensitive strain (๐ฟ๐‘‡). They are isolated into the isolated

    class (๐ฝ) at the rate ๐›ผ๐‘‡. They undergo the WHO recom-

    mended DOTS treatment (Directly Observed Treatment,Short Course (DOTS)); however due to treatment failure(from treatment noncompliance) they move into the latentlyinfected class at the rate ๐‘

    ๐‘‡1๐›พ๐‘‡ or the latently infected classwith MDR at the rate ๐‘

    ๐‘‡2๐›พ๐‘‡. The remaining fraction moveinto the recovered class (๐‘…) following effective treatment atthe rate (1 โˆ’ ๐‘

    ๐‘‡1 โˆ’ ๐‘๐‘‡2)๐›พ๐‘‡ (where ๐‘๐‘‡1 + ๐‘๐‘‡2 < 1). Or they candie from the infection at the rate ๐›ฟ

    ๐‘‡.

    Similarlymembers of the symptomatically infectiouswithMDR strain (๐‘€) are lost to follow-up at the rate ๐œ™

    ๐‘€and

    move to the class of lost to follow-up with MDR strain (๐ฟ๐‘€).

    They are isolated at the rate ๐›ผ๐‘€. And a fraction of them

    move into the population of the latently infected with XDRstrain as a result of treatment failure of the symptomaticallyinfectious individuals with MDR strain at the rate ๐‘

    ๐‘€1๐›พ๐‘€.The remaining fraction move into the recovered class at therate (1 โˆ’ ๐‘

    ๐‘€1)๐›พ๐‘€ (where ๐‘๐‘€1 < 1). Or they can die from theinfection at the rate ๐›ฟ

    ๐‘€.

    Lastly, members of the symptomatically infectious withXDR strain (๐‘‹) are lost to follow-up at the rate ๐œ™

    ๐‘‹and move

    to the class of lost to follow-up with XDR strain (๐ฟ๐‘‹). Or they

    move into recovered class at the rate ๐›พ๐‘‹. Or they can die from

    the infection at the rate ๐›ฟ๐‘‹. We assume that ๐›พ

    ๐‘‹< ๐›พ๐‘€< ๐›พ๐‘‡.

    The individuals who are lost to follow-up (๐ฟ๐‘‡) with drug

    sensitive strain return at the rate๐œ“๐‘‡andmove into the class of

    individuals with drug sensitive strain. Or they die at the rate๐›ฟ๐ฟ๐‘‡. Similarly, the individuals who are lost to follow-up (๐ฟ

    ๐‘€)

    withMDR strain return at the rate๐œ“๐‘€andmove into the class

    of individuals with MDR strain. Or they die at the rate ๐›ฟ๐ฟ๐‘€

    .Lastly, the individuals who are lost to follow-up (๐ฟ

    ๐‘‹) with

    XDR strain return at the rate ๐œ“๐‘‹and move into the class of

    individuals with XDR strain. Or they die at the rate ๐›ฟ๐ฟ๐‘‹.

    Recovered individuals (๐‘…) are reinfected with drug sen-sitive strain at the rate ๐œ€๐œ†

    ๐‘‡, with ๐‘™

    ๐‘‡1๐œ€๐œ†๐‘‡ fraction movinginto the latently infected class with drug sensitive strain,๐‘™๐‘‡2๐œ€๐œ†๐‘‡ fraction moving into the symptomatically infectiousclass with drug sensitive strain, and the other [1 โˆ’ (๐‘™

    ๐‘‡1 +๐‘™๐‘€2)]๐œ€๐œ†๐‘‡ moving into the symptomatically infectious lostto follow-up class with drug sensitive strain. Also, these

    individuals experience reinfection with MDR and XDRstrains and fractions of these move into the latently infectedand symptomatically infectious classes, respectively.

    It follows, from the above descriptions and assump-tions, that the model for the transmission dynamics of thetuberculosis with isolation and lost to follow-up is given bythe following deterministic system of nonlinear differentialequations (the variables and parameters of the model aredescribed in Table 1; a schematic diagram of the model isdepicted in Figure 1):

    ๐‘‘๐‘†

    ๐‘‘๐‘ก= ๐œ‹โˆ’[

    ๐›ฝ๐‘‡(๐‘‡ + ๐œ‚

    ๐‘‡๐ฟ๐‘‡)

    ๐‘+๐›ฝ๐‘€(๐‘€ + ๐œ‚

    ๐‘€๐ฟ๐‘€)

    ๐‘

    +๐›ฝ๐‘‹(๐‘‹ + ๐œ‚

    ๐‘‹๐ฟ๐‘‹)

    ๐‘] ๐‘†โˆ’๐œ‡๐‘†,

    ๐‘‘๐ธ๐‘‡

    ๐‘‘๐‘ก=๐‘™๐‘‡1๐›ฝ๐‘‡ (๐‘‡ + ๐œ‚๐‘‡๐ฟ๐‘‡) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐‘๐‘‡1๐›พ๐‘‡๐‘‡โˆ’ (๐œŽ๐‘‡

    +๐œ‡) ๐ธ๐‘‡,

    ๐‘‘๐‘‡

    ๐‘‘๐‘ก=๐‘™๐‘‡2๐›ฝ๐‘‡ (๐‘‡ + ๐œ‚๐‘‡๐ฟ๐‘‡) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐œŽ๐‘‡๐ธ๐‘‡+๐œ“๐‘‡๐ฟ๐‘‡

    โˆ’ (๐œ™๐‘‡+๐›ผ๐‘‡+ ๐›พ๐‘‡+๐œ‡+ ๐›ฟ

    ๐‘‡) ๐‘‡,

    ๐‘‘๐ธ๐‘€

    ๐‘‘๐‘ก=๐‘™๐‘€1๐›ฝ๐‘€ (๐‘€ + ๐œ‚๐‘€๐ฟ๐‘€) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐‘๐‘‡2๐›พ๐‘‡๐‘‡โˆ’ (๐œŽ๐‘€

    +๐œ‡) ๐ธ๐‘€,

    ๐‘‘๐‘€

    ๐‘‘๐‘ก=๐‘™๐‘€2๐›ฝ๐‘€ (๐‘€ + ๐œ‚๐‘€๐ฟ๐‘€) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐œŽ๐‘€๐ธ๐‘€

    +๐œ“๐‘€๐ฟ๐‘€โˆ’ (๐œ™๐‘€+๐›ผ๐‘€+ ๐›พ๐‘€+๐œ‡+ ๐›ฟ

    ๐‘€)๐‘€,

    ๐‘‘๐ธ๐‘‹

    ๐‘‘๐‘ก=๐‘™๐‘‹1๐›ฝ๐‘‹ (๐‘‹ + ๐œ‚๐‘‹๐ฟ๐‘‹) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐‘๐‘€1๐›พ๐‘€๐‘€โˆ’(๐œŽ๐‘‹

    +๐œ‡) ๐ธ๐‘‹,

    ๐‘‘๐‘‹

    ๐‘‘๐‘ก=๐‘™๐‘‹2๐›ฝ๐‘‹ (๐‘‹ + ๐œ‚๐‘‹๐ฟ๐‘‹) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐œŽ๐‘‹๐ธ๐‘‹+๐œ“๐‘‹๐ฟ๐‘‹

    โˆ’ (๐œ™๐‘‹+๐›ผ๐‘‹+ ๐›พ๐‘‹+๐œ‡+ ๐›ฟ

    ๐‘‹)๐‘‹,

    ๐‘‘๐ฟ๐‘‡

    ๐‘‘๐‘ก=(1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ (๐‘‡ + ๐œ‚๐‘‡๐ฟ๐‘‡) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐œ™๐‘‡๐‘‡

    โˆ’ (๐œ“๐‘‡+๐œ‡+ ๐›ฟ

    ๐ฟ๐‘‡) ๐ฟ๐‘‡,

    ๐‘‘๐ฟ๐‘€

    ๐‘‘๐‘ก=(1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ (๐‘€ + ๐œ‚๐‘€๐ฟ๐‘€) (๐‘† + ๐œ€๐‘…)

    ๐‘

    +๐œ™๐‘€๐‘€โˆ’(๐œ“

    ๐‘€+๐œ‡+ ๐›ฟ

    ๐ฟ๐‘€) ๐ฟ๐‘€,

    ๐‘‘๐ฟ๐‘‹

    ๐‘‘๐‘ก=(1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ (๐‘‹ + ๐œ‚๐‘‹๐ฟ๐‘‹) (๐‘† + ๐œ€๐‘…)

    ๐‘+๐œ™๐‘‹๐‘‹

    โˆ’ (๐œ“๐‘‹+๐œ‡+ ๐›ฟ

    ๐ฟ๐‘‹) ๐ฟ๐‘‹,

    ๐‘‘๐ฝ

    ๐‘‘๐‘ก= ๐›ผ๐‘‡๐‘‡+๐›ผ๐‘€๐‘€+๐›ผ

    ๐‘‹๐‘‹โˆ’ (๐›พ

    ๐ฝ+๐œ‡+ ๐›ฟ

    ๐ฝ) ๐ฝ,

    ๐‘‘๐‘…

    ๐‘‘๐‘ก= (1โˆ’๐‘

    ๐‘‡1 โˆ’๐‘๐‘‡2) ๐›พ๐‘‡๐‘‡+ (1โˆ’๐‘๐‘€1) ๐›พ๐‘€๐‘€+๐›พ๐‘‹๐‘‹

    +๐›พ๐ฝ๐ฝ โˆ’ ๐œ‡๐‘…โˆ’ ๐œ€ [

    ๐›ฝ๐‘‡(๐‘‡ + ๐œ‚

    ๐‘‡๐ฟ๐‘‡)

    ๐‘+๐›ฝ๐‘€(๐‘€ + ๐œ‚

    ๐‘€๐ฟ๐‘€)

    ๐‘

    +๐›ฝ๐‘‹(๐‘‹ + ๐œ‚

    ๐‘‹๐ฟ๐‘‹)

    ๐‘]๐‘….

    (2)

  • 4 Abstract and Applied Analysis

    Table 1: Variables and parameters description of model (2).

    Variable Description๐‘†(๐‘ก) Susceptible individuals๐ธ๐‘‡(๐‘ก), ๐ธ๐‘€(๐‘ก), ๐ธ๐‘‹(๐‘ก) Latently infected individuals with drug sensitive, MDR, and XDR strains

    ๐‘‡(๐‘ก),๐‘€(๐‘ก), ๐‘‹(๐‘ก) Symptomatically infectious individuals with drug sensitive, MDR, and XDR strains๐ฟ๐‘‡(๐‘ก), ๐ฟ๐‘€(๐‘ก), ๐ฟ๐‘‹(๐‘ก) Symptomatically infectious individuals who are lost to sight with drug sensitive, MDR, and XDR strains

    ๐ฝ(๐‘ก) Isolated individuals๐‘…(๐‘ก) Recovered individualsParameter Description๐œ‹ Recruitment rate๐œ‡ Natural death rate๐œ€ TB reinfection rate๐›ฝ๐‘‡, ๐›ฝ๐‘€, ๐›ฝ๐‘‹

    Transmission probability๐œ‚๐‘‡, ๐œ‚๐‘€, ๐œ‚๐‘‹

    Infectivity modification parameter๐‘™๐‘‡1, ๐‘™๐‘‡2, ๐‘™๐‘€1, ๐‘™๐‘€2, ๐‘™๐‘‹1, ๐‘™๐‘‹2 Fraction of fast disease progression๐‘๐‘‡1, ๐‘๐‘‡2, ๐‘๐‘€1 Fraction that failed treatment๐œŽ๐‘‡, ๐œŽ๐‘€, ๐œŽ๐‘‹

    Disease progression rate๐›พ๐‘‡, ๐›พ๐‘€, ๐›พ๐‘‹, ๐›พ๐ฝ

    Recovery rate๐›ผ๐‘‡, ๐›ผ๐‘€, ๐›ผ๐‘‹

    Isolation rate๐›ฟ๐‘‡, ๐›ฟ๐‘€, ๐›ฟ๐‘‹, ๐›ฟ๐ฝ

    Disease-induced death rate๐œ™๐‘‡, ๐œ™๐‘€, ๐œ™๐‘‹

    Lost to follow-up rate๐œ“๐‘‡, ๐œ“๐‘€, ๐œ“๐‘‹

    Return rate from lost to follow-up๐›ฟ๐ฟ๐‘‡, ๐›ฟ๐ฟ๐‘€, ๐›ฟ๐ฟ๐‘‹

    Disease-induced death rate in individuals who are lost to follow-up

    lT1๐œ†T

    lM1๐œ†T lM2๐œ†T

    lX1๐œ†X lX2๐œ†X

    ๐œ€lM1๐œ†M ๐œ€lM2๐œ†M

    pT1๐›พT

    pT2๐›พT

    ๐œ‡๐œ‡

    ๐œ‡๐œ‡ ๐œ‡

    ๐œ‡

    ๐œ‡ ๐œ‡

    ๐œ‡

    ๐œ‡๐œ‡

    ๐œ‡

    ET

    EM

    EX

    S

    T

    M

    X

    LT

    LM

    LX

    J R

    ๐œ†T๐œ†M

    ๐œ†X

    ๐œ‹

    ๐œ™X

    ๐œ™T

    ๐œ™M

    ๐›ฟM

    ๐›ฟX

    ๐›ฟJ

    ๐›พJ

    ๐œŽT

    ๐œŽM

    ๐œŽX

    ๐›ฟLM

    lT2๐œ†T(1 โˆ’ lT1 โˆ’ lT2)๐œ†T ๐œ€(1 โˆ’ lT1 โˆ’ lT2)๐œ†T

    (1 โˆ’ pT1 โˆ’ pT2)๐›พT

    (1 โˆ’ pM1)๐›พM

    (1 โˆ’ lM1 โˆ’ lM2)๐œ†T

    ๐œ€(1 โˆ’ lM1 โˆ’ lM2)๐œ†M

    ๐œ€(1 โˆ’ lX1 โˆ’ lX2)๐œ†X

    (1 โˆ’ lX1 โˆ’ lX2)๐œ†X

    pM1๐›พM

    ๐œ€lX1๐œ†X๐œ€lX2๐œ†X

    ๐›ฟLT

    ๐›ฟLX

    ๐œ€lT2๐œ†T

    ๐›ผM

    ๐›ผT

    ๐›ผX

    ๐œ€lT1๐œ†T

    ๐›ฟT

    ๐œ“X

    ๐œ“T

    ๐œ“M

    Figure 1: Systematic flow diagram of the tuberculosis model (2).

    2.1. Basic Properties

    2.1.1. Positivity and Boundedness of Solutions. For TB model(2) to be epidemiologically meaningful, it can be shown(using the method in Appendix A of [33]) that all itsstate variables are nonnegative for all time. In other words,

    solutions of the model system (2) with nonnegative initialdata will remain nonnegative for all time ๐‘ก > 0.

    Lemma 1. Let the initial data ๐‘†(0) โ‰ฅ 0, ๐ธ๐‘‡(0) โ‰ฅ 0, ๐‘‡(0) โ‰ฅ

    0, ๐ธ๐‘€(0) โ‰ฅ 0, ๐‘€(0) โ‰ฅ 0, ๐ธ

    ๐‘‹(0) โ‰ฅ 0, ๐‘‹(0) โ‰ฅ 0, ๐ฟ

    ๐‘‡(0) โ‰ฅ

    0, ๐ฟ๐‘€(0) โ‰ฅ 0, ๐ฟ

    ๐‘‹(0) โ‰ฅ 0, ๐ฝ(0) โ‰ฅ 0, ๐‘…(0) โ‰ฅ 0.

  • Abstract and Applied Analysis 5

    Then the solutions (๐‘†, ๐ธ๐‘‡, ๐‘‡, ๐ธ๐‘€,๐‘€, ๐ธ

    ๐‘‹, ๐‘‹, ๐ฟ๐‘‡, ๐ฟ๐‘€, ๐ฟ๐‘‹, ๐ฝ, ๐‘…)

    of the tuberculosis model (2) are nonnegative for all ๐‘ก > 0.Furthermore,

    lim sup๐‘กโ†’โˆž

    ๐‘(๐‘ก) โ‰ค๐œ‹

    ๐œ‡, (3)

    with

    ๐‘ = ๐‘†+๐ธ๐‘‡+๐‘‡+๐ธ

    ๐‘€+๐‘€+๐ธ

    ๐‘‹+๐‘‹+๐ฟ

    ๐‘‡+๐ฟ๐‘€

    +๐ฟ๐‘‹+ ๐ฝ +๐‘….

    (4)

    2.1.2. Invariant Regions. Since model (2) monitors humanpopulations, all variables and parameters of the model arenonnegative. Model (2) will be analyzed in a biologicallyfeasible region as follows. Consider the feasible region

    ฮฆ โŠ‚ R12+

    (5)

    with

    ฮฆ = {(๐‘†, ๐ธ๐‘‡, ๐‘‡, ๐ธ๐‘€,๐‘€, ๐ธ

    ๐‘‹, ๐‘‹, ๐ฟ๐‘‡, ๐ฟ๐‘€, ๐ฟ๐‘‹, ๐ฝ, ๐‘…)

    โˆˆR12+: ๐‘ (๐‘ก) โ‰ค

    ๐œ‹

    ๐œ‡} .

    (6)

    The following steps are followed to establish the positiveinvariance ofฮฆ (i.e., solutions inฮฆ remain inฮฆ for all ๐‘ก > 0).The rate of change of the population is obtained by adding theequations of model (2) and this gives

    ๐‘‘๐‘ (๐‘ก)

    ๐‘‘๐‘ก= ๐œ‹โˆ’๐œ‡๐‘ (๐‘ก) โˆ’ ๐›ฟ๐‘‡๐‘‡ (๐‘ก) โˆ’ ๐›ฟ๐‘€๐‘€(๐‘ก) โˆ’ ๐›ฟ๐‘‹๐‘‹(๐‘ก)

    โˆ’ ๐›ฟ๐ฟ๐‘‡๐ฟ๐‘‡ (๐‘ก) โˆ’ ๐›ฟ๐ฟ๐‘€๐ฟ๐‘€ (๐‘ก) โˆ’ ๐›ฟ๐ฟ๐‘‹๐ฟ๐‘‹ (๐‘ก) .

    (7)

    And it follows that

    ๐‘‘๐‘ (๐‘ก)

    ๐‘‘๐‘กโ‰ค ๐œ‹โˆ’๐œ‡๐‘ (๐‘ก) . (8)

    A standard comparison theorem [34] can then be used toshow that

    ๐‘(๐‘ก) โ‰ค ๐‘ (0) ๐‘’โˆ’๐œ‡๐‘ก + ๐œ‹๐œ‡(1โˆ’ ๐‘’โˆ’๐œ‡๐‘ก) . (9)

    In particular, ๐‘(๐‘ก) โ‰ค ๐œ‹/๐œ‡, if ๐‘(0) โ‰ค ๐œ‹/๐œ‡. Thus, region ฮฆis positively invariant. Hence, it is sufficient to consider thedynamics of the flow generated by (2) in ฮฆ. In this region,the model can be considered as being epidemiologicallyand mathematically well-posed [35]. Thus, every solution ofmodel (2) with initial conditions in ฮฆ remains in ฮฆ for all๐‘ก > 0. Therefore, the ๐œ”-limit sets of system (2) are containedin ฮฆ. This result is summarized below.

    Lemma 2. The region ฮฆ โŠ‚ R12+ร— is positively invariant for

    model (2) with nonnegative initial conditions in R12+.

    2.2. Stability of the Disease-Free Equilibrium (DFE). Tubercu-losis model (2) has a DFE, obtained by setting the right-handsides of the equations in the model to zero, given by

    E0

    = (๐‘†โˆ—, ๐ธโˆ—

    ๐‘‡, ๐‘‡โˆ—, ๐ธโˆ—

    ๐‘€,๐‘€โˆ—, ๐ธโˆ—

    ๐‘‹, ๐‘‹โˆ—, ๐ฟโˆ—

    ๐‘‡, ๐ฟโˆ—

    ๐‘€, ๐ฟโˆ—

    ๐‘‹, ๐ฝโˆ—, ๐‘…โˆ—)

    = (๐œ‹

    ๐œ‡, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) .

    (10)

    The linear stability of E0 can be established using thenext generation operator method on system (2). Using thenotations in [36], the matrices ๐น and๐‘‰, for the new infectionterms and the remaining transfer terms, are, respectively,given by

    ๐น = [๐น1 | ๐น2] , (11)

    where

    ๐น1 =

    ((((((((((((((((

    (

    0 ๐‘™๐‘‡1๐›ฝ๐‘‡ 0 0 0

    0 ๐‘™๐‘‡2๐›ฝ๐‘‡ 0 0 0

    0 0 0 ๐‘™๐‘€1๐›ฝ๐‘€ 0

    0 0 0 ๐‘™๐‘€2๐›ฝ๐‘€ 0

    0 0 0 0 00 0 0 0 00 (1 โˆ’ ๐‘™

    ๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ 0 0 00 0 0 (1 โˆ’ ๐‘™

    ๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ 00 0 0 0 00 0 0 0 0

    ))))))))))))))))

    )

    ,

  • 6 Abstract and Applied Analysis

    ๐น2 =

    ((((((((((((((((

    (

    0 ๐‘™๐‘‡1๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 0

    0 ๐‘™๐‘‡2๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 0

    0 0 ๐‘™๐‘€1๐›ฝ๐‘€๐œ‚๐‘€ 0 0

    0 0 ๐‘™๐‘€2๐›ฝ๐‘€๐œ‚๐‘€ 0 0

    ๐‘™๐‘‹1๐›ฝ๐‘‹ 0 0 ๐‘™๐‘‹1๐›ฝ๐‘‹๐œ‚๐‘‹ 0๐‘™๐‘‹2๐›ฝ๐‘‹ 0 0 ๐‘™๐‘‹2๐›ฝ๐‘‹๐œ‚๐‘‹ 00 (1 โˆ’ ๐‘™

    ๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 00 0 (1 โˆ’ ๐‘™

    ๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€๐œ‚๐‘€ 0 0(1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ 0 0 (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹๐œ‚๐‘‹ 0

    0 0 0 0 0

    ))))))))))))))))

    )

    ,

    ๐‘‰ =

    ((((((((((((((((

    (

    ๐‘”1 โˆ’๐‘๐‘‡1๐›พ๐‘‡ 0 0 0 0 0 0 0 0โˆ’๐œŽ๐‘‡

    ๐‘”2 0 0 0 0 โˆ’๐œ“๐‘‡ 0 0 00 โˆ’๐‘

    ๐‘‡2๐›พ๐‘‡ ๐‘”3 0 0 0 0 0 0 00 0 โˆ’๐œŽ

    ๐‘€๐‘”4 0 0 0 โˆ’๐œ“๐‘€ 0 0

    0 0 0 โˆ’๐‘๐‘€1๐›พ๐‘€ ๐‘”5 0 0 0 0 0

    0 0 0 0 โˆ’๐œŽ๐‘‹

    ๐‘”6 0 0 โˆ’๐œ“๐‘‹ 00 โˆ’๐œ™

    ๐‘‡0 0 0 0 ๐‘”7 0 0 0

    0 0 0 โˆ’๐œ™๐‘€

    0 0 0 ๐‘”8 0 00 0 0 0 0 โˆ’๐œ™

    ๐‘‹0 0 ๐‘”9 0

    0 โˆ’๐›ผ๐‘‡

    0 โˆ’๐›ผ๐‘€

    0 โˆ’๐›ผ๐‘‹

    0 0 0 ๐‘”10

    ))))))))))))))))

    )

    ,

    (12)

    where๐‘”1 = ๐œŽ๐‘‡+๐œ‡, ๐‘”2 = ๐œ™๐‘‡+๐›พ๐‘‡+๐›ผ๐‘‡+๐œŽ๐‘‡+๐œ‡, ๐‘”3 = ๐œŽ๐‘€+๐œ‡, ๐‘”4 =๐œ™๐‘€+ ๐›พ๐‘€+ ๐›ผ๐‘€+ ๐œŽ๐‘€+ ๐œ‡, ๐‘”5 = ๐œŽ๐‘‹ + ๐œ‡, ๐‘”6 = ๐œ™๐‘‹ + ๐›พ๐‘‹ +

    ๐›ผ๐‘‹+ ๐œŽ๐‘‹+ ๐œ‡, ๐‘”7 = ๐œ“๐‘‡ + ๐œ‡ + ๐›ฟ๐ฟ๐‘‡, ๐‘”8 = ๐œ“๐‘€ + ๐œ‡ + ๐›ฟ๐ฟ๐‘€, ๐‘”9 =

    ๐œ“๐‘‹+ ๐œ‡ + ๐›ฟ

    ๐ฟ๐‘‹, ๐‘”10 = ๐›พ๐ฝ + ๐œ‡ + ๐›ฟ๐ฝ.

    It follows that the basic reproduction number of tubercu-losis model (2), denoted byR0, is given by

    R0 = ๐œŒ (๐น๐‘‰โˆ’1) = max (R

    ๐‘‡,R๐‘€,R๐‘‹) , (13)

    where

    R๐‘‡=๐›ฝ๐‘‡{๐œŽ๐‘‡(๐‘”7 + ๐œ™๐‘‡๐œ‚๐‘‡) ๐‘™๐‘‡1 + (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘”1๐‘™๐‘‡2 + [(๐‘”2๐œ‚๐‘‡ + ๐œ“๐‘‡) ๐‘”1 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡] (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)}

    [๐‘”1 (๐‘”7๐‘”2 โˆ’ ๐œ™๐‘‡๐œ“๐‘‡) โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡],

    R๐‘€=๐›ฝ๐‘€[๐œŽ๐‘€(๐‘”8 + ๐œ™๐‘€๐œ‚๐‘€) ๐‘™๐‘€1 + (๐‘”8 + ๐œ‚๐‘€๐œ™๐‘€) ๐‘”3๐‘™๐‘€2 + (๐‘”4๐œ‚๐‘€ + ๐œ“๐‘€) ๐‘”3 (1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2)]

    ๐‘”3 (๐‘”8๐‘”4 โˆ’ ๐œ™๐‘€๐œ“๐‘€),

    R๐‘‹=๐›ฝ๐‘‹[๐œŽ๐‘‹(๐‘”9 + ๐œ™๐‘‹๐œ‚๐‘‹) ๐‘™๐‘‹1 + (๐‘”9 + ๐œ‚๐‘‹๐œ™๐‘‹) ๐‘”5๐‘™๐‘‹2 + (๐‘”6๐œ‚๐‘‹ + ๐œ“๐‘‹) ๐‘”5 (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2)]

    ๐‘”5 (๐‘”9๐‘”6 โˆ’ ๐œ™๐‘‹๐œ“๐‘‹).

    (14)

    Quantity R๐‘‡represents the reproduction number of TB

    drug sensitive-only population. Similarly, quantity R๐‘€

    isthe reproduction number for MDR-only population and thequantity R

    ๐‘‹represents the reproduction number for XDR-

    only TB population.Further, using Theorem 2 in [36], the following result is

    established.

    Lemma 3. TheDFE of the tuberculosis model (2), given byE0,is locally asymptotically stable (LAS) ifR0 < 1, and unstable ifR0 > 1.

    The threshold quantity (R0, i.e., the basic reproductionnumber) measures the average number of new infectionsgenerated by a single infected individual in a completely

  • Abstract and Applied Analysis 7

    ๐œ‚X๐œ‚M๐œ‚TlX2lX1lM2lM1lT2lT1

    ๐›ฟJ๐›ฟX๐›ฟM๐›ฟT๐œ™X๐œ™M๐œ™T๐œ“X๐œ“M๐œ“T๐œ–

    pM1pT2pT1๐›ผT๐›ผX๐›ผM๐œŽX๐œŽM๐œŽT๐›ฝX๐›ฝM๐›ฝT๐›พJ๐›พX๐›พM๐›พT๐œ‡

    0 0.5 1โˆ’0.5

    ๐œ‹

    ๐›ฟLX๐›ฟLM๐›ฟLT

    (a)

    ๐œ‚X๐œ‚M๐œ‚TlX2lX1lM2lM1lT2lT1

    ๐›ฟJ๐›ฟX๐›ฟM๐›ฟT๐œ™X๐œ™M๐œ™T๐œ“X๐œ“M๐œ“T๐œ–

    pM1pT2pT1๐›ผT๐›ผX๐›ผM๐œŽX๐œŽM๐œŽT๐›ฝX๐›ฝM๐›ฝT๐›พJ๐›พX๐›พM๐›พT๐œ‡

    0 0.2 0.4 0.6 0.8 1โˆ’0.8 โˆ’0.6 โˆ’0.4 โˆ’0.2

    ๐œ‹

    ๐›ฟLX๐›ฟLM๐›ฟLT

    (b)๐œ‚X๐œ‚M๐œ‚TlX2lX1lM2lM1lT2lT1

    ๐›ฟJ๐›ฟX๐›ฟM๐›ฟT๐œ™X๐œ™M๐œ™T๐œ“X๐œ“M๐œ“T๐œ–

    pM1pT2pT1๐›ผT๐›ผX๐›ผM๐œŽX๐œŽM๐œŽT๐›ฝX๐›ฝM๐›ฝT๐›พJ๐›พX๐›พM๐›พT๐œ‡

    0 0.2 0.4 0.6 0.8 1โˆ’0.8 โˆ’0.6 โˆ’0.4 โˆ’0.2

    ๐œ‹

    ๐›ฟLX๐›ฟLM๐›ฟLT

    (c)

    Figure 2: PRCC values for model (2), using as the response function (a) the basic reproduction number (R๐‘‡), (b) the basic reproduction

    number (R๐‘€), and (c) the basic reproduction number (R

    ๐‘‹). Parameter values (baseline) and ranges used are as given in Table 2.

    susceptible population [35โ€“38]. Thus, Lemma 3 implies thattuberculosis can be eliminated from the population (whenR0 < 1) if the initial sizes of the subpopulations of model(2) are in the basin of attraction of the DFE, E0.

    3. Sensitivity Analysis

    A global sensitivity analysis [39โ€“42] is carried out, on theparameters of model (2), to determine which of the param-eters have the most significant impact on the outcome ofthe numerical simulations of the model. Figure 2(a) depictsthe partial rank correlation coefficient (PRCC) values foreach parameter of the models, using the ranges and baselinevalues tabulated in Table 2 (with the basic reproductionnumbers, R

    ๐‘‡, as the response function), from which it

    follows that the parameters that have the most influence ondrug sensitive TB transmission dynamics are the fraction offast progression rate (๐‘™

    ๐‘‡2) into the drug sensitive TB class,the infectivity modification parameter (๐œ‚

    ๐‘‡), the recovery rate

    (๐›พ๐‘‡) from drug sensitive TB, disease progression rate (๐œŽ

    ๐‘‡),

    rate of lost to follow-up (๐œ™๐‘‡) of those with drug sensitive

    TB, fraction of latently infected with drug sensitive TB thatfailed treatment (๐‘

    ๐‘‡1), the fraction of fast progression rate(๐‘™๐‘‡1) into the latently infected with drug sensitive TB class,

    and the isolation rate (๐›ผ๐‘‡) from drug sensitive TB class.

    The identification of these key parameters is vital to theformulation of effective control strategies for combating thespread of the disease, as this study identifies the most impor-tant parameters that drive the transmissionmechanism of thedisease. In other words, the results of this sensitivity analysissuggest that, to effectively control the spread of drug sensitiveTB in the community, the effective strategy will be to reducethe disease progression rate (reduce๐œŽ

    ๐‘‡), increase the recovery

    rate (increase ๐›พ๐‘‡) from drug sensitive TB, reduce the disease

    modification parameter (reduce ๐œ‚๐‘‡), increase the isolation

    rate (increase ๐›ผ๐‘‡) from drug sensitive TB class, and reduce

    the fraction of fast progression rates (reduce ๐‘™๐‘‡1 and ๐‘™๐‘‡2) into

    the drug sensitive TB class and lost to follow-up class andreduce the rate of lost to follow-up (reduce ๐œ™

    ๐‘‡) of those with

    drug sensitive TB.The result of this analysis suggests that thefraction of latently infected with drug sensitive TB that failedtreatment (๐‘

    ๐‘‡1) be increased, since this has a negative impactof the basic reproduction number, R

    ๐‘‡. This of course is

    counter intuitive; however increasing this rate lowers the rateof development of drug-resistant TB due to treatment failure.

    The sensitivity analysis was also carried out using model(2) with the basic reproduction number, R

    ๐‘€, for drug-

    resistant TB, as the response function (see Figure 2(b)). Thedominant parameters in this case are ๐›ผ

    ๐‘€, ๐œŽ๐‘€, ๐œ‚๐‘€, ๐›พ๐‘€, ๐œ™๐‘€,

    ๐œ“๐‘€, ๐œ‡, ๐‘™๐‘€1, and ๐‘™๐‘€2. Similarly, when using as response func-

    tion the basic reproduction number, R๐‘‹, for extended drug

  • 8 Abstract and Applied Analysis

    resistance TB (see Figure 2(c)), the dominant parameters inthis case are ๐›ผ

    ๐‘‹, ๐œŽ๐‘‹, ๐œ‚๐‘‹, ๐›พ๐‘‹, ๐œ™๐‘‹, ๐œ“๐‘‹, ๐œ‡, ๐‘™๐‘‹1, and ๐‘™๐‘‹2.

    The results from these analyses using as response func-tions the basic reproduction numbers,R

    ๐‘€andR

    ๐‘‹, suggest

    that the natural death rate (๐œ‡) be increased, since it has anegative impact on the basic reproduction numbers,R

    ๐‘€and

    R๐‘‹. However increasing this rate is not epidemiologically

    relevant, as it implies reducing the population size thatwe wish to preserve by other means aside from death bytuberculosis and should therefore be ignored in any controlmeasures.

    4. Analysis of the Reproduction Number

    Following the result obtained in Section 3, we investigate inthis section whether or not treatment-only, isolation-onlyof individuals with tuberculosis or a combination of bothcan lead to tuberculosis elimination in the population. Theanalysis will be carried out using the reproduction numberfor drug sensitive TB (R

    ๐‘‡) since R0 is the maximum of the

    reproduction number of drug sensitive TB (R๐‘‡), MDR-TB

    (R๐‘€), and XDR-TB (R

    ๐‘‹); similar result can be obtained for

    the MDR- and XDR-TB.In the absence of isolation (๐›ผ

    ๐‘‡= 0), the reproduction

    number (R๐‘‡) reduces to

    R๐‘‡๐›ผ

    =๐›ฝ๐‘‡[(๐œŽ๐‘‡๐‘”7 + ๐œ‚๐‘‡๐œŽ๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐‘”1๐œ™๐‘‡ + ๐‘”1๐‘”7) ๐‘™๐‘‡2 + (๐‘”1๐œ“๐‘‡ + ๐œ‚๐‘‡๐‘”1 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘ก1๐›พ๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]

    ๐‘”1 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7.

    (15)

    The reproduction number (R๐‘‡) can be written as

    R๐‘‡= ๐ด๐›ผR๐‘‡๐›ผ

    , (16)

    where

    ๐ด๐›ผ

    =(๐‘”1๐‘”7 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7) [(๐œŽ๐‘‡๐‘”7 + ๐œ‚๐‘‡๐œŽ๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐‘”1๐œ™๐‘‡ + ๐‘”1๐‘”7) ๐‘™๐‘‡2 + (๐‘”1๐œ“๐‘‡ + ๐œ‚๐‘‡๐‘”1๐‘”2 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]{(๐‘”1๐‘”2๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7) [๐œŽ๐‘‡ (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐œ™๐‘‡ + ๐‘”7) ๐‘”1๐‘™๐‘‡2 + (๐œ‚๐‘‡๐‘”1 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) + ๐‘”1๐œ“๐‘‡ โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]}

    .

    (17)

    The difference between R๐‘‡and R

    ๐‘‡๐›ผ

    is in the isolation rate(๐›ผ๐‘‡); as such the factor ๐ด

    ๐›ผcompares a population with

    and without isolation; however, this is in the presence oftreatment and individuals who are lost to follow-up andindividuals returning from lost to follow-up. If R

    ๐‘‡๐›ผ

    < 1,then drug sensitive TB cannot develop into an epidemicin the community. However, if R

    ๐‘‡๐›ผ

    > 1, it is imperative

    to investigate the effect of isolation on the transmission ofdrug sensitive TB among the populace and determine thenecessary condition for slowing down its development in thecommunity. Following [43] we have

    ฮ”๐›ผ= R๐‘‡๐›ผ

    โˆ’R๐‘‡= (1โˆ’๐ด

    ๐›ผ)R๐‘‡๐›ผ

    , (18)

    where

    ฮ”๐›ผ=[๐›ฝ๐‘‡๐‘”1 (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) (๐œ™๐‘‡ โˆ’ ๐‘”2 + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) (๐œŽ๐‘‡๐‘”7๐‘™๐‘‡1 + ๐‘”1๐‘”7๐‘™๐‘‡2 + ๐‘”1๐œ“๐‘‡ (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2))]

    {(๐‘”1๐‘”2๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7) [๐‘”1๐‘”7 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7]}. (19)

    To slow down the spread of drug sensitive tuberculosis inthe population via effective isolation, proper treatment, andidentification of individuals who return from lost to follow-up and in the presence of individuals who are lost to follow-up, we expect that ฮ”

    ๐›ผ> 0, and this is satisfied if ๐ด

    ๐›ผ< 1

    in (18). Now, setting R๐‘‡= 1 and solving for ๐ด

    ๐›ผgives the

    threshold effectiveness of isolation and taking into account

    treatment and identification of individuals who return fromlost to follow-up and who are also lost to follow-up:

    ๐ดโˆ—

    ๐›ผ=

    1R๐‘‡๐›ผ

    . (20)

    Hence, drug sensitive tuberculosis can be eradicated inthe community in the presence of isolation taking into

  • Abstract and Applied Analysis 9

    consideration proper treatment and identification of individ-uals who return from lost to follow-up and are lost to follow-up if ๐ด

    ๐›ผ< ๐ดโˆ—

    ๐›ผis attained. Note that ๐ดโˆ—

    ๐›ผis a decreasing

    function ofR๐‘‡๐›ผ

    , thus indicating that higher values for๐ดโˆ—๐›ผwill

    result in smaller values forR๐‘‡๐›ผ

    , a desired outcome. But a large

    value for R๐‘‡๐›ผ

    results in a small value for ๐ดโˆ—๐›ผ, an indication

    that eradication may not be attainable.The following limits of ๐ด

    ๐›ผprovide a further insight into

    possible ways of reducing the burden of drug sensitive TB inthe community:

    lim๐ด๐›ผ๐›ผ๐‘‡โ†’โˆž

    =๐‘™๐‘‡2๐œ‚๐‘‡ [(๐œ™๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡ + ๐›พ๐‘‡) ๐‘”1๐‘”7 โˆ’ ๐œ“๐‘‡๐œ™๐‘‡๐‘”1 โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7]

    ๐‘”7 {๐œŽ๐‘‡ (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐œ™๐‘‡ + ๐‘”7) ๐‘”1๐‘™๐‘‡2 + [๐œ“๐‘‡๐‘”1 + ๐œ‚๐‘‡ (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”1 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡] (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)},

    (21)

    lim๐ด๐›ผ๐œ™๐‘‡โ†’โˆž

    = 1,

    lim๐ด๐›ผ๐œ“๐‘‡โ†’โˆž

    = 1,

    lim๐ด๐›ผ๐›พ๐‘‡โ†’โˆž

    = 1.

    (22)

    The limits in (21) will be less than unity. In practice, ๐›ผ๐‘‡โ†’ โˆž

    implies high rate of isolating individuals with drug sensitiveTB, ๐œ™

    ๐‘‡โ†’ โˆž implies high rate of individuals who are lost

    to follow-up, ๐œ“๐‘‡

    โ†’ โˆž implies a high rate of individualswho return from lost to follow-up, and ๐›พ

    ๐‘‡โ†’ โˆž implies

    high treatment rate. Ideally, the results obtained from theselimits can be pursued for the reduction of the burden of

    drug sensitive TB in the community, provided of course thatit is feasible and practicable economically. Therefore, with alook at factor ๐ด

    ๐›ผ, one observes that an effective isolation will

    lead to a reduction in the burden of drug sensitive TB in thepopulation.

    Next, we consider the case when the treatment rate is setto zero (๐›พ

    ๐‘‡= 0). The reproduction number is given as

    R๐‘‡๐›พ

    =๐›ฝ๐‘‡[(๐œŽ๐‘‡๐‘”7 + ๐œ‚๐‘‡๐œŽ๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐‘”1๐œ™๐‘‡ + ๐‘”1๐‘”7) ๐‘™๐‘‡2 + [๐‘”1๐œ“๐‘‡๐œ‚๐‘‡๐‘”1 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡)] (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]

    ๐‘”1 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡. (23)

    The reproduction numberR๐‘‡can be expressed as

    R๐‘‡= ๐ด๐›พR๐‘‡๐›พ

    , (24)

    where

    ๐ด๐›พ

    ={[(๐œŽ๐‘‡๐‘”7 + ๐œ‚๐‘‡๐œŽ๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐‘”1๐œ™๐‘‡ + ๐‘”1๐‘”7) ๐‘™๐‘‡2 + (๐‘”1๐œ“๐‘‡ + ๐œ‚๐‘‡๐‘”1๐‘”2 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)] ๐‘”1 [(๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”7 โˆ’ ๐œ“๐‘‡๐œ™๐‘‡]}

    {(๐‘”1๐‘”2๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘ก1๐›พ๐‘‡๐‘”7) [(๐œŽ๐‘‡๐‘”7 + ๐œ‚๐‘‡๐œŽ๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐‘”1๐œ™๐‘‡ + ๐‘”1๐‘”7) ๐‘™๐‘‡2 + (๐‘”1๐œ“๐‘‡ + (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”1๐œ‚๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]}.

    (25)

    The difference between R๐‘‡๐›พ

    and R๐‘‡is in the treatment

    rate (๐›พ๐‘‡); thus ๐ด

    ๐›พcompares a population with and without

    treatment in the presence of isolation of infected individualswith drug sensitive TB, individuals who are lost to follow-up and who return from of lost to follow-up. If R

    ๐‘‡๐›พ

    < 1,then drug sensitive TB cannot develop into an epidemic in

    the community and no control strategy will be required forits control. Take the difference betweenR

    ๐‘‡andR

    ๐‘‡๐›พ

    ; that is,

    ฮ”๐›พ= R๐‘‡โˆ’R๐‘‡๐›พ

    = (1โˆ’๐ด๐›พ)R๐‘‡๐›พ

    , (26)

    where

    ฮ”๐›พ={๐›ฝ๐‘‡(๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) [๐‘”1 (๐œ™๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡ + ๐›ผ๐‘‡ โˆ’ ๐‘”2) + ๐›พ๐‘‡๐‘๐‘‡1๐œŽ๐‘‡] [๐‘”1๐‘”7๐‘™๐‘‡2 + ๐œŽ๐‘‡๐‘”7๐‘™๐‘‡1 + ๐‘”1๐œ“๐‘‡ (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]}

    {๐‘”1 (๐‘”1๐‘”2๐‘”7 โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7) [๐‘”7 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐œ“๐‘‡๐œ™๐‘‡]}. (27)

  • 10 Abstract and Applied Analysis

    To slow down the spread of drug sensitive tuberculosis inthe population using proper treatment, effective isolationand identification of individuals who return from lost tofollow-up and in the presence of those who are of lost to

    follow-up, we expect that ฮ”๐›พ> 0, and this is satisfied if

    ๐ด๐›พ< 1 in (18).Take the following limits of ๐ด

    ๐›พ:

    lim๐ด๐›พ๐›พ๐‘‡โ†’โˆž

    =[(๐œ™๐‘‡+ ๐›ผ๐‘‡+ ๐œ‡ + ๐›ฟ

    ๐‘‡) ๐‘”7 โˆ’ ๐œ“๐‘‡๐œ™๐‘‡] ๐œ‚๐‘‡๐‘”1 (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)

    ๐‘”7 {๐œŽ๐‘‡ (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐œ‚๐‘‡๐œ™๐‘‡ + ๐‘”7) ๐‘”1๐‘™๐‘‡2 + [๐œ“๐‘‡๐‘”1 + ๐œ‚๐‘‡ (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) ๐‘”1 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡] (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)},

    lim๐ด๐›พ๐œ™๐‘‡โ†’โˆž

    = 1,

    lim๐ด๐›พ๐œ“๐‘‡โ†’โˆž

    = 1,

    lim๐ด๐›พ๐›ผ๐‘‡โ†’โˆž

    = 1.

    (28)

    From the limit of๐ด๐›พ, one observes that an effective treatment

    will lead to a reduction in the burden of drug sensitive TB inthe population.

    Comparing the quantities ๐ด๐›ผand ๐ด

    ๐›พshows that ๐ด

    ๐›ผ<

    ๐ด๐›พ; that is, size

    ๐ด๐›ผโˆ’๐ด๐›พ= โˆ’ {[(๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) + (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡2๐‘”1 + (๐œ“๐‘‡๐‘”1 + ๐œ‚๐‘‡๐‘”1๐‘”2 โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡) (1โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)] [๐‘”1 (๐›ผ๐‘‡ โˆ’ ๐›พ๐‘‡)

    + ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡] (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) [๐œŽ๐‘‡๐‘”7๐‘™๐‘‡1 +๐‘”1๐‘”7๐‘™๐‘‡2 +๐‘”1๐œ“๐‘‡ (1โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]} ({(๐‘”1๐‘”2๐‘”7 โˆ’๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7)

    โ‹… [๐œŽ๐‘‡(๐‘”7๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘”1๐‘™๐‘‡2 + (๐œ“๐‘‡๐‘”1 + ๐œ‚๐‘‡๐‘”1 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡)) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]

    โ‹… [๐œŽ๐‘‡(๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘™๐‘‡1 + (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) ๐‘”1๐‘™๐‘‡2 + (๐œ“๐‘‡๐‘”1 + ๐œ‚๐‘‡๐‘”1 (๐œ™๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐œ‚๐‘‡๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡) (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2)]})

    โˆ’1< 0.

    (29)

    This implies that ๐ด๐›พwill provide better results in slowing

    down drug sensitive tuberculosis spread, using reduction inthe prevalence, than using๐ด

    ๐›ผ. On the other hand if๐ด

    ๐›ผโˆ’๐ด๐›พ>

    0, this means that ๐ด๐›ผwill give better outcome in slowing

    down drug sensitive tuberculosis spread compared to using๐ด๐›พ.Thus, from the above discussions, to slow down the

    spread of the disease and reduce the number of secondaryinfections in the population, we require control strategieswith parameter values that would make ๐ด

    ๐›ผ< 1 or ๐ด

    ๐›พ<

    1. Hence, the necessary condition for slowing down thedevelopment of drug sensitive TB at the population level isthat ฮ”

    ๐›ผ> 0 or ฮ”

    ๐›พ> 0. However, ฮ”

    ๐›ผgives a better result

    in terms of reduction in the prevalence of the disease overฮ”๐›พprovided ฮ”

    ๐›พ> ฮ”๐›ผ; otherwise if ฮ”

    ๐›ผ> ฮ”๐›พ, then ฮ”

    ๐›พ

    gives a better result over ฮ”๐›ผ. Using parameters in Table 1, we

    have that ๐ด๐›ผ= 0.8524, ๐ด

    ๐›พ= 0.8802 and ฮ”

    ๐›ผ= 0.1061,

    ฮ”๐›พ= 0.0833; thus ๐ด

    ๐›ผโˆ’ ๐ด๐›พ= โˆ’0.02789. It follows that, the

    isolation-only strategy provides more effective control mea-sures in curtailing the disease transmission in the community.

    Using the threshold quantity, R๐‘‡, we determine how

    isolation and treatment rates could lead to tuberculosiselimination in the population. Thus

    limR๐‘‡๐›ผ๐‘‡โ†’โˆž

    =๐›ฝ๐‘‡(1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐œ‚๐‘‡

    (๐œ“๐‘‡+ ๐œ‡ + ๐›ฟ

    ๐‘‡)

    > 0,

    limR๐‘‡๐›พ๐‘‡โ†’โˆž

    =๐›ฝ๐‘‡(1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐œ‚๐‘‡

    (๐œ“๐‘‡+ ๐œ‡ + ๐›ฟ

    ๐‘‡)

    > 0.

    (30)

    Thus a sufficient effective TB control program that isolates (ortreats) the identified cases at a high rate ๐›ผ

    ๐‘‡โ†’ โˆž (or ๐›พ

    ๐‘‡โ†’

    โˆž) can lead to effective disease control if it results in makingthe respective right-hand side of (30) less than unity.

    Differentiating partially the reproduction number of ๐œ•R๐‘‡

    with respect to the key parameters (๐›ผ๐‘‡and ๐›พ๐‘‡), this gives

    ๐œ•R๐‘‡

    ๐œ•๐›ผ๐‘‡

    =โˆ’๐›ฝ๐‘‡๐‘”1 (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) [๐‘™๐‘‡1๐œŽ๐‘‡๐‘”7 + ๐‘™๐‘‡2๐‘”1๐‘”7 + (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐‘”1๐œ“๐‘‡]

    [๐‘”1๐‘”7 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐›พ๐‘‡ + ๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7]2 , (31)

    ๐œ•R๐‘‡

    ๐œ•๐›พ๐‘‡

    =โˆ’๐›ฝ๐‘‡(๐‘”1 โˆ’ ๐œŽ๐‘‡๐‘๐‘ก1) (๐‘”7 + ๐œ‚๐‘‡๐œ™๐‘‡) [๐‘™๐‘‡1๐œŽ๐‘‡๐‘”7 + ๐‘™๐‘‡2๐‘”1๐‘”7 + (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐‘”1๐œ“๐‘‡][๐‘”1๐‘”7 (๐œ™๐‘‡ + ๐›ผ๐‘‡ + ๐›พ๐‘‡ + ๐‘”1๐‘”7๐œ‡ + ๐›ฟ๐‘‡) โˆ’ ๐‘”1๐œ“๐‘‡๐œ™๐‘‡ โˆ’ ๐œŽ๐‘‡๐‘๐‘‡1๐›พ๐‘‡๐‘”7]

    2 . (32)

  • Abstract and Applied Analysis 11

    Table 2: Values of the parameters of the model (2).

    Parameter Baselinevalues Range Reference

    ๐œ‹ ๐œ‡ ร— 105 (0.0143 ร—105, 0.04 ร— 105) [11]

    ๐œ‡ 0.0159 (0.0143, 0.04) [12]๐œ€ 0.06 (0.01, 0.5) [13]๐›ฝ๐‘‡ 9.75 (4.5, 15.0) [14]๐›ฝ๐‘€ 1.5 (1.5, 3.5) [13, 15]๐›ฝ๐‘‹ 0.0000085 (0.01, 0.1) [13]๐œ‚๐‘‡, ๐œ‚๐‘€, ๐œ‚๐‘‹ 0.5 (0, 1) Assumed

    ๐‘™๐‘‡1, ๐‘™๐‘‡2, ๐‘™๐‘€1, ๐‘™๐‘€2, ๐‘™๐‘‹1, ๐‘™๐‘‹2 0.14 (0.02, 0.3) [12, 16, 17]๐‘๐‘‡1 0.3 (0.1, 0.5) [14, 18]๐‘๐‘‡2 0.03 (0.01, 0.05) [14, 18]๐‘๐‘€1 0.03 (0.01, 0.1) [14, 18]

    ๐œŽ๐‘‡, ๐œŽ๐‘€, ๐œŽ๐‘‹

    0.05, 0.0018,0.013 (0.005, 0.05) [12, 19, 20]

    ๐›พ๐‘‡, ๐›พ๐ฝ 1.5 (1.5, 2.5) [11, 16, 21]

    ๐›พ๐‘€, ๐›พ๐‘‹ 0.75 (0.5, 1.0) [13]

    ๐›ผ๐‘‡, ๐›ผ๐‘€, ๐›ผ๐‘‹ 0.6 (0.2, 1.0) Assumed

    ๐œ™๐‘‡, ๐œ™๐‘€, ๐œ™๐‘‹ 0.2511 (0.0022, 0.5) [22]

    ๐œ“๐‘‡, ๐œ“๐‘€, ๐œ“๐‘‹ 0.1 (0.5, 1.0) [23]

    ๐›ฟ๐‘‡, ๐›ฟ๐ฝ 0.365 (0.22, 0.39) [20, 24, 25]

    ๐›ฟ๐‘€, ๐›ฟ๐‘‹ 0.028 (0.01, 0.03) [13]

    ๐›ฟ๐ฟ๐‘‡, ๐›ฟ๐ฟ๐‘€

    , ๐›ฟ๐ฟ๐‘‹ 0.02 (0.01, 0.039) [22, 23]

    Thus, it follows from (31) that ๐œ•R๐‘‡/๐œ•๐›ผ๐‘‡

    < 0, henceshowing further the effectiveness of the control measures.Thus, isolation (๐›ผ

    ๐‘‡) of drug sensitive tuberculosis will have

    a positive impact in reducing the drug sensitive TB burdenin the community, regardless of the values of the otherparameters. This result is stated in the following lemma.

    Lemma 4. The use of isolation (๐›ผ๐‘‡) will have a positive

    impact on the reduction of the drug sensitive TB burden in acommunity regardless of the values of other parameters in thebasic reproduction number under isolation.

    Similarly, from (32), we have that ๐œ•R๐‘‡/๐œ•๐›พ๐‘‡

    < 0.Thus, effective treatment (๐›พ

    ๐‘‡) of drug sensitive tuberculosis

    will have a positive impact in reducing the drug sensitivetuberculosis burden in the community, irrespective of thevalues of the other parameters. This result is summarizedbelow.

    Lemma 5. The use of effective treatment (๐›พ๐‘‡) will have a

    positive impact on the reduction of the drug sensitive TB burdenin a community irrespective of the values of other parameters inthe basic reproduction number under treatment.

    A contour plot of the reproduction number R๐‘‡, as a

    function of the effective treatment rate (๐›พ๐‘‡) and isolation

    rate (๐›ผ๐‘‡), is depicted in Figure 3(a). As expected, the plot

    shows a decrease in R๐‘‡values with increasing values of

    the treatment and isolation rates. For instance, if the useof effective treatment result in ๐›พ

    ๐‘‡= 0.8 and ๐›ผ

    ๐‘‡= 0.8,

    drug sensitive TB burden will be reduced considerably in thepopulation. Similarly in Figure 3(b) the plot shows a decreasein R๐‘‡values with decreasing values of the return rate from

    lost to follow-up (๐œ“๐‘‡) and lost to follow-up rate (๐œ™

    ๐‘‡).

    A contour plot of the reproduction number R๐‘‡, as a

    function of return rate from lost to follow-up (๐œ“๐‘‡) and the

    effective treatment rate (๐›พ๐‘‡), is depicted in Figure 4(a). The

    plot shows a decrease inR๐‘‡values with increasing values of

    the treatment rate. Similarly the plot in Figure 4(b) shows adecrease inR

    ๐‘‡values with increasing values of the isolation

    rate (๐›ผ๐‘‡).

    4.1. Backward Bifurcation Analysis. Model (2) is now investi-gated for the possibility of the existence of the phenomenonof backward bifurcation (where a stable DFE coexists with astable endemic equilibrium when the reproduction number,R0, is less than unity) [44โ€“53]. The epidemiological impli-cation of backward bifurcation is that the elimination (oreffective control) of the TB (and various strains) in the systemis no longer guaranteed when the reproduction number isless than unity but is dependent on the initial sizes of thesubpopulations. The possibility of backward bifurcation inmodel (2) is explored using the centre manifold theory [47],as described in [54] (Theorem 4.1).

    Theorem 6. Model (2) undergoes a backward bifurcation atR๐‘‡= 1whenever inequality (A.9), given inAppendix A, holds.

    Theproof ofTheorem 6 is given in Appendix A (the proofcan be similarly given for the case whenR

    ๐‘€= 1 orR

    ๐‘‹= 1).

    The backward bifurcation property of model (2) is illustratedby simulating themodel using a set of parameter values givenin Table 2 (such that the bifurcation parameters, ๐‘Ž and ๐‘,given in Appendix A, take the values ๐‘Ž = 558.61 > 0 and ๐‘ =1.59 > 0, resp.). The backward bifurcation phenomenon ofmodel (2) makes the effective control of the TB strains in thepopulation difficult, since, in this case, disease control whenR0 < 1 is dependent on the initial sizes of the subpopulationsof model (2). This phenomenon is illustrated numerically inFigures 5 and 6 for individuals with drug sensitive, MDR-,and XDR-TB, as well as individuals who are lost to follow-upwith drug sensitive, MDR-, and XDR-TB, respectively.

    It is worth mentioning that when the reinfection param-eter of model (2), for the recovered individuals, is set to zero(i.e., ๐œ€ = 0), the bifurcation parameter, ๐‘Ž, becomes negative(see Appendix A). This rules out backward bifurcation (inline with Item (iv) of Theorem 4.1 of [54]) in this case. Thus,this study shows that the reinfection of recovered individualscauses backward bifurcation in the transmission dynamicsof TB in the system. To further confirm the absence of thebackward bifurcation phenomenon in model (2) for thiscase, the global asymptotic stability of the DFE of the modelis established below for the case when no reinfection ofrecovered individuals occurs.

  • 12 Abstract and Applied Analysis

    4

    4

    6

    6

    6

    6

    8

    8

    8

    10

    10

    1214

    0 0.2 0.4 0.6 0.8 10

    0.2

    0.4

    0.6

    0.8

    1๐›พT

    ๐›ผT

    (a)

    2.5

    33

    33

    3.53.5

    3.5

    4

    4

    4.5

    0 0.2 0.4 0.6 0.8 10

    0.2

    0.4

    0.6

    0.8

    1

    ๐œ™T

    ๐œ“T

    (b)

    Figure 3: Contour plot of the reproduction number (R๐‘‡) of model (2) as: (a) a function of isolation rate (๐›ผ

    ๐‘‡) and treatment rate (๐›พ

    ๐‘‡); (b) a

    function of return rate from lost to follow-up (๐œ“๐‘‡) and lost to follow-up rate (๐œ™

    ๐‘‡). Parameter values used are as given in Table 2.

    4.5 4.5 4.55

    5 5 55.5 5.5 5.56

    6 6 66.5 6.5 6.57

    7 7 77.5 7.5 7.58 8 8 88.5 8.5 8.590 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    ๐›พT

    ๐œ“T

    (a)

    2.6

    2.8 2.82.8

    33 3 3

    3.2 3.23.2

    3.4 3.43.4

    3.6 3.63.6

    3.8 3.83.8

    4 40 0.2 0.4 0.6 0.8 1

    0

    0.2

    0.4

    0.6

    0.8

    1๐›ผT

    ๐œ“T

    (b)

    Figure 4: Contour plot of the reproduction number (R๐‘‡) of model (2) as: (a) a function of return rate from lost to follow-up (๐œ“

    ๐‘‡) and

    treatment rate (๐›พ๐‘‡); (b) a function of return rate from lost to follow-up (๐œ“

    ๐‘‡) and treatment rate (๐›ผ

    ๐‘‡). Parameter values used are as given in

    Table 2.

    4.2. Global Stability of the DFE: Special Case. Consider thespecial case of model (2) where the reinfection parametersare set to zero (i.e., ๐œ€ = 0). It is convenient to define thereproduction threshold Rฬƒ0 = R0|๐œ€=0.

    Theorem 7. The DFE of model (2), with ๐œ€ = 0, is GAS in ฮฆwhenever Rฬƒ0 < 1.

    The proof of Theorem 7 is given in Appendix B.The epidemiological significance ofTheorem 7 is that, for

    the special case of model (2) with ๐œ€ = 0, TB will be eliminatedfrom the community if the reproduction number (Rฬƒ0) can bebrought to (and maintained at) a value less than unity.

    5. The Effects of Isolation

    Following the result obtained from the sensitivity analysis, weinvestigate the impact of the isolation parameters ๐›ผ

    ๐‘‡, ๐›ผ๐‘€, and

    ๐›ผ๐‘‹, which are one of the dominant parameters of model (2).

    We start by individually varying these parameters for (say)๐›ผ๐‘‡= 0.2, 0.4, 0.6, 0.8, 1.0, with the other parameters given

    in Table 2 kept constant. We observed that (see Figure 7) asthe isolation rate, ๐›ผ

    ๐‘‡, for drug sensitive TB increases, the

    total number of individuals (with drug sensitive, MDR, andXDR) isolatedwith each strain of TB increases, while the totalnumber of individuals who are lost to follow-up decreases.We observed similar result for the isolation rate ๐›ผ

    ๐‘€(see

    Figure 8). However, for isolation rate ๐›ผ๐‘‹, negligible change

    was observed and the plots are not shown.

    6. Conclusion

    In this paper, we have developed and analyzed a system ofordinary differential equations for the transmission dynam-ics of drug-resistant tuberculosis with isolation. From ouranalysis, we have the following results which are summarizedbelow:

  • Abstract and Applied Analysis 13

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    T

    800

    700

    500

    300

    100

    600

    400

    200

    0

    (a)

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    M

    0

    20

    40

    60

    80

    100

    120

    140

    160

    (b)

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    X

    0

    5

    10

    15

    20

    25

    (c)

    Figure 5: Backward bifurcation plot of model (2) as a function of time. (a) Individuals with drug sensitive TB (๐‘‡). (b) Individuals with MDR(๐‘€). (c) Individuals with XDR (๐‘‹). Parameter values used are as given in Table 2.

    (i) Themodel is locally asymptotically stable (LAS)R0 <1 and unstable whenR0 > 1.

    (ii) The model exhibits in the presence of disease reinfec-tion the phenomenon of backward bifurcation, wherethe stable disease-free coexists with a stable endemicequilibrium, when the associated reproduction num-ber is less than unity.

    (iii) As the isolation rate for each strain of TB increases,the total number of individuals infected with theparticular strain of TB decreases.

    (iv) Model (2) in the absence of disease reinfection isglobally asymptotically stable (GAS)R0 < 1.

    (v) The sensitivity analysis of the model shows that thedominant parameters for the drug sensitive TB are

    the disease progression rate (๐œŽ๐‘‡), the recovery rate

    (๐›พ๐‘‡) from drug sensitive TB, the infectivity parameter

    (๐œ‚๐‘‡), the isolation rate (๐›ผ

    ๐‘‡) from drug sensitive TB

    class, fraction of fast progression rates and (๐‘™๐‘‡1 and

    ๐‘™๐‘‡2) into the drug sensitive TB class and lost to follow-up class, and the rate of lost to follow-up (๐œ™

    ๐‘‡). Similar

    parameters and return rates from lost to follow-up(๐œ“๐‘€

    and ๐œ“๐‘‹) are dominant for MDR- and XDR-

    TB. The natural death rate (๐œ‡), although dominantin MDR- and XDR-TB, is however epidemiologicallyirrelevant.

    (vi) Increase in isolation rate leads to increase in totalnumber of individuals isolated with each TB strainresulting in decreases in the total number of individ-uals who are lost to follow-up.

  • 14 Abstract and Applied Analysis

    Appendices

    A. Proof of Theorem 6

    Proof. Theproof is based on using the centremanifold theory[47], as described in [54]. It is convenient to make thefollowing simplification and change of variables.

    Let ๐‘† = ๐‘ฅ1, ๐ธ๐‘‡ = ๐‘ฅ2, ๐‘‡ = ๐‘ฅ3, ๐ธ๐‘€ = ๐‘ฅ4, ๐‘€ = ๐‘ฅ5, ๐ธ๐‘‹ =๐‘ฅ6, ๐‘‹ = ๐‘ฅ7, ๐ฟ๐‘‡ = ๐‘ฅ8, ๐ฟ๐‘€ = ๐‘ฅ9, ๐ฟ๐‘‹ = ๐‘ฅ10, ๐ฝ = ๐‘ฅ11and ๐‘… = ๐‘ฅ12, so that ๐‘ = ๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 +๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12. Using the vectornotation x = (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ4, ๐‘ฅ5, ๐‘ฅ6, ๐‘ฅ7, ๐‘ฅ8, ๐‘ฅ9, ๐‘ฅ10, ๐‘ฅ11, ๐‘ฅ12)

    ๐‘‡,model (2) can be written in the form ๐‘‘x/๐‘‘๐‘ก = m(x), wherem = (๐‘š1, ๐‘š2, ๐‘š3, ๐‘š4, ๐‘š5, ๐‘š6, ๐‘š7, ๐‘š8, ๐‘š9, ๐‘š10, ๐‘š11, ๐‘š12)

    ๐‘‡, asfollows:

    ๐‘‘๐‘ฅ1๐‘‘๐‘ก

    = ๐‘š1 = ๐œ‹โˆ’[๐›ฝ๐‘‡(๐‘ฅ3 + ๐œ‚๐‘‡๐‘ฅ8) + ๐›ฝ๐‘€ (๐‘ฅ5 + ๐œ‚๐‘€๐‘ฅ9) + ๐›ฝ๐‘‹๐‘ฅ7 (๐‘ฅ7 + ๐œ‚๐‘‹๐‘ฅ10)] ๐‘ฅ1

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)โˆ’ ๐œ‡๐‘ฅ1,

    ๐‘‘๐‘ฅ2๐‘‘๐‘ก

    = ๐‘š2 =(1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ (๐‘ฅ3 + ๐œ‚๐‘‡๐‘ฅ8) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)โˆ’ ๐‘”1๐‘ฅ2,

    ๐‘‘๐‘ฅ3๐‘‘๐‘ก

    = ๐‘š3 =๐‘™๐‘‡1๐›ฝ๐‘‡ (๐‘ฅ3 + ๐œ‚๐‘‡๐‘ฅ8) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œŽ๐‘‡๐‘ฅ2 +๐œ“๐‘‡๐‘ฅ8 โˆ’๐‘”2๐‘ฅ3,

    ๐‘‘๐‘ฅ4๐‘‘๐‘ก

    = ๐‘š4 =(1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘‡ (๐‘ฅ5 + ๐œ‚๐‘€๐‘ฅ9) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)โˆ’ ๐‘”3๐‘ฅ4,

    ๐‘‘๐‘ฅ5๐‘‘๐‘ก

    = ๐‘š5 =๐‘™๐‘€1๐›ฝ๐‘‡ (๐‘ฅ5 + ๐œ‚๐‘€๐‘ฅ9) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œŽ๐‘š๐‘ฅ4 +๐œŒ๐‘‡๐‘ฅ3 +๐œ“๐‘š๐‘ฅ9 โˆ’๐‘”4๐‘ฅ5,

    ๐‘‘๐‘ฅ6๐‘‘๐‘ก

    = ๐‘š6 =(1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ (๐‘ฅ7 + ๐œ‚๐‘‹๐‘ฅ10) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)โˆ’ ๐‘”5๐‘ฅ6,

    ๐‘‘๐‘ฅ7๐‘‘๐‘ก

    = ๐‘š7 =๐‘™๐‘‹1๐›ฝ๐‘‹ (๐‘ฅ7 + ๐œ‚๐‘‹๐‘ฅ10) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œŽ๐‘‹๐‘ฅ6 +๐œŒ๐‘€๐‘ฅ5 +๐œ“๐‘‹๐‘ฅ10 โˆ’๐‘”6๐‘ฅ7,

    ๐‘‘๐‘ฅ8๐‘‘๐‘ก

    = ๐‘š8 =๐‘™๐‘‡2๐›ฝ๐‘‡ (๐‘ฅ3 + ๐œ‚๐‘‡๐‘ฅ8) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œ™๐‘‡๐‘ฅ3 โˆ’๐‘”7๐‘ฅ8,

    ๐‘‘๐‘ฅ9๐‘‘๐‘ก

    = ๐‘š9 =๐‘™๐‘€2๐›ฝ๐‘€ (๐‘ฅ5 + ๐œ‚๐‘€๐‘ฅ6) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œ™๐‘€๐‘ฅ5 โˆ’๐‘”8๐‘ฅ9,

    ๐‘‘๐‘ฅ10๐‘‘๐‘ก

    = ๐‘š10 =๐‘™๐‘‹2๐›ฝ๐‘‹ (๐‘ฅ7 + ๐œ‚๐‘‡๐‘ฅ10) (๐‘ฅ1 + ๐œ€๐‘ฅ12)

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12)+ ๐œ™๐‘‹๐‘ฅ7 โˆ’๐‘”9๐‘ฅ10,

    ๐‘‘๐‘ฅ11๐‘‘๐‘ก

    = ๐‘š11 = ๐›ผ๐‘‡๐‘ฅ3 +๐›ผ๐‘€๐‘ฅ5 +๐›ผ๐‘€๐‘ฅ7 โˆ’๐‘”10๐‘ฅ11,

    ๐‘‘๐‘ฅ12๐‘‘๐‘ก

    = ๐‘š12 = ๐›พ๐‘‡๐‘ฅ3 + ๐›พ๐‘€๐‘ฅ5 + ๐›พ๐‘‹๐‘ฅ7 โˆ’๐‘”11๐‘ฅ12 โˆ’๐œ€ [๐›ฝ๐‘‡(๐‘ฅ3 + ๐œ‚๐‘‡๐‘ฅ8) + ๐›ฝ๐‘€ (๐‘ฅ5 + ๐œ‚๐‘€๐‘ฅ9) + ๐›ฝ๐‘‹ (๐‘ฅ7 + ๐œ‚๐‘‹๐‘ฅ10)] ๐‘ฅ12

    (๐‘ฅ1 + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + ๐‘ฅ5 + ๐‘ฅ6 + ๐‘ฅ7 + ๐‘ฅ8 + ๐‘ฅ9 + ๐‘ฅ10 + ๐‘ฅ11 + ๐‘ฅ12).

    (A.1)

    The Jacobian of the transformed system (A.1), at the disease-free equilibriumE1, is given by

    ๐ฝ (E1) = (๐ฝ1 | ๐ฝ2) , (A.2)

  • Abstract and Applied Analysis 15

    where

    ๐ฝ1 =

    ((((((((((((((((((((((

    (

    โˆ’๐œ‡ 0 โˆ’๐›ฝ๐‘‡

    0 โˆ’๐›ฝ๐‘€

    00 โˆ’๐‘”1 ๐‘™๐‘‡1๐›ฝ๐‘‡ + ๐‘๐‘‡1๐›พ๐‘‡ 0 0 00 ๐œŽ๐‘‡

    ๐‘™๐‘‡2๐›ฝ๐‘‡ โˆ’ ๐‘”2 0 0 0

    0 0 0 โˆ’๐‘”3 ๐‘™๐‘€1๐›ฝ๐‘€ 00 0 ๐‘

    ๐‘‡2๐›พ๐‘‡ ๐œŽ๐‘€ ๐‘™๐‘€2๐›ฝ๐‘€ โˆ’ ๐‘”4 00 0 0 0 ๐‘

    ๐‘€1๐›พ๐‘€ โˆ’๐‘”5

    0 0 0 0 0 ๐œŽ๐‘‹

    0 0 (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ + ๐œ™๐‘‡ 0 0 0

    0 0 0 0 (1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ + ๐œ™๐‘€ 0

    0 0 0 0 0 00 0 ๐›ผ

    ๐‘‡0 ๐›ผ

    ๐‘€0

    0 0 (1 โˆ’ ๐‘๐‘‡1 โˆ’ ๐‘๐‘‡2) ๐›พ๐‘‡ 0 (1 โˆ’ ๐‘๐‘€1) ๐›พ๐‘€ 0

    ))))))))))))))))))))))

    )

    ,

    ๐ฝ2

    =

    ((((((((((((((((((((((

    (

    โˆ’๐›ฝ๐‘‹

    โˆ’๐›ฝ๐‘‡๐œ‚๐‘‡

    โˆ’๐›ฝ๐‘€๐œ‚๐‘€

    โˆ’๐›ฝ๐‘‹๐œ‚๐‘‹

    0 00 ๐‘™

    ๐‘‡1๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 0 00 ๐‘™

    ๐‘‡2๐›ฝ๐‘‡๐œ‚๐‘‡ + ๐œ“๐‘‡ 0 0 0 00 0 ๐‘™

    ๐‘€1๐›ฝ๐‘€๐œ‚๐‘€ 0 0 00 0 ๐‘™

    ๐‘€2๐›ฝ๐‘€๐œ‚๐‘€ + ๐œ“๐‘€ 0 0 0๐‘™๐‘‹1๐›ฝ๐‘‹ 0 0 ๐‘™๐‘‹1๐›ฝ๐‘‹๐œ‚๐‘‹ 0 0

    ๐‘™๐‘‹2๐›ฝ๐‘‹ โˆ’ ๐‘”6 0 0 ๐‘™๐‘‹2๐›ฝ๐‘‹๐œ‚๐‘‹ + ๐œ“๐‘‹ 0 0

    0 (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡๐œ‚๐‘‡ โˆ’ ๐‘”7 0 0 0 0

    0 0 (1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€๐œ‚๐‘€ โˆ’ ๐‘”8 0 0 0

    (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ + ๐œ™๐‘‹ 0 0 (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹๐œ‚๐‘‹ โˆ’ ๐‘”9 0 0

    ๐›ผ๐‘‹

    0 0 0 โˆ’๐‘”10 0๐›พ๐‘‹

    0 0 0 0 โˆ’๐‘”11

    ))))))))))))))))))))))

    )

    .

    (A.3)

    Consider the case when R0 = 1. Suppose, further, that ๐›ฝ๐‘‡is chosen as a bifurcation parameter. Solving (2) for ๐›ฝ

    ๐‘‡from

    R0 = 1 gives ๐›ฝ๐‘‡ = ๐›ฝโˆ—

    ๐‘‡. The transformed system (A.1) at

    the DFE evaluated at ๐›ฝ๐‘‡= ๐›ฝโˆ—

    ๐‘‡has a simple zero eigenvalue

    (and all other eigenvalues having negative real parts). Hence,the centre manifold theory [47] can be used to analyze thedynamics of (A.1) near ๐›ฝ

    ๐‘= ๐›ฝโˆ—

    ๐‘‡. In particular, the theorem

    in [54] (see also [36, 47, 48]) is used (it is reproduced inthe Appendix for convenience). To apply the theorem, thefollowing computations are necessary (it should be noted thatwe are using ๐›ฝ

    ๐‘‡instead of ๐œ™ for the bifurcation parameter).

    Eigenvectors of ๐ฝ(E1)|๐›ฝ๐‘‡=๐›ฝโˆ—

    ๐‘‡

    . The Jacobian of (A.1) at ๐›ฝ๐‘‡= ๐›ฝโˆ—

    ๐‘‡,

    denoted by ๐ฝ(E1)|๐›ฝ๐‘‡=๐›ฝโˆ—

    ๐‘‡

    , has a right eigenvector (associatedwith the zero eigenvalue) given by

    w = (๐‘ค1, ๐‘ค2, ๐‘ค3, ๐‘ค4, ๐‘ค5, ๐‘ค6, ๐‘ค7, ๐‘ค8, ๐‘ค9, ๐‘ค10, ๐‘ค11,

    ๐‘ค12)๐‘‡,

    (A.4)

    where

    ๐‘ค1 = โˆ’1๐œ‡[๐›ฝ๐‘‡๐‘ค3 +๐›ฝ๐‘€๐‘ค5 +๐›ฝ๐‘‹๐‘ค7 +๐›ฝ๐‘‡๐œ‚๐‘‡๐‘ค8

    +๐›ฝ๐‘€๐œ‚๐‘€๐‘ค9 +๐›ฝ๐‘‹๐œ‚๐‘‹๐‘ค10] ,

    ๐‘ค2 =1๐‘”1

    {[๐‘๐‘‡1๐›พ๐‘‡ + ๐‘™๐‘‡1๐›ฝ๐‘‡] ๐‘ค3 + ๐‘™๐‘‡1๐›ฝ๐‘‡๐œ‚๐‘‡๐‘ค8} ,

    ๐‘ค3 > 0,

    ๐‘ค5 > 0,

    ๐‘ค4 =1๐‘”3

    [๐‘๐‘‡2๐›พ๐‘‡๐‘ค3 + ๐‘™๐‘€1๐›ฝ๐‘€๐‘ค5 + ๐‘™๐‘€1๐›ฝ๐‘€๐œ‚๐‘€๐‘ค9] ,

    ๐‘ค6 =1๐‘”5

    [๐‘๐‘€1๐›พ๐‘€๐‘ค5 + ๐‘™๐‘‹1๐›ฝ๐‘‹๐‘ค7 + ๐‘™๐‘‹1๐›ฝ๐‘‹๐œ‚๐‘‹๐‘ค10] ,

    ๐‘ค7 > 0,

    ๐‘ค8 =[(1 โˆ’ ๐‘™

    ๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ + ๐œ™๐‘‡] ๐‘ค3

    [๐‘”7 โˆ’ (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡๐œ‚๐‘‡],

  • 16 Abstract and Applied Analysis

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    LT

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    1000

    800

    600

    400

    200

    0

    (a)

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    LM

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    80

    70

    60

    50

    40

    30

    20

    10

    0

    (b)

    Stable EEP

    Unstable EEP

    Unstable DFEStable DFE

    LX

    R0

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    15

    10

    5

    0

    (c)

    Figure 6: Backward bifurcation plot of model (2) as a function of time. (a) Individuals who are lost to follow-up with drug sensitive TB (๐‘‡).(b) Individuals who are lost to follow-up with MDR (๐‘€). (c) Individuals who are lost to follow-up with XDR (๐‘‹). Parameter values used areas given in Table 2.

    ๐‘ค9 =[(1 โˆ’ ๐‘™

    ๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ + ๐œ™๐‘€] ๐‘ค5

    [๐‘”8 โˆ’ (1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€๐œ‚๐‘€],

    ๐‘ค10 =[(1 โˆ’ ๐‘™

    ๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ + ๐œ™๐‘‹] ๐‘ค7

    (๐‘”9 โˆ’ (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹๐œ‚๐‘‹),

    ๐‘ค11 =(๐›ผ๐‘€๐‘ค5 + ๐›ผ๐‘‹๐‘ค7)

    ๐‘”10,

    ๐‘ค12 =1๐‘”11

    [(1โˆ’๐‘๐‘‡1 โˆ’๐‘๐‘‡2) ๐›พ๐‘‡๐‘ค3 + (1โˆ’๐‘๐‘€1) ๐›พ๐‘€๐‘ค5

    + ๐›พ๐‘‹๐‘ค7] .

    (A.5)

    Also, ๐ฝ(E1)|๐›ฝ๐‘‡=๐›ฝโˆ—

    ๐‘‡

    has a left eigenvector k = (V1, V2, V3,V4, V5, V6, V7, V8, V9, V10, V11, V12) (associated with the zeroeigenvalue), where

    V1 = 0,

    V2 =๐œŽ๐‘‡V3๐‘”1

    ,

    V4 =๐œŽ๐‘€V4

    ๐‘”3,

    V6 =๐œŽ๐‘‹V7

    ๐‘”5,

    V3 > 0,

  • Abstract and Applied Analysis 17

    ๐›ผT = 0.20

    ๐›ผT = 0.40

    ๐›ผT = 0.60

    ๐›ผT = 0.80

    ๐›ผT = 1.0

    0 2 4 6 8 10Time (years)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600To

    tal n

    umbe

    r of i

    sola

    ted

    indi

    vidu

    als

    (a)

    ๐›ผT = 0.20

    ๐›ผT = 0.40

    ๐›ผT = 0.60

    ๐›ผT = 0.80

    ๐›ผT = 1.0

    0 2 4 6 8 10Time (years)

    0

    500

    1000

    1500

    2000

    2500

    Tota

    l num

    ber o

    f los

    t to

    sight

    indi

    vidu

    als

    (b)

    Figure 7: Simulation of model (2) as a function of time varying ๐›ผ๐‘‡for (a) total number of isolated individuals and (b) total number of

    individuals who are lost to follow-up. Parameter values used are as given in Table 2.

    ๐›ผM = 0.20

    ๐›ผM = 0.40

    ๐›ผM = 0.60

    ๐›ผM = 0.80

    ๐›ผM = 1.0

    0 2 4 6 8 10Time (years)

    0

    200

    400

    600

    800

    1000

    Tota

    l num

    ber o

    f iso

    late

    d in

    divi

    dual

    s

    (a)

    ๐›ผM = 0.20

    ๐›ผM = 0.40

    ๐›ผM = 0.60

    ๐›ผM = 0.80

    ๐›ผM = 1.0

    0 2 4 6 8 10Time (years)

    0

    500

    1000

    1500

    2000

    Tota

    l num

    ber o

    f los

    t to

    sight

    indi

    vidu

    als

    (b)

    Figure 8: Simulation of model (2) as a function of time varying ๐›ผ๐‘€

    for (a) total number of isolated individuals and (b) total number ofindividuals who are lost to follow-up. Parameter values used are as given in Table 2.

    V7 > 0,

    V5 =1

    (๐‘”4 โˆ’ ๐‘™๐‘€2๐›ฝ๐‘€)[๐‘™๐‘€1๐›ฝ๐‘€V4 +๐‘๐‘€1๐›พ๐‘€V6

    + [(1โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ +๐œ™๐‘€] V9] ,

    V8 =1

    [๐‘”7 โˆ’ (1 โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡๐œ‚๐‘‡][๐‘™๐‘‡1๐›ฝ๐‘‡๐œ‚๐‘‡V2

    + (๐‘™๐‘‡2๐›ฝ๐‘‡๐œ‚๐‘‡ +๐œ“๐‘‡) V3] ,

    V9 =1

    (๐‘”8 โˆ’ (1 โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€๐œ‚๐‘€)[๐‘™๐‘€1๐›ฝ๐‘€๐œ‚๐‘€V4

    + (๐‘™๐‘€2๐›ฝ๐‘€๐œ‚๐‘€ +๐œ“๐‘€) V5] ,

    V10 =1

    (๐‘”9 โˆ’ (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹๐œ‚๐‘‹)[๐‘™๐‘‹1๐›ฝ๐‘‹๐œ‚๐‘‹V6

    + (๐‘™๐‘‹2๐›ฝ๐‘‹๐œ‚๐‘‹ +๐œ“๐‘‹) V7] ,

    V11 = 0,

    V12 = 0.(A.6)

    Computations of Bifurcation Coefficients ๐‘Ž and ๐‘. The appli-cation of the theorem (given in the Appendix) entails the

  • 18 Abstract and Applied Analysis

    computation of two bifurcation coefficients ๐‘Ž and ๐‘. It can beshown, after some algebraic manipulations, that

    ๐‘Ž = V212โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“2

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    + V312โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“3

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    + V412โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“4

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    + V512โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“5

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    + V612โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“6

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    + V712โˆ‘

    ๐‘–,๐‘—=1๐‘ค๐‘–๐‘ค๐‘—

    ๐œ•2๐‘“7

    ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

    =2๐‘ฅ1

    (โˆ’๐‘ค2 โˆ’๐‘ค3 โˆ’๐‘ค4 โˆ’๐‘ค5 โˆ’๐‘ค6 โˆ’๐‘ค7 โˆ’๐‘ค8 โˆ’๐‘ค9

    โˆ’๐‘ค10 โˆ’๐‘ค11 โˆ’๐‘ค12 +๐‘ค12๐œ€) {๐›ฝ๐‘‡ (๐‘ค3 +๐‘ค8๐œ‚๐‘‡)

    โ‹… [๐‘™๐‘‡1V2 + ๐‘™๐‘‡2V3 + (1โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) V8]

    + ๐›ฝ๐‘€(๐‘ค5 +๐‘ค9๐œ‚๐‘€)

    โ‹… [๐‘™๐‘€1V4 + ๐‘™๐‘€2V5 + (1โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) V9]

    + ๐›ฝ๐‘‹(๐‘ค7 +๐‘ค10๐œ‚๐‘‹)

    โ‹… [๐‘™๐‘‹1V6 + ๐‘™๐‘‹2V7 + (1โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) V10]} .

    (A.7)

    Furthermore,

    ๐‘ = V212โˆ‘

    ๐‘–=1๐‘ค๐‘–

    ๐œ•2๐‘“2

    ๐œ•๐‘ฅ๐‘–๐œ•๐›ฝโˆ—๐‘

    + V312โˆ‘

    ๐‘–=1๐‘ค๐‘–

    ๐œ•2๐‘“3

    ๐œ•๐‘ฅ๐‘–๐œ•๐›ฝโˆ—๐‘

    = (๐‘ค3 +๐‘ค8๐œ‚๐‘‡) [๐‘™๐‘‡1V2 + ๐‘™๐‘‡2V3 + (1โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) V8]

    > 0.

    (A.8)

    Hence, it follows from Theorem 4.1 of [54] that the trans-formed model (A.1) (or, equivalently, (2)) undergoes back-ward bifurcation atR0 = 1whenever the following inequalityholds:

    ๐‘Ž > 0. (A.9)

    It is worth noting that if ๐œ€ = 0 (i.e., reinfectionof recovered individuals does not occur), the bifurcationcoefficient, ๐‘Ž, given in (A.7), reduces to

    ๐‘Ž = โˆ’2๐‘ฅ1

    (๐‘ค2 +๐‘ค3 +๐‘ค4 +๐‘ค5 +๐‘ค6 +๐‘ค7 +๐‘ค8 +๐‘ค9

    +๐‘ค10 +๐‘ค11) {๐›ฝ๐‘‡ (๐‘ค3 +๐‘ค8๐œ‚๐‘‡)

    โ‹… [๐‘™๐‘‡1V2 + ๐‘™๐‘‡2V3 + (1โˆ’ ๐‘™๐‘‡1 โˆ’ ๐‘™๐‘‡2) V8]

    + ๐›ฝ๐‘€(๐‘ค5 +๐‘ค9๐œ‚๐‘€)

    โ‹… [๐‘™๐‘€1V4 + ๐‘™๐‘€2V5 + (1โˆ’ ๐‘™๐‘€1 โˆ’ ๐‘™๐‘€2) V9]

    + ๐›ฝ๐‘‹(๐‘ค7 +๐‘ค10๐œ‚๐‘‹)

    โ‹… [๐‘™๐‘‹1V6 + ๐‘™๐‘‹2V7 + (1โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) V10]} .

    (A.10)

    It follows from (A.10) that the bifurcation coefficient ๐‘Ž < 0(ruling out backward bifurcation in this case, in line withTheorem 4.1 in [54]). Thus, this study shows that the back-ward bifurcation phenomenon ofmodel (A.1) is caused by thereinfection of the recovered individuals in the population.

    B. Proof of Theorem 7

    Proof. The proof is based on using a comparison theorem.The equations for the infected components of model (2), with๐œ€ = 0, can be rewritten as

    ((((((((((((((((((((((((((((((((((((

    (

    ๐‘‘๐ธ๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ธ๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ธ๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฝ (๐‘ก)

    ๐‘‘๐‘ก

    ))))))))))))))))))))))))))))))))))))

    )

    = (๐นโˆ’๐‘‰)

    (((((((((((((((((((

    (

    ๐ธ๐‘‡ (๐‘ก)

    ๐‘‡ (๐‘ก)

    ๐ธ๐‘€ (๐‘ก)

    ๐‘€ (๐‘ก)

    ๐ธ๐‘‹ (๐‘ก)

    ๐‘‹ (๐‘ก)

    ๐ฟ๐‘‡ (๐‘ก)

    ๐ฟ๐‘€ (๐‘ก)

    ๐ฟ๐‘‹ (๐‘ก)

    ๐ฝ (๐‘ก)

    )))))))))))))))))))

    )

    โˆ’๐‘ƒ๐‘„

    (((((((((((((((((((

    (

    ๐ธ๐‘‡ (๐‘ก)

    ๐‘‡ (๐‘ก)

    ๐ธ๐‘€ (๐‘ก)

    ๐‘€ (๐‘ก)

    ๐ธ๐‘‹ (๐‘ก)

    ๐‘‹ (๐‘ก)

    ๐ฟ๐‘‡ (๐‘ก)

    ๐ฟ๐‘€ (๐‘ก)

    ๐ฟ๐‘‹ (๐‘ก)

    ๐ฝ (๐‘ก)

    )))))))))))))))))))

    )

    ,

    (B.1)

  • Abstract and Applied Analysis 19

    where ๐‘ƒ = 1 โˆ’ ๐‘†, the matrices ๐น and ๐‘‰ are as given inSection 2.2, and๐‘„ is nonnegativematrices given, respectively,by

    ๐‘„ = [๐‘„1 | ๐‘„2] , (B.2)

    where

    ๐‘„1 =

    (((((((((((((

    (

    0 ๐‘™๐‘‡1๐›ฝ๐‘‡ 0 0 0

    0 ๐‘™๐‘‡2๐›ฝ๐‘‡ 0 0 0

    0 0 0 ๐‘™๐‘€1๐›ฝ๐‘€ 0

    0 0 0 ๐‘™๐‘€2๐›ฝ๐‘€ 0

    0 0 0 0 00 0 0 0 00 (1 โˆ’ ๐‘™

    ๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡ 0 0 00 0 0 (1 โˆ’ ๐‘™

    ๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€ 00 0 0 0 00 0 0 0 0

    )))))))))))))

    )

    ,

    ๐‘„2 =

    (((((((((((((

    (

    0 ๐‘™๐‘‡1๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 0

    0 ๐‘™๐‘‡2๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 0

    0 0 ๐‘™๐‘€1๐›ฝ๐‘€๐œ‚๐‘€ 0 0

    0 0 ๐‘™๐‘€2๐›ฝ๐‘€๐œ‚๐‘€ 0 0

    ๐‘™๐‘‹1๐›ฝ๐‘‹ 0 0 ๐‘™๐‘‹1๐›ฝ๐‘‹๐œ‚๐‘‹ 0๐‘™๐‘‹2๐›ฝ๐‘‹ 0 0 ๐‘™๐‘‹2๐›ฝ๐‘‹๐œ‚๐‘‹ 00 (1 โˆ’ ๐‘™

    ๐‘‡1 โˆ’ ๐‘™๐‘‡2) ๐›ฝ๐‘‡๐œ‚๐‘‡ 0 0 00 0 (1 โˆ’ ๐‘™

    ๐‘€1 โˆ’ ๐‘™๐‘€2) ๐›ฝ๐‘€๐œ‚๐‘€ 0 0(1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹ 0 0 (1 โˆ’ ๐‘™๐‘‹1 โˆ’ ๐‘™๐‘‹2) ๐›ฝ๐‘‹๐œ‚๐‘‹ 0

    0 0 0 0 0

    )))))))))))))

    )

    .

    (B.3)

    Thus, since ๐‘†(๐‘ก) โ‰ค ๐‘(๐‘ก) in ฮฆ for all ๐‘ก โ‰ฅ 0, it follows from(B.1) that

    ((((((((((((((((((((((((((((((((

    (

    ๐‘‘๐ธ๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ธ๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ธ๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘‡ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘€ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฟ๐‘‹ (๐‘ก)

    ๐‘‘๐‘ก

    ๐‘‘๐ฝ (๐‘ก)

    ๐‘‘๐‘ก

    ))))))))))))))))))))))))))))))))

    )

    โ‰ค (๐นโˆ’๐‘‰)

    (((((((((((((((((((

    (

    ๐ธ๐‘‡ (๐‘ก)

    ๐‘‡ (๐‘ก)

    ๐ธ๐‘€ (๐‘ก)

    ๐‘€ (๐‘ก)

    ๐ธ๐‘‹ (๐‘ก)

    ๐‘‹ (๐‘ก)

    ๐ฟ๐‘‡ (๐‘ก)

    ๐ฟ๐‘€ (๐‘ก)

    ๐ฟ๐‘‹ (๐‘ก)

    ๐ฝ (๐‘ก)

    )))))))))))))))))))

    )

    . (B.4)

    Using the fact that the eigenvalues of the matrix ๐น โˆ’ ๐‘‰ allhave negative real parts (see the local stability result givenin Lemma 3, where ๐œŒ(๐น๐‘‰โˆ’1) < 1 if R0 < 1, which isequivalent to ๐น โˆ’ ๐‘‰ having eigenvalues with negative realparts when R0 < 1 [36]), it follows that the linearizeddifferential inequality system (B.4) is stable whenever R0 <1. Consequently, by comparison of theorem [34] (Theorem1.5.2, p. 31),

    (๐ธ๐‘‡ (๐‘ก) , ๐‘‡ (๐‘ก) , ๐ฟ๐‘‡ (๐‘ก) , ๐ธ๐‘€ (๐‘ก) ,๐‘€ (๐‘ก) , ๐ฟ๐‘€ (๐‘ก) , ๐ธ๐‘‹ (๐‘ก) ,

    ๐‘‹ (๐‘ก) , ๐ฟ๐‘‹ (๐‘ก) , ๐ฝ (๐‘ก)) โ†’ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

    as ๐‘ก โ†’ โˆž.

    (B.5)

    Substituting ๐ธ๐‘‡= ๐‘‡ = ๐ฟ

    ๐‘‡= ๐ธ๐‘€= ๐‘€ = ๐ฟ

    ๐‘€= ๐ธ๐‘‹= ๐‘‹ =

    ๐ฟ๐‘‹= ๐ฝ = 0 into the equations of ๐‘† and ๐‘… in model (2), and

    noting that ๐œ€ = 0, gives ๐‘†(๐‘ก) โ†’ ๐‘†โˆ—, ๐‘…(๐‘ก) โ†’ 0 as ๐‘ก โ†’ โˆž.Thus, in summary,

    (๐‘† (๐‘ก) , ๐ธ๐‘‡ (๐‘ก) , ๐‘‡ (๐‘ก) , ๐ฟ๐‘‡ (๐‘ก) , ๐ธ๐‘€ (๐‘ก) ,๐‘€ (๐‘ก) , ๐ฟ๐‘€ (๐‘ก) ,

    ๐ธ๐‘‹ (๐‘ก) , ๐‘‹ (๐‘ก) , ๐ฟ๐‘‹ (๐‘ก) , ๐ฝ (๐‘ก) , ๐‘… (๐‘ก)) โ†’ (๐‘†

    โˆ—, 0, 0, 0, 0,

    0, 0, 0, 0, 0, 0, 0) ,

    (B.6)

  • 20 Abstract and Applied Analysis

    as ๐‘ก โ†’ โˆž. Hence, the DFE (E0) of model (2), with ๐œ€ = 0, isGAS in ฮฆ if Rฬƒ0 < 1.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    References

    [1] Centers for Disease Control,Multidrug-Resistant TB Fact Sheet,2013, http://www.cdc.gov/tb/publications/factsheets/drtb/mdrtb.htm.

    [2] World Health Organization, Tuberculosis Fact Sheet, WorldHealth Organization, Geneva, Switzerland, 2015, http://www.who.int/mediacentre/factsheets/fs104/en/.

    [3] J. R. Andrews, N. S. Shah, N. Gandhi, T. Moll, and G. Friedland,โ€œMultidrug-resistant and extensively drug-resistant tubercu-losis: implications for the HIV epidemic and antiretroviraltherapy rollout in South Africa,โ€ Journal of Infectious Diseases,vol. 196, no. 3, pp. S482โ€“S490, 2007.

    [4] World Health Organization, โ€œGlobal tuberculosis report 2014,โ€http://www.who.int/tb/publications/global report/gtbr14 exec-utive summary.pdf.

    [5] S. Basu andA. P.Galvani, โ€œThe transmission and control of XDRTB in South Africa: an operations research and mathematicalmodelling approach,โ€ Epidemiology & Infection, vol. 136, no. 12,pp. 1585โ€“1598, 2008.

    [6] J. Hughes, H. Cox, and N. Ford, โ€œSanatoria for drug-resistanttuberculosis: an outdated response,โ€ The Lancet, vol. 379, no.9832, pp. 2148โ€“2149, 2012.

    [7] K. Dheda and G. B. Migliori, โ€œThe global rise of extensivelydrug-resistant tuberculosis: is the time to bring back sanatorianow overdue?โ€The Lancet, vol. 379, no. 9817, pp. 773โ€“775, 2012.

    [8] K. R. Jacobson, D. B. Tierney, C. Y. Jeon, C. D. Mitnick,and M. B. Murray, โ€œTreatment outcomes among patients withextensively drug-resistant tuberculosis: systematic review andmeta-analysis,โ€ Clinical Infectious Diseases, vol. 51, no. 1, pp. 6โ€“14, 2010.

    [9] P. Sampathkumar, โ€œDealing with threat of drug-resistant tuber-culosis: background information for interpreting the AndrewSpeaker and related cases,โ€Mayo Clinic Proceedings, vol. 82, no.7, pp. 799โ€“802, 2007.

    [10] American Lung Association, Multidrug-Resistant Tuberculosis(MDR-TB) Fact Sheet, 2013, http://www.lung.org/lung-disease/tuberculosis/factsheets/multidrug-resistant.html.

    [11] B. Song, C. Castillo-Chavez, and J. P. Aparicio, โ€œTuberculosismodels with fast and slow dynamics: the role of close and casualcontacts,โ€Mathematical Biosciences, vol. 180, pp. 187โ€“205, 2002.

    [12] R. I. Hickson, G. N. Mercer, and K. M. Lokuge, โ€œA metapopula-tion model of tuberculosis transmission with a case study fromhigh to low burden areas,โ€ PLoS ONE, vol. 7, no. 4, Article IDe34411, 2012.

    [13] Y. Liu, Z. Sun, G. Sun et al., โ€œModeling transmission of tuber-culosis with MDR and undetected cases,โ€ Discrete Dynamics inNature and Society, vol. 2011, Article ID 296905, 12 pages, 2011.

    [14] C. Castillo-Chavez andZ. Feng, โ€œTo treat or not to treat: the caseof tuberculosis,โ€ Journal of Mathematical Biology, vol. 35, no. 6,pp. 629โ€“656, 1997.

    [15] T. Cohen and M. Murray, โ€œModeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness,โ€ NatureMedicine, vol. 10, no. 10, pp. 1117โ€“1121, 2004.

    [16] M. G. M. Gomes, A. O. Franco, M. C. Gomes, and G. F. Medley,โ€œThe reinfection threshold promotes variability in tuberculosisepidemiology and vaccine efficacy,โ€ Proceedings of the RoyalSociety B: Biological Sciences, vol. 271, no. 1539, pp. 617โ€“623,2004.

    [17] T. C. Porco and S. M. Blower, โ€œQuantifying the intrinsictransmission dynamics of tuberculosis,โ€ Theoretical PopulationBiology, vol. 54, no. 2, pp. 117โ€“132, 1998.

    [18] E. Jung, S. Lenhart, and Z. Feng, โ€œOptimal control of treatmentsin a two-strain tuberculosis model,โ€ Discrete and ContinuousDynamical Systems B, vol. 2, no. 4, pp. 473โ€“482, 2002.

    [19] S. M. Blower, A. R. McLean, T. C. Porco et al., โ€œThe intrin-sic transmission dynamics of tuberculosis epidemics,โ€ NatureMedicine, vol. 1, no. 8, pp. 815โ€“821, 1995.

    [20] T. Cohen, C. Colijn, B. Finklea, and M. Murray, โ€œExogenousre-infection and the dynamics of tuberculosis epidemics: localeffects in a networkmodel of transmission,โ€ Journal of the RoyalSociety Interface, vol. 4, no. 14, pp. 523โ€“531, 2007.

    [21] Z. Feng,W.Huang, andC. Castillo-Chavez, โ€œOn the role of vari-able latent periods in mathematical models for tuberculosis,โ€Journal of Dynamics and Differential Equations, vol. 13, no. 2,pp. 425โ€“452, 2001.

    [22] Y. Emvudu, R. Demasse, and D. Djeudeu, โ€œOptimal control ofthe lost to follow up in a tuberculosis model,โ€ Computationaland Mathematical Methods in Medicine, vol. 2011, Article ID398476, 12 pages, 2011.

    [23] S. Bowong, Y. Emvudu, D. P. Moualeu, and J. J. Tewa, โ€œMathe-matical properties of a tuberculosis model with two differentialinfectivity and N latent classes,โ€ Journal of Nonlinear Systemsand Applications, vol. 1, pp. 13โ€“26, 2010.

    [24] M. W. Borgdorff, โ€œNew measurable indicator for tuberculosiscase detection,โ€ Emerging Infectious Diseases, vol. 10, no. 9, 2004.

    [25] C. Dye, G. P. Garnett, K. Sleeman, and B. G. Williams,โ€œProspects for worldwide tuberculosis control under the WHODOTS strategy. Directly observed short-course therapy,โ€ TheLancet, vol. 352, no. 9144, pp. 1886โ€“1891, 1998.

    [26] P. M. Sutton, M. Nicas, and R. J. Harrison, โ€œTuberculosis iso-lation: comparison of written procedures and actual practicesin three California hospitals,โ€ Infection Control and HospitalEpidemiology, vol. 21, no. 1, pp. 28โ€“32, 2000.

    [27] S. E. Weis, P. C. Slocum, F. X. Blais et al., โ€œThe effect of directlyobserved therapy on the rates of drug resistance and relapse intuberculosis,โ€TheNewEngland Journal ofMedicine, vol. 330, no.17, pp. 1179โ€“1184, 1994.

    [28] J. Frith, โ€œHistory of tuberculosis. Part 2โ€”the sanatoria and thediscoveries of the Tubercle bacillus,โ€ Journal of Military andVeteransโ€™ Health, vol. 22, no. 2, pp. 36โ€“41, 2014.

    [29] M. R. Oโ€™Donnell, N. Padayatchi, C. Kvasnovsky, L. Werner,I. Master, and C. R. Horsburgh Jr., โ€œTreatment outcomes forextensively drug-resistant tuberculosis and HIV co-infection,โ€Emerging Infectious Diseases, vol. 19, no. 3, pp. 416โ€“424, 2013.

    [30] D. P. Moualeu, S. Bowong, and Y. Emvudu, โ€œGlobal stability ofa tuberculosis model with N latent classes,โ€ Journal of AppliedMathematics & Informatics, vol. 29, no. 5-6, pp. 1097โ€“1115, 2011.

    [31] S. Bowong and J. J. Tewa, โ€œMathematical analysis of a tuber-culosis model with differential infectivity,โ€ Communications inNonlinear Science and Numerical Simulation, vol. 14, no. 11, pp.4010โ€“4021, 2009.

  • Abstract and Applied Analysis 21

    [32] D. P. Moualeu, M. Weiser, R. Ehrig, and P. Deuflhard, โ€œOptimalcontrol for a tuberculosis model with undetected cases inCameroon,โ€ Communications in Nonlinear Science and Numer-ical Simulation, vol. 20, no. 3, pp. 986โ€“1003, 2015.

    [33] H. R. Thieme, Mathematics in Population Biology, PrincetonUniversity Press, 2003.

    [34] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, StabilityAnalysis of Nonlinear Systems, Marcel Dekker, New York, NY,USA, 1989.

    [35] H.W.Hethcote, โ€œThemathematics of infectious diseases,โ€ SIAMReview, vol. 42, no. 4, pp. 599โ€“653, 2000.

    [36] P. van denDriessche and J.Watmough, โ€œReproduction numbersand sub-threshold endemic equilibria for compartmental mod-els of disease transmission,โ€Mathematical Biosciences, vol. 180,pp. 29โ€“48, 2002.

    [37] R. M. Anderson and R. M. May, Infectious Diseases of Humans,Oxford University Press, Oxford, UK, 1991.

    [38] O. Diekmann, J. A. Heesterbeek, and J. A. Metz, โ€œOn thedefinition and computation of the basic reproduction ratio ๐‘…

    0

    inmodels for infectious diseases in heterogeneous populations,โ€Journal of Mathematical Biology, vol. 28, no. 4, pp. 365โ€“382,1990.

    [39] S. M. Blower and H. Dowlatabadi, โ€œSensitivity and uncertaintyanalysis of complex models of disease transmission: an HIVmodel, as an example,โ€ International Statistical Review, vol. 62,no. 2, pp. 229โ€“243, 1994.

    [40] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, โ€œAmethodology for performing global uncertainty and sensitivityanalysis in systems biology,โ€ Journal of Theoretical Biology, vol.254, no. 1, pp. 178โ€“196, 2008.

    [41] M. D. McKay, R. J. Beckman, andW. J. Conover, โ€œA comparisonof three methods for selecting values of input variables in theanalysis of output from a computer code,โ€ Technometrics, vol.21, no. 2, pp. 239โ€“245, 1979.

    [42] R. G. McLeod, J. F. Brewster, A. B. Gumel, and D. A. Slonowsky,โ€œSensitivity and uncertainty analyses for a SARS model withtime-varying inputs and outputs,โ€Mathematical Biosciences andEngineering, vol. 3, no. 3, pp. 527โ€“544, 2006.

    [43] S.-F. H. Schmitz, โ€œEffects of treatment or/and vaccination onHIV transmission in homosexuals with genetic heterogeneity,โ€Mathematical Biosciences, vol. 167, no. 1, pp. 1โ€“18, 2000.

    [44] F. B. Agusto and A. B. Gumel, โ€œQualitative dynamics of lowly-and highly-pathogenic avian influenza strains,โ€ MathematicalBiosciences, vol. 243, no. 2, pp. 147โ€“162, 2013.

    [45] F. B. Agusto, A. B. Gumel, S. Lenhart, and A. Odoi, โ€œMathemat-ical analysis of amodel for the transmission dynamics of bovinetuberculosis,โ€ Mathematical Methods in the Applied Sciences,vol. 34, no. 15, pp. 1873โ€“1887, 2011.

    [46] F. Brauer, โ€œBackward bifurcations in simple vaccination mod-els,โ€ Journal of Mathematical Analysis and Applications, vol. 298,no. 2, pp. 418โ€“431, 2004.

    [47] J. Carr,Applications of CentreManifoldTheory, vol. 35, Springer,New York, NY, USA, 1981.

    [48] J. Dushoff, W. Huang, and C. Castillo-Chavez, โ€œBackwardsbifurcations and catastrophe in simple models of fatal diseases,โ€Journal of Mathematical Biology, vol. 36, no. 3, pp. 227โ€“248,1998.

    [49] E. H. Elbasha and A. B. Gumel, โ€œTheoretical assessment ofpublic health impact of imperfect prophylactic HIV-1 vaccineswith therapeutic benefits,โ€ Bulletin of Mathematical Biology, vol.68, no. 3, pp. 577โ€“614, 2006.

    [50] S. M. Garba and A. B. Gumel, โ€œEffect of cross-immunity on thetransmission dynamics of two strains of dengue,โ€ InternationalJournal of Computer Mathematics, vol. 87, no. 10, pp. 2361โ€“2384,2010.

    [51] S. M. Garba, A. B. Gumel, and M. R. Abu Bakar, โ€œBackwardbifurcations in dengue transmission dynamics,โ€ MathematicalBiosciences, vol. 215, no. 1, pp. 11โ€“25, 2008.

    [52] O. Sharomi, C. N. Podder, A. B. Gumel, E. H. Elbasha, andJ. Watmough, โ€œRole of incidence function in vaccine-inducedbackward bifurcation in some HIV models,โ€ MathematicalBiosciences, vol. 210, no. 2, pp. 436โ€“463, 2007.

    [53] O. Sharomi, C. N. Podder, A. B. Gumel, and B. Song, โ€œMath-ematical analysis of the transmission dynamics of HIV/TBco-infection in the presence of treatment,โ€ Mathematical Bio-sciences and Engineering, vol. 5, no. 1, pp. 145โ€“174, 2008.

    [54] C. Castillo-Chavez and B. Song, โ€œDynamical models of tuber-culosis and their applications,โ€ Mathematical Biosciences andEngineering, vol. 1, no. 2, pp. 361โ€“404, 2004.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Cor