Research Article Analytical Solutions for the Elastic Circular Rod...

11
Research Article Analytical Solutions for the Elastic Circular Rod Nonlinear Wave, Boussinesq, and Dispersive Long Wave Equations Shi Jing 1 and Yan Xin-li 2 1 School of Science, Chang’an University, Xi’an 710064, China 2 School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China Correspondence should be addressed to Shi Jing; [email protected] Received 31 December 2013; Revised 23 March 2014; Accepted 25 March 2014; Published 22 April 2014 Academic Editor: Michael Meylan Copyright © 2014 S. Jing and Y. Xin-li. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method) can be used to solve other similar nonlinear wave equations. 1. Introduction Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of sciences such as biology, chemistry, communication, and especially many branches of physics like condensed matter physics, field theory, fluid dynamics, plasma physics, and optics, and so forth. In this paper, we consider nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations, and dispersive long wave equations with same physical behavior. e elastic circular rod is one important component in the structures, in which the dynamics of these components are governed by double nonlinearity and double dispersion wave equation [1]. e Boussinesq equation, which was first introduced in 1871, arises in several physical applications. e dynamics of shallow water waves, which are seen in various places like sea beaches, lakes, and rivers, are governed by the Boussinesq equation. In recent years there has been much interest in some variants of the Boussinesq systems [26]. ese coupled Boussinesq equations [7] arise in shallow water waves for two-layered fluid flow. is situation occurs when there is an accidental oil spill from a ship which results in a layer of oil floating above the layer of water. e (2 + 1)- dimensional dispersive long wave equations [8, 9] were first derived by Boiti as a compatibility condition for a “weak” Lax pair. A good understanding of the solutions for these equations is very helpful to coastal and civil engineers in applying the nonlinear water model to coastal harbor design. In the field of nonlinear science to find exact solutions for a nonlinear system is one of the most fundamental and significant studies. e evaluation of exact solutions of nonlinear wave has complicated nonlinear defects; such equations are oſten very difficult to be solved. Although intensive investigations have made significant progress in recent years, many methods have been proposed to construct exact solutions, such as Weierstrass elliptic function method, the homogeneous balance method, sine-cosine method, the nonlinear transformation method, the hyperbolic tangent functions finite expansion, improved mapping approach, and further extended tanh method. e homogeneous balance method is a powerful tool to find solitary wave solutions of nonlinear partial differential equations. Fan introduced the homogeneous balance method into the search for B¨ acklund transformations and obtained more solutions [10]. e mapping method is a very effective direct method to construct exact solutions of nonlinear equations. Zhang et al. make use of the auxiliary equation and the expanded map- ping methods to find the new exact periodic solutions for (2 + 1)-dimensional dispersive long wave equations [11]. Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 487571, 10 pages http://dx.doi.org/10.1155/2014/487571

Transcript of Research Article Analytical Solutions for the Elastic Circular Rod...

Page 1: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Research ArticleAnalytical Solutions for the Elastic Circular Rod NonlinearWave Boussinesq and Dispersive Long Wave Equations

Shi Jing1 and Yan Xin-li2

1 School of Science Changrsquoan University Xirsquoan 710064 China2 School of Science Xirsquoan University of Architecture and Technology Xirsquoan 710055 China

Correspondence should be addressed to Shi Jing shijing-sj163com

Received 31 December 2013 Revised 23 March 2014 Accepted 25 March 2014 Published 22 April 2014

Academic Editor Michael Meylan

Copyright copy 2014 S Jing and Y Xin-li This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The solving processes of the homogeneous balance method Jacobi elliptic function expansion method fixed point method andmodified mapping method are introduced in this paper By using four different methods the exact solutions of nonlinear waveequation of a finite deformation elastic circular rod Boussinesq equations and dispersive long wave equations are studied In thediscussion the more physical specifications of these nonlinear equations have been identified and the results indicated that thesemethods (especially the fixed point method) can be used to solve other similar nonlinear wave equations

1 Introduction

Nonlinear partial differential equations are widely used todescribe complex phenomena in various fields of sciencessuch as biology chemistry communication and especiallymany branches of physics like condensedmatter physics fieldtheory fluid dynamics plasma physics and optics and soforth In this paper we consider nonlinear wave equation of afinite deformation elastic circular rod Boussinesq equationsand dispersive long wave equations with same physicalbehaviorThe elastic circular rod is one important componentin the structures in which the dynamics of these componentsare governed by double nonlinearity and double dispersionwave equation [1] The Boussinesq equation which was firstintroduced in 1871 arises in several physical applicationsThedynamics of shallow water waves which are seen in variousplaces like sea beaches lakes and rivers are governed by theBoussinesq equation In recent years there has been muchinterest in some variants of the Boussinesq systems [2ndash6]These coupledBoussinesq equations [7] arise in shallowwaterwaves for two-layered fluid flow This situation occurs whenthere is an accidental oil spill from a ship which results ina layer of oil floating above the layer of water The (2 + 1)-dimensional dispersive long wave equations [8 9] were firstderived by Boiti as a compatibility condition for a ldquoweakrdquo

Lax pair A good understanding of the solutions for theseequations is very helpful to coastal and civil engineers inapplying the nonlinear water model to coastal harbor design

In the field of nonlinear science to find exact solutionsfor a nonlinear system is one of the most fundamentaland significant studies The evaluation of exact solutionsof nonlinear wave has complicated nonlinear defects suchequations are often very difficult to be solved Althoughintensive investigations have made significant progress inrecent years manymethods have been proposed to constructexact solutions such as Weierstrass elliptic function methodthe homogeneous balance method sine-cosine method thenonlinear transformation method the hyperbolic tangentfunctions finite expansion improvedmapping approach andfurther extended tanh method

The homogeneous balance method is a powerful tool tofind solitary wave solutions of nonlinear partial differentialequations Fan introduced the homogeneous balancemethodinto the search for Backlund transformations and obtainedmore solutions [10]

The mapping method is a very effective direct method toconstruct exact solutions of nonlinear equations Zhang et almake use of the auxiliary equation and the expanded map-ping methods to find the new exact periodic solutions for(2 + 1)-dimensional dispersive long wave equations [11]

Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2014 Article ID 487571 10 pageshttpdxdoiorg1011552014487571

2 Journal of Applied Mathematics

The basic idea of the fixed point methods consists infinding an iteration function which generates successiveapproximations to the solution [12]

Many periodic solutions have been recently expressed interms of various Jacobi-elliptic functions for a wide class ofnonlinear evolution equations which have been obtained bymeans of Jacobi elliptic expansion method [13]

The longitudinal wave equation of a finite deformationelastic circular rod Boussinesq equations and dispersive longwave equations are nonlinear partial differential equationsof different scientific field We find that they have the samecharacteristics In this paper the analytical solutions of thedifferential equations for the elastic circular rod Boussinesqequations and dispersive long wave equations are solved byusing homogeneous balance method Jacobi elliptic functionmethod fixed point method andmodifiedmappingmethodThemore physical specifications of these nonlinear equationshave been identified and the results indicated

2 Three Types of Nonlinear Wave Equations

The longitudinal wave equation of a finite deformation elasticcircular rod is [1]

119906119905119905minus 1198882

0119906119909119909= [

3119864

21205881199062+119864

21205881199063+]21198772

2(119906119905119905minus 1198882

1119906119909119909)]119909119909

(1)

where 1198880= radic119864120588 is the longitudinal wave velocity for a linear

elastic rod and 1198881= radic120583120588 is the shear wave velocity 120588 is the

density of thematerial ] is the Poisson ratio119877 is the diameterof bar 119864 is Yongrsquos modulus of material 120583 is the elastic shearmodulus of material 119905 is the time variable

Make the traveling wave transformation

119906 (119909 119905) = 119906 (120585) 120585 = 119896 (119909 minus 120582119905) (2)

Substituting (2) into (1) and integrating it with respect to120585 twice we can obtain

119896211990610158401015840+ 1205731119906 + 12057321199062+ 12057331199063= 119873 (3)

where 119873 is the second integral constant The first integralconstant is zero and

1205731=

2 (1205822 minus 11988820)

]21198772 (1205822 minus 11988821) 120573

2=

311988820

]21198772 (1205822 minus 11988821)

1205733=

11988820

]21198772 (1205822 minus 11988821)

(4)

The variant Boussinesq equations were discussed in [7]They are coupling wave equations which can be expressed asfollows

119867119905+ (119867119906)

119909+ 119906119909119909119909

= 0

119906119905+ 119867119909+ 119906119906119909= 0

(5)

where 119906(119909 119905) is the velocity and 119867(119909 119905) is the total depthMake the traveling wave transformation

119867(119909 119905) = 119867 (120585) 119906 (119909 119905) = 119906 (120585) 120585 = 119896 (119909 minus 120582119905)

(6)

Substituting (6) into (5) and integrating with respect to 120585we have

minus120582119867 +119867119906 + 119896211990610158401015840= 1198861 119867 = 120582119906 minus

1

21199062+ 1198871 (7)

where 1198861 1198871are integral constants

Substituting the second formula of (7) into the first oneand assuming120573

1= 1198871minus1205822120573

2= (32)120582120573

3= minus(12)119873 = 119886

1+

1205821198871 we can obtain (3) So the solutions of (7) are equivalent

to that of (3) and the second formula of (7)(2 + 1)-dimension dispersive long wave equations were

discussed in [8 9] They can be written as follows

119906119905119910+ ℎ119909119909+1

2(1199062)119909119910= 0

ℎ119905+ (ℎ119906 + 119906 + 119906

119909119910)119909= 0

(8)

Suppose that the traveling wave solutions for (8) can begiven in the following forms

119906 (119909 119910 119905) = 119906 (120585) ℎ (119909 119910 119905) = ℎ (120585)

120585 = 119909 + 119899119910 + 120596119905(9)

Substituting (9) into (8) we have

11989911990610158401015840+ (1 minus 119899120596

2) 119906 minus

3

21198991205961199062minus119899

21199063= 1198731

ℎ = minus119899120596119906 minus1

21198991199062

(10)

where1198731is the second integral constant

Obviously the first formula of (10) and (3) have the samecharacteristics On the other hand the solutions of (10) and(7) are samewith each other except for the coefficientsThere-fore in following parts the solutions of (5) are presented

3 Homogeneous Balance Method

In [14 15] the homogeneous balance method is used tosolve nonlinear wave equations For example the followingequation was solved in [15]

119906119905+ 6119906119906

119909+ 119906119909119909119909

= 0 (11)

The exact solution of the following corresponding equa-tion was given by using the same method

119906119905minus 119863119906119909119909+ 120582 (119906

3+ 1205721199062+ 120573119906) = 0 (12)

To solve (5) the homogeneous balance method wasimproved in this paper

Journal of Applied Mathematics 3

Now suppose that

119906 (119909 119905) = 1198911015840120596119909+ 119887 119867 (119909 119905) = 119892

10158401205962

119909+ 119888 (13)

where119891(120596)119892(120596) and120596(119909 119905) are the undetermined functionsand 119887 119888 are undetermined constants

Substituting (13) into (5) the equations can be rewrittenas follows

(119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)) 1205964

119909+ 61198911015840101584010158401205962

1199091205962119909

+ 11989110158401015840(1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909) + 11989210158401015840(1198871205963

119909+ 1205962

119909120596119905)

+ 3119891101584011989210158401205962

1199091205962119909+ 1198911015840(1198881205962119909+ 1205964119909)

+ 21198921015840(1198871205961199091205962119909+ 120596119909120596119909119905) = 0

(11989210158401015840+ 119891101584011989110158401015840) 1205963

119909+ 11989110158401015840(120596119909120596119905+ 1198871205962

119909) + 119891101584021205961199091205962119909

+ 1198911015840(120596119909119905+ 1198871205962119909) + 2119892

10158401205961199091205962119909= 0

(14)

where 1205962119909= 120596119909119909 1205963119909= 120596119909119909119909

1205964119909= 120596119909119909119909119909

In (14) let

119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)

= 0 11989210158401015840+ 119891101584011989110158401015840= 0 (15)

Integrating the second formula of (15) we have

1198921015840+1

211989110158402= 0 (16)

Furthermore we can obtain

1198921015840= minus

1

211989110158402 119892

10158401015840= minus119891101584011989110158401015840 (17)

Substituting (17) into the first formula of (15) we have

119891(4)minus3

21198911015840211989110158401015840= 0 (18)

Integrating (18) we have

119891101584010158401015840minus1

211989110158403= 0 (19)

We know the solution of (19) is

119891 = 2 ln120596 (20)

Obviously we have

11989110158402= minus2119891

10158401015840 119891

101584011989110158401015840= minus119891101584010158401015840

11989110158401198921015840= minus119891101584010158401015840 119891

10158403= 2119891101584010158401015840

(21)

Substituting (17) and (21) into (14) the equations can berewritten as follows

1205962

119909(31205962119909+ 119887120596119909+ 120596119905) 119891101584010158401015840

+ (1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905) 11989110158401015840

+ (1198881205962119909+ 1205964119909) 1198911015840= 0

120596119909(120596119905+ 119887120596119909) 11989110158401015840+ (120596119909119905+ 1198871205962119909) 1198911015840= 0

(22)

Letting all coefficients of 119891 in (22) be zero we have31205962119909+ 119887120596119909+ 120596119905= 0

1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905= 0

1198881205962119909+ 1205964119909= 0

120596119905+ 119887120596119909= 0 120596

119909119905+ 1198871205962119909= 0

(23)

From first and fifth second formula of (23) it can beobtained that

120596 = 120572 (119905) 119909 + 120573 (119905) (24)where 120572(119905) is undetermined function and 120573(119905) is arbitraryfunction

From second formula of (23) we have

120572 (119905) = 119890minus(1198882)119905+119896

(25)where 119896 is the integral constant

Therefore from (13) (20) (24) and (25) we know thesolutions of (5) are

1199061(119909 119905) =

2120572 (119905)

120572 (119905) 119909 + 120573 (119905)+ 119887

1198671(119909 119905) =

minus21205722(119905)

[120572 (119905) 119909 + 120573 (119905)]2+ 119888

(26)

4 Jacobi Elliptic Function Method

In [16] the NLS equation and Zakharov equation werestudied by using the Jacobi elliptic function method In thispaper (1) and (5) are discussed by using this method

41 Jacobi Elliptic Sine Function Method Let119906 = 1198860+ 1198861sn120585 (27)

We know119889119906

119889120585= 1198861cn120585dn120585

1198892119906

1198891205852= minus (1 + 119898

2) 1198861sn120585 + 21198982119886

1sn3120585

1199062= 1198862

0+ 211988601198861sn120585 + 1198862

1sn2120585

1199063= 1198863

0+ 31198862

01198861sn120585 + 3119886

01198862

1sn2120585 + 1198863

1sn3120585

(28)

where cn120585 and dn120585 are the Jacobi elliptic cosine functionand the third type Jacobi elliptic function respectively and119898 (0 lt 119898 lt 1) is module

Substituting (27) into (3) we have

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[minus1198962(1 + 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] sn120585

+ 1198862

1(1205732+ 312057331198860) sn2120585 + 119886

1(211989621198982+ 12057331198862

1) sn3120585 = 0

(29)

4 Journal of Applied Mathematics

Let the coefficients of all derivatives of sn120585 be zero and wehave

1198860=minus1205732

31205733

1198861= plusmn

radic2119896119898

radicminus1205733

1198962=

1

1 + 1198982(1205731+ 212057321198860+ 312057331198862

0)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(30)

Therefore the solution of (3) is

1199062(119909 119905) = 119886

0+ 1198861sn119896 (119909 minus 120582119905) (31)

where 1198860 1198861 and 119896 are denoted by (30) and 120582 is arbitrary

constantWhen119898 rarr 1 sn120585 rarr tanh 120585

1199062(119909 119905) = 119886

0+ 1198861tanh 119896 (119909 minus 120582119905) (32)

Thus the solutions of (5) are (32) and the followingformula

1198672(119909 119905) = 119887

1+ 1205821199062minus1

21199062

2 (33)

Assuming 120582 = minus1 1198871= 15 120573

1= 05 120573

2= minus15 and

1205733= minus05 it can be obtained that 119886

0= minus1 119886

1= 2 and 119896 =

1 The solutions of (5) are 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and119867(119909 119905) = 2 minus 2 tanh2(119909 + 119905) The solitary wave and behaviorof the solutions 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and 119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) are shown in Figures 1 and 2 respectivelyfor 0 le 119905 le 1 and minus10 le 119909 le 10 The waveform is similar tothe result in [17]

42 Jacobi Elliptic Cosine Function Method Let

119906 = 1198860+ 1198861cn120585 (34)

Thus

1199061015840= minus1198861sn120585dn120585 119906

10158401015840= (2119898

2minus 1) 119886

1cn120585 minus 21198982cn3120585

1199062= 1198862

0+ 211988601198861cn120585 + 1198862

1cn2120585

1199063= 1198863

0+ 31198862

01198861cn120585 + 3119886

01198862

1cn2120585 + 1198863

1cn3120585

(35)

Substituting (35) into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[1198962(21198982minus 1) + 120573

1+ 212057321198860+ 312057331198862

0] cn120585

+ 1198862

1(1205732+ 312057331198860) cn2120585

+ 1198861(minus211989621198982+ 12057331198862

1) cn3120585 = 0

(36)

05

10

0

1

0

10

minus10

minus5

minus3

minus2

minus1

minus25

minus2

minus15

minus1

minus05

05

05

Figure 1 The solitary wave and behavior of the solutions 119906(119909 119905) =minus1 + 2 tanh(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Figure 2 The solitary wave and behavior of the solutions119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Let the coefficients of all derivatives of cn120585 be zero and wehave

1198860= minus

1205732

31205733

1198861= plusmn119896119898radic

2

1205733

1198962=

12057322minus 312057311205733

31205733(21198982 minus 1)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(37)

Therefore the solution of (3) is

1199063(119909 119905) = 119886

0+ 1198861cn119896 (119909 minus 120582119905) (38)

where 1198860 1198861and 119896 are denoted by (37) and 120582 is arbitrary

constantThe solutions of (7) are (38) and the following formula

1198673(119909 119905) = 119887

1+ 1205821199063(119909 119905) minus

1

21199062

3(119909 119905) (39)

Journal of Applied Mathematics 5

05

10

0

11

2

3

2

3

22

24

26

28

12

14

05

15

25

16

18

minus10

minus5

Figure 3 The solitary wave and behavior of the solutions 119906(119909 119905) =1 + 2 sech(119909 minus 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Taking 119898 rarr 1 cn120585 rarr sech120585 (38) can be rewritten asfollows

1199063(119909 119905) = 119886

0+ 1198861sech119896 (119909 minus 120582119905) (40)

Assuming 120582 = 1 1205731= 05 120573

2= minus15 and 120573

3= 05 it can

be obtained that 1198860= 1 1198861= 2 and 119896 = 1 The solution of (3)

is 119906(119909 119905) = 1+2 sech(119909minus119905)The solitary wave and behavior ofthe solutions are shown in Figure 3 respectively for 0 le 119905 le 1

and minus10 le 119909 le 10

43 Third Kind of Jacobi Elliptic Function Method Let

119906 = 1198860+ 1198861dn120585 (41)

Thus

1199061015840= minus119898

21198861sn120585 119906

10158401015840= (2 minus 119898

2) 1198861dn120585 minus 2119886

1dn3120585

1199063= 1198863

0+ 31198862

01198861dn120585 + 3119886

01198862

1dn2120585 + 1198863

1dn3120585

(42)

Substituting them into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] dn120585

+ 1198862

1(1205732+ 312057331198860) dn2120585 + 119886

1(minus21198962+ 1198862

11205733) dn3120585 = 0

(43)

Letting the coefficients of all derivatives of dn120585 be zerowe have

1198860=minus1205732

31205733

1198861= plusmn119896radic

2

1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(44)

Therefore the solution of (3) is

1199064(119909 119905) = 119886

0+ 1198861dn119896 (119909 minus 120582119905) (45)

where 1198860 1198861 and 119896 are denoted by (44) and 120582 is arbitrary

constantThus the solutions of (7) are (45) and the following

formula

1198674(119909 119905) = 119887

1+ 1205821199064(119909 119905) minus

1

21199062

4(119909 119905) (46)

Letting119898 rarr 1 then (45) equals (38)

44 Jacobi Elliptic Function cs120585Method Let

119906 = 1198860+ 1198861cs120585 cs120585 equiv cn120585

sn120585 (47)

Then

1199061015840= minus1198861(1 + cs2120585) dn120585

11990610158401015840= (2 minus 119898

2) 1198861cs120585 + 2119886

1cs3120585

(48)

Substituting (47) and (48) into (3) we can obtain

119863 = 12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] cs120585

+ 1198862

1(1205732+ 312057331198860) cs2120585 + 119886

1(21198962+ 1198862

11205733) cs3120585

(49)

Let the coefficients in above formula be zero and we have

1198860=minus1205732

31205733

1198861= plusmn1198962radic

2

minus1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(50)

According to (47) the solution of (3) is

1199065(119909 119905) = 119886

0+ 1198861cs119896 (119909 minus 120582119905) (51)

where 1198860 1198861 and 119896 are denoted by (50) and 120582 is arbitrary

constantTherefore the solutions of (7) are (51) and the following

formula

1198675= 1198871+ 1205821199065(119909 119905) minus

1

21199062

5(119909 119905) (52)

When119898 rarr 1

1199065(119909 119905) = 119886

0+ 1198861csch119896 (119909 minus 120582119905) (53)

Assuming 1205731= (1 minus 1198991205962)119899 120573

2= minus(32)120596 120573

3= minus(12)

119873 = minus(1198731119899) and 119896 = 1 we can obtain (3) Choosing

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

2 Journal of Applied Mathematics

The basic idea of the fixed point methods consists infinding an iteration function which generates successiveapproximations to the solution [12]

Many periodic solutions have been recently expressed interms of various Jacobi-elliptic functions for a wide class ofnonlinear evolution equations which have been obtained bymeans of Jacobi elliptic expansion method [13]

The longitudinal wave equation of a finite deformationelastic circular rod Boussinesq equations and dispersive longwave equations are nonlinear partial differential equationsof different scientific field We find that they have the samecharacteristics In this paper the analytical solutions of thedifferential equations for the elastic circular rod Boussinesqequations and dispersive long wave equations are solved byusing homogeneous balance method Jacobi elliptic functionmethod fixed point method andmodifiedmappingmethodThemore physical specifications of these nonlinear equationshave been identified and the results indicated

2 Three Types of Nonlinear Wave Equations

The longitudinal wave equation of a finite deformation elasticcircular rod is [1]

119906119905119905minus 1198882

0119906119909119909= [

3119864

21205881199062+119864

21205881199063+]21198772

2(119906119905119905minus 1198882

1119906119909119909)]119909119909

(1)

where 1198880= radic119864120588 is the longitudinal wave velocity for a linear

elastic rod and 1198881= radic120583120588 is the shear wave velocity 120588 is the

density of thematerial ] is the Poisson ratio119877 is the diameterof bar 119864 is Yongrsquos modulus of material 120583 is the elastic shearmodulus of material 119905 is the time variable

Make the traveling wave transformation

119906 (119909 119905) = 119906 (120585) 120585 = 119896 (119909 minus 120582119905) (2)

Substituting (2) into (1) and integrating it with respect to120585 twice we can obtain

119896211990610158401015840+ 1205731119906 + 12057321199062+ 12057331199063= 119873 (3)

where 119873 is the second integral constant The first integralconstant is zero and

1205731=

2 (1205822 minus 11988820)

]21198772 (1205822 minus 11988821) 120573

2=

311988820

]21198772 (1205822 minus 11988821)

1205733=

11988820

]21198772 (1205822 minus 11988821)

(4)

The variant Boussinesq equations were discussed in [7]They are coupling wave equations which can be expressed asfollows

119867119905+ (119867119906)

119909+ 119906119909119909119909

= 0

119906119905+ 119867119909+ 119906119906119909= 0

(5)

where 119906(119909 119905) is the velocity and 119867(119909 119905) is the total depthMake the traveling wave transformation

119867(119909 119905) = 119867 (120585) 119906 (119909 119905) = 119906 (120585) 120585 = 119896 (119909 minus 120582119905)

(6)

Substituting (6) into (5) and integrating with respect to 120585we have

minus120582119867 +119867119906 + 119896211990610158401015840= 1198861 119867 = 120582119906 minus

1

21199062+ 1198871 (7)

where 1198861 1198871are integral constants

Substituting the second formula of (7) into the first oneand assuming120573

1= 1198871minus1205822120573

2= (32)120582120573

3= minus(12)119873 = 119886

1+

1205821198871 we can obtain (3) So the solutions of (7) are equivalent

to that of (3) and the second formula of (7)(2 + 1)-dimension dispersive long wave equations were

discussed in [8 9] They can be written as follows

119906119905119910+ ℎ119909119909+1

2(1199062)119909119910= 0

ℎ119905+ (ℎ119906 + 119906 + 119906

119909119910)119909= 0

(8)

Suppose that the traveling wave solutions for (8) can begiven in the following forms

119906 (119909 119910 119905) = 119906 (120585) ℎ (119909 119910 119905) = ℎ (120585)

120585 = 119909 + 119899119910 + 120596119905(9)

Substituting (9) into (8) we have

11989911990610158401015840+ (1 minus 119899120596

2) 119906 minus

3

21198991205961199062minus119899

21199063= 1198731

ℎ = minus119899120596119906 minus1

21198991199062

(10)

where1198731is the second integral constant

Obviously the first formula of (10) and (3) have the samecharacteristics On the other hand the solutions of (10) and(7) are samewith each other except for the coefficientsThere-fore in following parts the solutions of (5) are presented

3 Homogeneous Balance Method

In [14 15] the homogeneous balance method is used tosolve nonlinear wave equations For example the followingequation was solved in [15]

119906119905+ 6119906119906

119909+ 119906119909119909119909

= 0 (11)

The exact solution of the following corresponding equa-tion was given by using the same method

119906119905minus 119863119906119909119909+ 120582 (119906

3+ 1205721199062+ 120573119906) = 0 (12)

To solve (5) the homogeneous balance method wasimproved in this paper

Journal of Applied Mathematics 3

Now suppose that

119906 (119909 119905) = 1198911015840120596119909+ 119887 119867 (119909 119905) = 119892

10158401205962

119909+ 119888 (13)

where119891(120596)119892(120596) and120596(119909 119905) are the undetermined functionsand 119887 119888 are undetermined constants

Substituting (13) into (5) the equations can be rewrittenas follows

(119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)) 1205964

119909+ 61198911015840101584010158401205962

1199091205962119909

+ 11989110158401015840(1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909) + 11989210158401015840(1198871205963

119909+ 1205962

119909120596119905)

+ 3119891101584011989210158401205962

1199091205962119909+ 1198911015840(1198881205962119909+ 1205964119909)

+ 21198921015840(1198871205961199091205962119909+ 120596119909120596119909119905) = 0

(11989210158401015840+ 119891101584011989110158401015840) 1205963

119909+ 11989110158401015840(120596119909120596119905+ 1198871205962

119909) + 119891101584021205961199091205962119909

+ 1198911015840(120596119909119905+ 1198871205962119909) + 2119892

10158401205961199091205962119909= 0

(14)

where 1205962119909= 120596119909119909 1205963119909= 120596119909119909119909

1205964119909= 120596119909119909119909119909

In (14) let

119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)

= 0 11989210158401015840+ 119891101584011989110158401015840= 0 (15)

Integrating the second formula of (15) we have

1198921015840+1

211989110158402= 0 (16)

Furthermore we can obtain

1198921015840= minus

1

211989110158402 119892

10158401015840= minus119891101584011989110158401015840 (17)

Substituting (17) into the first formula of (15) we have

119891(4)minus3

21198911015840211989110158401015840= 0 (18)

Integrating (18) we have

119891101584010158401015840minus1

211989110158403= 0 (19)

We know the solution of (19) is

119891 = 2 ln120596 (20)

Obviously we have

11989110158402= minus2119891

10158401015840 119891

101584011989110158401015840= minus119891101584010158401015840

11989110158401198921015840= minus119891101584010158401015840 119891

10158403= 2119891101584010158401015840

(21)

Substituting (17) and (21) into (14) the equations can berewritten as follows

1205962

119909(31205962119909+ 119887120596119909+ 120596119905) 119891101584010158401015840

+ (1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905) 11989110158401015840

+ (1198881205962119909+ 1205964119909) 1198911015840= 0

120596119909(120596119905+ 119887120596119909) 11989110158401015840+ (120596119909119905+ 1198871205962119909) 1198911015840= 0

(22)

Letting all coefficients of 119891 in (22) be zero we have31205962119909+ 119887120596119909+ 120596119905= 0

1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905= 0

1198881205962119909+ 1205964119909= 0

120596119905+ 119887120596119909= 0 120596

119909119905+ 1198871205962119909= 0

(23)

From first and fifth second formula of (23) it can beobtained that

120596 = 120572 (119905) 119909 + 120573 (119905) (24)where 120572(119905) is undetermined function and 120573(119905) is arbitraryfunction

From second formula of (23) we have

120572 (119905) = 119890minus(1198882)119905+119896

(25)where 119896 is the integral constant

Therefore from (13) (20) (24) and (25) we know thesolutions of (5) are

1199061(119909 119905) =

2120572 (119905)

120572 (119905) 119909 + 120573 (119905)+ 119887

1198671(119909 119905) =

minus21205722(119905)

[120572 (119905) 119909 + 120573 (119905)]2+ 119888

(26)

4 Jacobi Elliptic Function Method

In [16] the NLS equation and Zakharov equation werestudied by using the Jacobi elliptic function method In thispaper (1) and (5) are discussed by using this method

41 Jacobi Elliptic Sine Function Method Let119906 = 1198860+ 1198861sn120585 (27)

We know119889119906

119889120585= 1198861cn120585dn120585

1198892119906

1198891205852= minus (1 + 119898

2) 1198861sn120585 + 21198982119886

1sn3120585

1199062= 1198862

0+ 211988601198861sn120585 + 1198862

1sn2120585

1199063= 1198863

0+ 31198862

01198861sn120585 + 3119886

01198862

1sn2120585 + 1198863

1sn3120585

(28)

where cn120585 and dn120585 are the Jacobi elliptic cosine functionand the third type Jacobi elliptic function respectively and119898 (0 lt 119898 lt 1) is module

Substituting (27) into (3) we have

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[minus1198962(1 + 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] sn120585

+ 1198862

1(1205732+ 312057331198860) sn2120585 + 119886

1(211989621198982+ 12057331198862

1) sn3120585 = 0

(29)

4 Journal of Applied Mathematics

Let the coefficients of all derivatives of sn120585 be zero and wehave

1198860=minus1205732

31205733

1198861= plusmn

radic2119896119898

radicminus1205733

1198962=

1

1 + 1198982(1205731+ 212057321198860+ 312057331198862

0)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(30)

Therefore the solution of (3) is

1199062(119909 119905) = 119886

0+ 1198861sn119896 (119909 minus 120582119905) (31)

where 1198860 1198861 and 119896 are denoted by (30) and 120582 is arbitrary

constantWhen119898 rarr 1 sn120585 rarr tanh 120585

1199062(119909 119905) = 119886

0+ 1198861tanh 119896 (119909 minus 120582119905) (32)

Thus the solutions of (5) are (32) and the followingformula

1198672(119909 119905) = 119887

1+ 1205821199062minus1

21199062

2 (33)

Assuming 120582 = minus1 1198871= 15 120573

1= 05 120573

2= minus15 and

1205733= minus05 it can be obtained that 119886

0= minus1 119886

1= 2 and 119896 =

1 The solutions of (5) are 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and119867(119909 119905) = 2 minus 2 tanh2(119909 + 119905) The solitary wave and behaviorof the solutions 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and 119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) are shown in Figures 1 and 2 respectivelyfor 0 le 119905 le 1 and minus10 le 119909 le 10 The waveform is similar tothe result in [17]

42 Jacobi Elliptic Cosine Function Method Let

119906 = 1198860+ 1198861cn120585 (34)

Thus

1199061015840= minus1198861sn120585dn120585 119906

10158401015840= (2119898

2minus 1) 119886

1cn120585 minus 21198982cn3120585

1199062= 1198862

0+ 211988601198861cn120585 + 1198862

1cn2120585

1199063= 1198863

0+ 31198862

01198861cn120585 + 3119886

01198862

1cn2120585 + 1198863

1cn3120585

(35)

Substituting (35) into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[1198962(21198982minus 1) + 120573

1+ 212057321198860+ 312057331198862

0] cn120585

+ 1198862

1(1205732+ 312057331198860) cn2120585

+ 1198861(minus211989621198982+ 12057331198862

1) cn3120585 = 0

(36)

05

10

0

1

0

10

minus10

minus5

minus3

minus2

minus1

minus25

minus2

minus15

minus1

minus05

05

05

Figure 1 The solitary wave and behavior of the solutions 119906(119909 119905) =minus1 + 2 tanh(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Figure 2 The solitary wave and behavior of the solutions119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Let the coefficients of all derivatives of cn120585 be zero and wehave

1198860= minus

1205732

31205733

1198861= plusmn119896119898radic

2

1205733

1198962=

12057322minus 312057311205733

31205733(21198982 minus 1)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(37)

Therefore the solution of (3) is

1199063(119909 119905) = 119886

0+ 1198861cn119896 (119909 minus 120582119905) (38)

where 1198860 1198861and 119896 are denoted by (37) and 120582 is arbitrary

constantThe solutions of (7) are (38) and the following formula

1198673(119909 119905) = 119887

1+ 1205821199063(119909 119905) minus

1

21199062

3(119909 119905) (39)

Journal of Applied Mathematics 5

05

10

0

11

2

3

2

3

22

24

26

28

12

14

05

15

25

16

18

minus10

minus5

Figure 3 The solitary wave and behavior of the solutions 119906(119909 119905) =1 + 2 sech(119909 minus 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Taking 119898 rarr 1 cn120585 rarr sech120585 (38) can be rewritten asfollows

1199063(119909 119905) = 119886

0+ 1198861sech119896 (119909 minus 120582119905) (40)

Assuming 120582 = 1 1205731= 05 120573

2= minus15 and 120573

3= 05 it can

be obtained that 1198860= 1 1198861= 2 and 119896 = 1 The solution of (3)

is 119906(119909 119905) = 1+2 sech(119909minus119905)The solitary wave and behavior ofthe solutions are shown in Figure 3 respectively for 0 le 119905 le 1

and minus10 le 119909 le 10

43 Third Kind of Jacobi Elliptic Function Method Let

119906 = 1198860+ 1198861dn120585 (41)

Thus

1199061015840= minus119898

21198861sn120585 119906

10158401015840= (2 minus 119898

2) 1198861dn120585 minus 2119886

1dn3120585

1199063= 1198863

0+ 31198862

01198861dn120585 + 3119886

01198862

1dn2120585 + 1198863

1dn3120585

(42)

Substituting them into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] dn120585

+ 1198862

1(1205732+ 312057331198860) dn2120585 + 119886

1(minus21198962+ 1198862

11205733) dn3120585 = 0

(43)

Letting the coefficients of all derivatives of dn120585 be zerowe have

1198860=minus1205732

31205733

1198861= plusmn119896radic

2

1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(44)

Therefore the solution of (3) is

1199064(119909 119905) = 119886

0+ 1198861dn119896 (119909 minus 120582119905) (45)

where 1198860 1198861 and 119896 are denoted by (44) and 120582 is arbitrary

constantThus the solutions of (7) are (45) and the following

formula

1198674(119909 119905) = 119887

1+ 1205821199064(119909 119905) minus

1

21199062

4(119909 119905) (46)

Letting119898 rarr 1 then (45) equals (38)

44 Jacobi Elliptic Function cs120585Method Let

119906 = 1198860+ 1198861cs120585 cs120585 equiv cn120585

sn120585 (47)

Then

1199061015840= minus1198861(1 + cs2120585) dn120585

11990610158401015840= (2 minus 119898

2) 1198861cs120585 + 2119886

1cs3120585

(48)

Substituting (47) and (48) into (3) we can obtain

119863 = 12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] cs120585

+ 1198862

1(1205732+ 312057331198860) cs2120585 + 119886

1(21198962+ 1198862

11205733) cs3120585

(49)

Let the coefficients in above formula be zero and we have

1198860=minus1205732

31205733

1198861= plusmn1198962radic

2

minus1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(50)

According to (47) the solution of (3) is

1199065(119909 119905) = 119886

0+ 1198861cs119896 (119909 minus 120582119905) (51)

where 1198860 1198861 and 119896 are denoted by (50) and 120582 is arbitrary

constantTherefore the solutions of (7) are (51) and the following

formula

1198675= 1198871+ 1205821199065(119909 119905) minus

1

21199062

5(119909 119905) (52)

When119898 rarr 1

1199065(119909 119905) = 119886

0+ 1198861csch119896 (119909 minus 120582119905) (53)

Assuming 1205731= (1 minus 1198991205962)119899 120573

2= minus(32)120596 120573

3= minus(12)

119873 = minus(1198731119899) and 119896 = 1 we can obtain (3) Choosing

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Journal of Applied Mathematics 3

Now suppose that

119906 (119909 119905) = 1198911015840120596119909+ 119887 119867 (119909 119905) = 119892

10158401205962

119909+ 119888 (13)

where119891(120596)119892(120596) and120596(119909 119905) are the undetermined functionsand 119887 119888 are undetermined constants

Substituting (13) into (5) the equations can be rewrittenas follows

(119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)) 1205964

119909+ 61198911015840101584010158401205962

1199091205962119909

+ 11989110158401015840(1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909) + 11989210158401015840(1198871205963

119909+ 1205962

119909120596119905)

+ 3119891101584011989210158401205962

1199091205962119909+ 1198911015840(1198881205962119909+ 1205964119909)

+ 21198921015840(1198871205961199091205962119909+ 120596119909120596119909119905) = 0

(11989210158401015840+ 119891101584011989110158401015840) 1205963

119909+ 11989110158401015840(120596119909120596119905+ 1198871205962

119909) + 119891101584021205961199091205962119909

+ 1198911015840(120596119909119905+ 1198871205962119909) + 2119892

10158401205961199091205962119909= 0

(14)

where 1205962119909= 120596119909119909 1205963119909= 120596119909119909119909

1205964119909= 120596119909119909119909119909

In (14) let

119891101584010158401198921015840+ 119891101584011989210158401015840+ 119891(4)

= 0 11989210158401015840+ 119891101584011989110158401015840= 0 (15)

Integrating the second formula of (15) we have

1198921015840+1

211989110158402= 0 (16)

Furthermore we can obtain

1198921015840= minus

1

211989110158402 119892

10158401015840= minus119891101584011989110158401015840 (17)

Substituting (17) into the first formula of (15) we have

119891(4)minus3

21198911015840211989110158401015840= 0 (18)

Integrating (18) we have

119891101584010158401015840minus1

211989110158403= 0 (19)

We know the solution of (19) is

119891 = 2 ln120596 (20)

Obviously we have

11989110158402= minus2119891

10158401015840 119891

101584011989110158401015840= minus119891101584010158401015840

11989110158401198921015840= minus119891101584010158401015840 119891

10158403= 2119891101584010158401015840

(21)

Substituting (17) and (21) into (14) the equations can berewritten as follows

1205962

119909(31205962119909+ 119887120596119909+ 120596119905) 119891101584010158401015840

+ (1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905) 11989110158401015840

+ (1198881205962119909+ 1205964119909) 1198911015840= 0

120596119909(120596119905+ 119887120596119909) 11989110158401015840+ (120596119909119905+ 1198871205962119909) 1198911015840= 0

(22)

Letting all coefficients of 119891 in (22) be zero we have31205962119909+ 119887120596119909+ 120596119905= 0

1198881205962

119909+ 31205962

2119909+ 41205961199091205963119909+ 2119887120596

1199091205962119909+ 2120596119909120596119909119905= 0

1198881205962119909+ 1205964119909= 0

120596119905+ 119887120596119909= 0 120596

119909119905+ 1198871205962119909= 0

(23)

From first and fifth second formula of (23) it can beobtained that

120596 = 120572 (119905) 119909 + 120573 (119905) (24)where 120572(119905) is undetermined function and 120573(119905) is arbitraryfunction

From second formula of (23) we have

120572 (119905) = 119890minus(1198882)119905+119896

(25)where 119896 is the integral constant

Therefore from (13) (20) (24) and (25) we know thesolutions of (5) are

1199061(119909 119905) =

2120572 (119905)

120572 (119905) 119909 + 120573 (119905)+ 119887

1198671(119909 119905) =

minus21205722(119905)

[120572 (119905) 119909 + 120573 (119905)]2+ 119888

(26)

4 Jacobi Elliptic Function Method

In [16] the NLS equation and Zakharov equation werestudied by using the Jacobi elliptic function method In thispaper (1) and (5) are discussed by using this method

41 Jacobi Elliptic Sine Function Method Let119906 = 1198860+ 1198861sn120585 (27)

We know119889119906

119889120585= 1198861cn120585dn120585

1198892119906

1198891205852= minus (1 + 119898

2) 1198861sn120585 + 21198982119886

1sn3120585

1199062= 1198862

0+ 211988601198861sn120585 + 1198862

1sn2120585

1199063= 1198863

0+ 31198862

01198861sn120585 + 3119886

01198862

1sn2120585 + 1198863

1sn3120585

(28)

where cn120585 and dn120585 are the Jacobi elliptic cosine functionand the third type Jacobi elliptic function respectively and119898 (0 lt 119898 lt 1) is module

Substituting (27) into (3) we have

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[minus1198962(1 + 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] sn120585

+ 1198862

1(1205732+ 312057331198860) sn2120585 + 119886

1(211989621198982+ 12057331198862

1) sn3120585 = 0

(29)

4 Journal of Applied Mathematics

Let the coefficients of all derivatives of sn120585 be zero and wehave

1198860=minus1205732

31205733

1198861= plusmn

radic2119896119898

radicminus1205733

1198962=

1

1 + 1198982(1205731+ 212057321198860+ 312057331198862

0)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(30)

Therefore the solution of (3) is

1199062(119909 119905) = 119886

0+ 1198861sn119896 (119909 minus 120582119905) (31)

where 1198860 1198861 and 119896 are denoted by (30) and 120582 is arbitrary

constantWhen119898 rarr 1 sn120585 rarr tanh 120585

1199062(119909 119905) = 119886

0+ 1198861tanh 119896 (119909 minus 120582119905) (32)

Thus the solutions of (5) are (32) and the followingformula

1198672(119909 119905) = 119887

1+ 1205821199062minus1

21199062

2 (33)

Assuming 120582 = minus1 1198871= 15 120573

1= 05 120573

2= minus15 and

1205733= minus05 it can be obtained that 119886

0= minus1 119886

1= 2 and 119896 =

1 The solutions of (5) are 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and119867(119909 119905) = 2 minus 2 tanh2(119909 + 119905) The solitary wave and behaviorof the solutions 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and 119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) are shown in Figures 1 and 2 respectivelyfor 0 le 119905 le 1 and minus10 le 119909 le 10 The waveform is similar tothe result in [17]

42 Jacobi Elliptic Cosine Function Method Let

119906 = 1198860+ 1198861cn120585 (34)

Thus

1199061015840= minus1198861sn120585dn120585 119906

10158401015840= (2119898

2minus 1) 119886

1cn120585 minus 21198982cn3120585

1199062= 1198862

0+ 211988601198861cn120585 + 1198862

1cn2120585

1199063= 1198863

0+ 31198862

01198861cn120585 + 3119886

01198862

1cn2120585 + 1198863

1cn3120585

(35)

Substituting (35) into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[1198962(21198982minus 1) + 120573

1+ 212057321198860+ 312057331198862

0] cn120585

+ 1198862

1(1205732+ 312057331198860) cn2120585

+ 1198861(minus211989621198982+ 12057331198862

1) cn3120585 = 0

(36)

05

10

0

1

0

10

minus10

minus5

minus3

minus2

minus1

minus25

minus2

minus15

minus1

minus05

05

05

Figure 1 The solitary wave and behavior of the solutions 119906(119909 119905) =minus1 + 2 tanh(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Figure 2 The solitary wave and behavior of the solutions119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Let the coefficients of all derivatives of cn120585 be zero and wehave

1198860= minus

1205732

31205733

1198861= plusmn119896119898radic

2

1205733

1198962=

12057322minus 312057311205733

31205733(21198982 minus 1)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(37)

Therefore the solution of (3) is

1199063(119909 119905) = 119886

0+ 1198861cn119896 (119909 minus 120582119905) (38)

where 1198860 1198861and 119896 are denoted by (37) and 120582 is arbitrary

constantThe solutions of (7) are (38) and the following formula

1198673(119909 119905) = 119887

1+ 1205821199063(119909 119905) minus

1

21199062

3(119909 119905) (39)

Journal of Applied Mathematics 5

05

10

0

11

2

3

2

3

22

24

26

28

12

14

05

15

25

16

18

minus10

minus5

Figure 3 The solitary wave and behavior of the solutions 119906(119909 119905) =1 + 2 sech(119909 minus 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Taking 119898 rarr 1 cn120585 rarr sech120585 (38) can be rewritten asfollows

1199063(119909 119905) = 119886

0+ 1198861sech119896 (119909 minus 120582119905) (40)

Assuming 120582 = 1 1205731= 05 120573

2= minus15 and 120573

3= 05 it can

be obtained that 1198860= 1 1198861= 2 and 119896 = 1 The solution of (3)

is 119906(119909 119905) = 1+2 sech(119909minus119905)The solitary wave and behavior ofthe solutions are shown in Figure 3 respectively for 0 le 119905 le 1

and minus10 le 119909 le 10

43 Third Kind of Jacobi Elliptic Function Method Let

119906 = 1198860+ 1198861dn120585 (41)

Thus

1199061015840= minus119898

21198861sn120585 119906

10158401015840= (2 minus 119898

2) 1198861dn120585 minus 2119886

1dn3120585

1199063= 1198863

0+ 31198862

01198861dn120585 + 3119886

01198862

1dn2120585 + 1198863

1dn3120585

(42)

Substituting them into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] dn120585

+ 1198862

1(1205732+ 312057331198860) dn2120585 + 119886

1(minus21198962+ 1198862

11205733) dn3120585 = 0

(43)

Letting the coefficients of all derivatives of dn120585 be zerowe have

1198860=minus1205732

31205733

1198861= plusmn119896radic

2

1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(44)

Therefore the solution of (3) is

1199064(119909 119905) = 119886

0+ 1198861dn119896 (119909 minus 120582119905) (45)

where 1198860 1198861 and 119896 are denoted by (44) and 120582 is arbitrary

constantThus the solutions of (7) are (45) and the following

formula

1198674(119909 119905) = 119887

1+ 1205821199064(119909 119905) minus

1

21199062

4(119909 119905) (46)

Letting119898 rarr 1 then (45) equals (38)

44 Jacobi Elliptic Function cs120585Method Let

119906 = 1198860+ 1198861cs120585 cs120585 equiv cn120585

sn120585 (47)

Then

1199061015840= minus1198861(1 + cs2120585) dn120585

11990610158401015840= (2 minus 119898

2) 1198861cs120585 + 2119886

1cs3120585

(48)

Substituting (47) and (48) into (3) we can obtain

119863 = 12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] cs120585

+ 1198862

1(1205732+ 312057331198860) cs2120585 + 119886

1(21198962+ 1198862

11205733) cs3120585

(49)

Let the coefficients in above formula be zero and we have

1198860=minus1205732

31205733

1198861= plusmn1198962radic

2

minus1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(50)

According to (47) the solution of (3) is

1199065(119909 119905) = 119886

0+ 1198861cs119896 (119909 minus 120582119905) (51)

where 1198860 1198861 and 119896 are denoted by (50) and 120582 is arbitrary

constantTherefore the solutions of (7) are (51) and the following

formula

1198675= 1198871+ 1205821199065(119909 119905) minus

1

21199062

5(119909 119905) (52)

When119898 rarr 1

1199065(119909 119905) = 119886

0+ 1198861csch119896 (119909 minus 120582119905) (53)

Assuming 1205731= (1 minus 1198991205962)119899 120573

2= minus(32)120596 120573

3= minus(12)

119873 = minus(1198731119899) and 119896 = 1 we can obtain (3) Choosing

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

4 Journal of Applied Mathematics

Let the coefficients of all derivatives of sn120585 be zero and wehave

1198860=minus1205732

31205733

1198861= plusmn

radic2119896119898

radicminus1205733

1198962=

1

1 + 1198982(1205731+ 212057321198860+ 312057331198862

0)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(30)

Therefore the solution of (3) is

1199062(119909 119905) = 119886

0+ 1198861sn119896 (119909 minus 120582119905) (31)

where 1198860 1198861 and 119896 are denoted by (30) and 120582 is arbitrary

constantWhen119898 rarr 1 sn120585 rarr tanh 120585

1199062(119909 119905) = 119886

0+ 1198861tanh 119896 (119909 minus 120582119905) (32)

Thus the solutions of (5) are (32) and the followingformula

1198672(119909 119905) = 119887

1+ 1205821199062minus1

21199062

2 (33)

Assuming 120582 = minus1 1198871= 15 120573

1= 05 120573

2= minus15 and

1205733= minus05 it can be obtained that 119886

0= minus1 119886

1= 2 and 119896 =

1 The solutions of (5) are 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and119867(119909 119905) = 2 minus 2 tanh2(119909 + 119905) The solitary wave and behaviorof the solutions 119906(119909 119905) = minus1 + 2 tanh(119909 + 119905) and 119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) are shown in Figures 1 and 2 respectivelyfor 0 le 119905 le 1 and minus10 le 119909 le 10 The waveform is similar tothe result in [17]

42 Jacobi Elliptic Cosine Function Method Let

119906 = 1198860+ 1198861cn120585 (34)

Thus

1199061015840= minus1198861sn120585dn120585 119906

10158401015840= (2119898

2minus 1) 119886

1cn120585 minus 21198982cn3120585

1199062= 1198862

0+ 211988601198861cn120585 + 1198862

1cn2120585

1199063= 1198863

0+ 31198862

01198861cn120585 + 3119886

01198862

1cn2120585 + 1198863

1cn3120585

(35)

Substituting (35) into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0minus 119873

+ 1198861[1198962(21198982minus 1) + 120573

1+ 212057321198860+ 312057331198862

0] cn120585

+ 1198862

1(1205732+ 312057331198860) cn2120585

+ 1198861(minus211989621198982+ 12057331198862

1) cn3120585 = 0

(36)

05

10

0

1

0

10

minus10

minus5

minus3

minus2

minus1

minus25

minus2

minus15

minus1

minus05

05

05

Figure 1 The solitary wave and behavior of the solutions 119906(119909 119905) =minus1 + 2 tanh(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Figure 2 The solitary wave and behavior of the solutions119867(119909 119905) =2 minus 2 tanh2(119909 + 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Let the coefficients of all derivatives of cn120585 be zero and wehave

1198860= minus

1205732

31205733

1198861= plusmn119896119898radic

2

1205733

1198962=

12057322minus 312057311205733

31205733(21198982 minus 1)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(37)

Therefore the solution of (3) is

1199063(119909 119905) = 119886

0+ 1198861cn119896 (119909 minus 120582119905) (38)

where 1198860 1198861and 119896 are denoted by (37) and 120582 is arbitrary

constantThe solutions of (7) are (38) and the following formula

1198673(119909 119905) = 119887

1+ 1205821199063(119909 119905) minus

1

21199062

3(119909 119905) (39)

Journal of Applied Mathematics 5

05

10

0

11

2

3

2

3

22

24

26

28

12

14

05

15

25

16

18

minus10

minus5

Figure 3 The solitary wave and behavior of the solutions 119906(119909 119905) =1 + 2 sech(119909 minus 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Taking 119898 rarr 1 cn120585 rarr sech120585 (38) can be rewritten asfollows

1199063(119909 119905) = 119886

0+ 1198861sech119896 (119909 minus 120582119905) (40)

Assuming 120582 = 1 1205731= 05 120573

2= minus15 and 120573

3= 05 it can

be obtained that 1198860= 1 1198861= 2 and 119896 = 1 The solution of (3)

is 119906(119909 119905) = 1+2 sech(119909minus119905)The solitary wave and behavior ofthe solutions are shown in Figure 3 respectively for 0 le 119905 le 1

and minus10 le 119909 le 10

43 Third Kind of Jacobi Elliptic Function Method Let

119906 = 1198860+ 1198861dn120585 (41)

Thus

1199061015840= minus119898

21198861sn120585 119906

10158401015840= (2 minus 119898

2) 1198861dn120585 minus 2119886

1dn3120585

1199063= 1198863

0+ 31198862

01198861dn120585 + 3119886

01198862

1dn2120585 + 1198863

1dn3120585

(42)

Substituting them into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] dn120585

+ 1198862

1(1205732+ 312057331198860) dn2120585 + 119886

1(minus21198962+ 1198862

11205733) dn3120585 = 0

(43)

Letting the coefficients of all derivatives of dn120585 be zerowe have

1198860=minus1205732

31205733

1198861= plusmn119896radic

2

1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(44)

Therefore the solution of (3) is

1199064(119909 119905) = 119886

0+ 1198861dn119896 (119909 minus 120582119905) (45)

where 1198860 1198861 and 119896 are denoted by (44) and 120582 is arbitrary

constantThus the solutions of (7) are (45) and the following

formula

1198674(119909 119905) = 119887

1+ 1205821199064(119909 119905) minus

1

21199062

4(119909 119905) (46)

Letting119898 rarr 1 then (45) equals (38)

44 Jacobi Elliptic Function cs120585Method Let

119906 = 1198860+ 1198861cs120585 cs120585 equiv cn120585

sn120585 (47)

Then

1199061015840= minus1198861(1 + cs2120585) dn120585

11990610158401015840= (2 minus 119898

2) 1198861cs120585 + 2119886

1cs3120585

(48)

Substituting (47) and (48) into (3) we can obtain

119863 = 12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] cs120585

+ 1198862

1(1205732+ 312057331198860) cs2120585 + 119886

1(21198962+ 1198862

11205733) cs3120585

(49)

Let the coefficients in above formula be zero and we have

1198860=minus1205732

31205733

1198861= plusmn1198962radic

2

minus1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(50)

According to (47) the solution of (3) is

1199065(119909 119905) = 119886

0+ 1198861cs119896 (119909 minus 120582119905) (51)

where 1198860 1198861 and 119896 are denoted by (50) and 120582 is arbitrary

constantTherefore the solutions of (7) are (51) and the following

formula

1198675= 1198871+ 1205821199065(119909 119905) minus

1

21199062

5(119909 119905) (52)

When119898 rarr 1

1199065(119909 119905) = 119886

0+ 1198861csch119896 (119909 minus 120582119905) (53)

Assuming 1205731= (1 minus 1198991205962)119899 120573

2= minus(32)120596 120573

3= minus(12)

119873 = minus(1198731119899) and 119896 = 1 we can obtain (3) Choosing

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Journal of Applied Mathematics 5

05

10

0

11

2

3

2

3

22

24

26

28

12

14

05

15

25

16

18

minus10

minus5

Figure 3 The solitary wave and behavior of the solutions 119906(119909 119905) =1 + 2 sech(119909 minus 119905) for 0 ⩽ 119905 ⩽ 1 and minus10 ⩽ 119909 ⩽ 10

Taking 119898 rarr 1 cn120585 rarr sech120585 (38) can be rewritten asfollows

1199063(119909 119905) = 119886

0+ 1198861sech119896 (119909 minus 120582119905) (40)

Assuming 120582 = 1 1205731= 05 120573

2= minus15 and 120573

3= 05 it can

be obtained that 1198860= 1 1198861= 2 and 119896 = 1 The solution of (3)

is 119906(119909 119905) = 1+2 sech(119909minus119905)The solitary wave and behavior ofthe solutions are shown in Figure 3 respectively for 0 le 119905 le 1

and minus10 le 119909 le 10

43 Third Kind of Jacobi Elliptic Function Method Let

119906 = 1198860+ 1198861dn120585 (41)

Thus

1199061015840= minus119898

21198861sn120585 119906

10158401015840= (2 minus 119898

2) 1198861dn120585 minus 2119886

1dn3120585

1199063= 1198863

0+ 31198862

01198861dn120585 + 3119886

01198862

1dn2120585 + 1198863

1dn3120585

(42)

Substituting them into (3) we can obtain

12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] dn120585

+ 1198862

1(1205732+ 312057331198860) dn2120585 + 119886

1(minus21198962+ 1198862

11205733) dn3120585 = 0

(43)

Letting the coefficients of all derivatives of dn120585 be zerowe have

1198860=minus1205732

31205733

1198861= plusmn119896radic

2

1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(44)

Therefore the solution of (3) is

1199064(119909 119905) = 119886

0+ 1198861dn119896 (119909 minus 120582119905) (45)

where 1198860 1198861 and 119896 are denoted by (44) and 120582 is arbitrary

constantThus the solutions of (7) are (45) and the following

formula

1198674(119909 119905) = 119887

1+ 1205821199064(119909 119905) minus

1

21199062

4(119909 119905) (46)

Letting119898 rarr 1 then (45) equals (38)

44 Jacobi Elliptic Function cs120585Method Let

119906 = 1198860+ 1198861cs120585 cs120585 equiv cn120585

sn120585 (47)

Then

1199061015840= minus1198861(1 + cs2120585) dn120585

11990610158401015840= (2 minus 119898

2) 1198861cs120585 + 2119886

1cs3120585

(48)

Substituting (47) and (48) into (3) we can obtain

119863 = 12057311198860+ 12057321198862

0+ 12057331198863

0

minus 119873 + 1198861[1198962(2 minus 119898

2) + 1205731+ 212057321198860+ 312057331198862

0] cs120585

+ 1198862

1(1205732+ 312057331198860) cs2120585 + 119886

1(21198962+ 1198862

11205733) cs3120585

(49)

Let the coefficients in above formula be zero and we have

1198860=minus1205732

31205733

1198861= plusmn1198962radic

2

minus1205733

1198962=

1

1198982 minus 2(312057311205733minus 12057322

31205733

)

119873 = 12057311198860+ 12057321198862

0+ 12057331198863

0

(50)

According to (47) the solution of (3) is

1199065(119909 119905) = 119886

0+ 1198861cs119896 (119909 minus 120582119905) (51)

where 1198860 1198861 and 119896 are denoted by (50) and 120582 is arbitrary

constantTherefore the solutions of (7) are (51) and the following

formula

1198675= 1198871+ 1205821199065(119909 119905) minus

1

21199062

5(119909 119905) (52)

When119898 rarr 1

1199065(119909 119905) = 119886

0+ 1198861csch119896 (119909 minus 120582119905) (53)

Assuming 1205731= (1 minus 1198991205962)119899 120573

2= minus(32)120596 120573

3= minus(12)

119873 = minus(1198731119899) and 119896 = 1 we can obtain (3) Choosing

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

6 Journal of Applied Mathematics

02

40

24

0

5

10

15

0

5

10

minus4 minus4

minus10

minus15

minus2

minus2

minus5

minus10

minus5

Figure 4The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 csch(119909 minus 23119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

02

4

02

4

0

10

20

30

40

50

0

5

10

15

20

25

30

35

40

45

minus4 minus4

minus10

minus2 minus2

Figure 5The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =minus13+43 csch2(119909minus23119910+119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

119899 = minus(23) 120596 = 1 then 1205731

= minus(52) 1205732

= minus(32)Substituting 120573

1 1205732 1205733into (50) it can be obtained that

1198860= minus1 119886

1= 2 and 119896 = 1 The solutions of (8) are

119906(119909 119910 119905) = minus1 + 2 csch(119909 minus (23)119910 + 119905) and ℎ(119909 119910 119905) =

minus(13) + (43)csch2(119909 minus (23)119910 + 119905) The solitary wave andbehavior of the solutions 119906(119909 119905) = minus1+ 2 csch(119909 minus (23)119910 + 119905)and ℎ(119909 119910 119905) = minus(13)+(43)csch2(119909minus(23)119910+119905) are shownin Figures 4 and 5 respectively for 119905 = 0 minus4 le 119909 le 4minus4 le 119910 le 4 and 119909 minus (23)119910 = 0

5 Fixed Point Method

In general fixed point theory can be divided into two typesThe first type is only used to discuss the existence of solutionThe second type is used not only to discuss the existence anduniqueness of solution but also to search the fixed point Weare more interested in the second type

Lemma 1 (see [18ndash20]) Suppose 119864 is a real Banach spacewhich has normal cone Consider 119906

0 V0isin 119864 119906

0lt V0 The

operator 119860 [1199060 V0] times [119906

0 V0] rarr 119864 is mixed monotone and

satisfies

(1)

1199060le 119860 (119906

0 V0) 119860 (V

0 1199060) le V0

(54)

(2) for all 119906 V (1199060le 119906 le V le V

0) exist constant 120572 isin (0 1)

satisfies

119860 (V 119906) minus 119860 (119906 V) le 120572 V minus 119906 (55)

Then there exists a unique 119906 (119906 isin [1199060 V0]) which satisfies

119860 (119906 119906) = 119906 (56)

where 119906 is called the fixed point of 119860In [1199060 V0] for all 119908

0 letting 119908

119899= 119860(119908

119899minus1 119908119899minus1

) 119899 =

1 2 we have

119906 = lim119899rarrinfin

119908119899 (57)

In this paper 119864 is taken as a continuous functionspace 119862[0 1] which is defined in the closed interval [0 1]Introducing equivalent norm it is easy to know that 119862[0 1]is real Banach space which has normal cone Let

1199060= 0 V

0= 1 (58)

Integrating (3) with respect to 120585 we can obtain

119889119906

119889120585= minus119896minus2int120585

0

[1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889120585 + 119873120585 + 119862

1

(59)

where 1198621is integral constant

Integrating the above formula with respect to 120585 and usingthe formula in [12] we have

119906 = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

21199062(119904) + 120573

31199063(119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(60)

where 1198622is integral constant

If 1205732gt 0 120573

3gt 0 (ie 1205822 gt 119888

1) and 120573

1lt 0 (ie 1205822 lt 1198882

0)

suppose

119860 (119906 V) = minus119896minus2int120585

0

(120585 minus 119904) [1205731119906 (119904) + 120573

2V2 (119904) + 120573

3V3 (119904)] 119889119904

+1

21198731205852+ 1198621120585 + 1198622

(61)

Theorem 2 In (61) supposing 1205732gt 0 120573

3gt 0 120573

1lt 0 119862

1ge 0

1198622ge 0 and 119896minus2 le 119873(120573

2+1205733) le 2(1+119862

1+1198622)(1205732+1205733minus1205731)

there exists unique fixed point 119906 isin [1199060 V0] for the operator 119860

which is defined by (61) Then (57) is true

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Journal of Applied Mathematics 7

Proof Obviously 119860 [1199060 V0] times [119906

0 V0] rarr 119862[0 1] is mixed

monotone Consider

119860 (1199060 V0) = 119860 (0 1)

=1

2[119873 minus 119896

minus2(1205732+ 1205733)] 1205852+ 1198621120585 + 1198622ge 0 = 119906

0

119860 (V0 1199060) =

1

2(119873 minus 120573

1119896minus2) 1205852+ 1198621120585 + 1198622

le1

2119873(1 minus

1205731

1205732+ 1205733

) + 1198621+ 1198622le 1 = V

0

(62)

Thus 119860 satisfies the term (1) of Lemma 1For all 119906 V isin [119906

0 V0] 119906 le V

119860 (V 119906) minus 119860 (119906 V)

= minus119896minus2int120585

0

(120585 minus 119904)

times [1205731V (119904) + 120573

21199062(119904) + 120573

21199063(119904)

minus1205731119906 (119904) minus 120573

2V2 (119904) minus 120573

3V3 (119904)] 119889119904

= 119896minus2int120585

0

(120585 minus 119904) 119890119872119904119890minus119872119904

[V (119904) minus 119906 (119904)]

times minus 1205731+ 1205732[V (119904) + 119906 (119904)]

+1205733[V2 (119904) + 119906 (119904) V (119904) + 1199062 (119904)] 119889119904

le (minus1205731+ 21205732+ 31205733) 119896minus2V minus 119906int

120585

0

119890119872119878119889119904

leminus1205731+ 21205732+ 31205733

1198962119872V minus 119906 119890119872120585

(63)

Then we have

119860 (V 119906) minus 119860 (119906 V) le 120572 (64)

where 120572 = (minus1205731+ 21205732+ 31205733)(1198962119872) and when 119872 is large

enough 120572 isin (0 1)Therefore operator119860which is defined by (61) satisfies the

term (2) of Lemma 1 The proof is completed

Obviously the fixed point of the operator defined by (61)is equivalent to the solution of (3) We denote

1199066(119909 119905) = 119906 (120585) (65)

By using the classical iteration algorithms such as Manniteration method Ishikawa iteration method and Nooriteration method the solutions can be obtained Then thetraveling wave solutions of (5) are (65) and the followingformula

1198676(119909 119905) = 119887

1+ 1205821199066(119909 119905) minus

1

21199062

6(119909 119905) (66)

6 Modified Mapping Method

The modified mapping method was introduced and thenonlinear evolution equation was solved in [21 22] In[22] several hundreds of Jacobi elliptic function expansionsolutions were obtained We also use this method in thispaper

Let

119906 = 1198600+ 1198601119891 + 119861

1119891minus1 (67)

where 11989110158401015840 = 119901119891 + 1199021198913 hArr 11989110158402 = 119903 + 1199011198912 + (12)1199021198914 119903 119901 and119902 are constants

Thus

1199061015840= 11986011198911015840minus 1198611119891minus21198911015840

11990610158401015840= 1198601119901119891 + 119860

11199021198913+ 1198611119901119891minus1+ 21198611119903119891minus3

1199062= 1198602

0+ 211986011198611+ 211986001198601119891 + 2119860

01198611119891minus1+ 1198602

11198912+ 1198612

1119891minus2

1199063= 1198603

0+ 6119860011986011198611+ 31198601(1198602

0+ 11986011198611) 119891

+ 311986001198602

11198912+ 1198603

11198913+ 31198611(1198602

0+ 11986011198611) 119891minus1

+ 311986001198612

1119891minus2+ 1198613

1119891minus3

(68)

Substituting (68) into (3) we have

12057311198600+ 1205732(1198602

0+ 211986011198611) + 1205733(1198603

0+ 6119860011986011198611) minus 119873

+ 1198601[1198962119901 + 1205731+ 12057321198600+ 31205733(1198602

0+ 11986011198611)] 119891

+ 1198602

1(1205732+ 312057331198600) 1198912+ 1198601(1198962119902 + 12057331198602

1) 1198913

+ 1198611[1198962119901 + 1205731+ 212057321198600+ 31205733(1198602

0+ 11986011198611)] 119891minus1

+ 1198612

1(1205732+ 312057331198600) 119891minus2+ 1198611(21198962119903 + 12057331198612

1) 119891minus3= 0

(69)

Notice that we get the same algebraic equations when thecoefficients of 119891 119891minus1 and 1198912 119891minus2 in (69) are zero Thereforethere are only five algebra equations Solve them and we have

1198600=minus1205732

31205733

1198601= plusmn119896radic

minus119902

1205733

1198611= plusmn119896radic

minus2119903

1205733

119896 = plusmnradic12057322minus 312057311205733minus 31198962120573

3radic2119902119903

31205733119901

(70)

In order to make 1198601 1198611be real number 119902 and 119903 should

be different signs with 1205733

(i) Choosing 119903 = 1119901 = minus2 and 119902 = 2 we have119891 = tanh 120585Then the solitary wave solutions of (3) are

1199067(119909 119905) = 119860

0+ 1198601tanh 120585 + 119861

1tanhminus1120585 (71)

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

8 Journal of Applied Mathematics

0

5

02

4

0

2

4

6

minus6

minus5

minus4

minus3

minus2

minus1

0

1

2

3

4

minus4

minus2minus5

minus8

minus6

minus4

minus2

Figure 6The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + 2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

0

5

02

412

13

14

15

16

17

18

13

135

14

145

15

155

16

165

17

minus4

minus2

minus5

Figure 7The solitarywave and behavior of the solutions ℎ(119909 119910 119905) =7 + 4 tanh2(119909 minus 2119910 + 119905) + 4 tanhminus2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0= minus1

1198601= 2 and 119861

1= 2 The solutions of (8) are 119906(119909 119910 119905) = minus1 +

2 tanh(119909 minus 2119910 + 119905) + 2 tanhminus1(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 7 +

4 tanh2(119909minus2119910+119905)+4 tanhminus2(119909minus2119910+119905)The solitary wave andbehavior of them are shown in Figures 6 and 7 respectivelyfor 119905 = 0 minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

(ii) Choosing 119903 = 1 119901 = minus(1 + 1198982) and 119902 = 21198982 thus

119891 = sn120585 (72)

where119898 (0 lt 119898 lt 1) is themodule of Jacobi elliptic functionTherefore the expansion solutions of (3) are

1199068(119909 119905) = 119860

0+ 1198601sn120585 + 119861

1snminus1120585 (73)

Letting119898 rarr 1 then (73) equals (71)

0

5

02

4

0

2

4

0

1

2

3

minus6

minus4

minus2

minus4

minus2minus5

minus5

minus4

minus3

minus2

minus1

Figure 8The solitarywave and behavior of the solutions119906(119909 119910 119905) =minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 + sech(119909 minus 2119910 +119905)) tanh(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4 and minus4 ⩽ 119910 ⩽ 4

(iii) Choosing 119903 = 14 119901 = (1198982 minus 2)2 and 119902 = 11989822 wehave

119891 =sn120585

(1 + dn120585) (74)

Therefore the solutions of (3) are

1199069(119909 119905) = 119860

0+

1198601sn120585

1 + dn120585+1198611(1 + dn120585)sn120585

(75)

where 1198600 1198601 1198611of 119906119894(119894 = 7 8 9) are denoted by (70)

Taking119898 rarr 1 (75) can be rewritten as follows

1199069(119909 119905) = 119860

0+1198601tanh 120585

1 + sech120585+1198611(1 + sech120585)tanh 120585

(76)

Assuming 119899 = minus2 120596 = 1 119896 = 1 and 1205733= minus(12) it

can be obtained that 1205731= minus(32) 120573

2= minus(32) 119860

0=

minus1 1198601= 1 and 119861

1= 1 The solutions of (8) are 119906(119909

119910 119905) = minus1 + tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905)) + (1 +

sech(119909 minus 2119910 + 119905)) tanh(119909 minus 2119910 + 119905) and ℎ(119909 119910 119905) = 1 +

[tanh(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))]2 + [(1 + sech(119909 minus

2119910 + 119905)) tanh(119909 minus 2119910 + 119905)]2 The solitary wave and behaviorof them are shown in Figures 8 and 9 respectively for 119905 = 0minus4 le 119909 le 4 minus4 le 119910 le 4 and 119909 minus 2119910 = 0

7 Summary and Conclusions

In summary by using different methods nonlinear waveequation of a finite deformation elastic circular rod Boussi-nesq equations and dispersive long wave equations aresolved in this paper and several analytical solutions areobtained Kink soliton solutions are obtained when we usethe homogenous balancemethodThe Jacobi elliptic functionmethod is utilized and periodic solutions are obtainedWhen119898 rarr 1 the solutions reduce to solitary solution Theirwave forms are the bell type kink type exotic type and

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Journal of Applied Mathematics 9

minus20

24

02

40

5

10

15

20

4

6

8

10

12

14

16

minus4 minus4

minus2

Figure 9 The solitary wave and behavior of the solutionsℎ(119909 119910 119905) = 1 + tanh2(119909 minus 2119910 + 119905)(1 + sech(119909 minus 2119910 + 119905))2 +(1 + sech(119909 minus 2119910 + 119905))2tanh2(119909 minus 2119910 + 119905) for 119905 = 0 minus4 ⩽ 119909 ⩽ 4and minus4 ⩽ 119910 ⩽ 4

peakon type By using themodifiedmappingmethod peakonsolutions of (3) (5) (8) are obtained On the other handafter proving the existence and uniqueness of fixed point ofoperator 119860 we can use the classical iteration algorithms toget the solutions The method has wide application and canbe used to solve other nonlinear wave equations Fixed pointmethodmay be significant and important for the explanationof some special physical problems whose analytical solutioncannot be obtained The results indicate the following Firstthe natural phenomena and the physical properties of theequations are abundant which should be further discoveredSecond there are many kinds of methods for solving theseequations Third the arbitrary constant can be determinedby the initial and boundary conditions and we can obtain theexact solutions for certain engineering or scientific problemsIt is shown that the methods proposed in this paper forthree types of nonlinear wave equations are feasible fordetermining exact solutions of other nonlinear equations

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This work was supported by the Special Fund for BasicScientific Research of Central Colleges (Grant noCHD2009JC140)

References

[1] Z F Liu and S Y Zhang ldquoSolitary waves in finite deforma-tion elastic circular rodrdquo Journal of Applied Mathematics andMechanics vol 27 no 10 pp 1255ndash1260 2006

[2] E V Krishnan S Kumar and A Biswas ldquoSolitons andother nonlinear waves of the Boussinesq equationrdquo NonlinearDynamics An International Journal of Nonlinear Dynamics andChaos in Engineering Systems vol 70 no 2 pp 1213ndash1221 2012

[3] A Biswas M Song H Triki et al ldquoSolitons Shockwaves con-servation laws and bifurcation analysis of boussinesq equationwith power law nonlinearity and dual-dispersionrdquo Journal ofApplied Mathematics and Information Science vol 8 no 3 pp949ndash957 2014

[4] A Jarsquoafar M Jawad M D Petkovic and A Biswas ldquoSolitonsolutions to a few coupled nonlinear wave equations by tanhmethodrdquo The Iranian Journal of Science and Technology A vol37 no 2 pp 109ndash115 2013

[5] J F Zhang ldquoMulti-solitary wave solutions for variant Boussi-nesq equations and Kupershmidt equationsrdquo Journal of AppliedMathematics and Mechanics vol 21 no 2 pp 171ndash175 2000

[6] M Zhang Q Liu J Wang and K Wu ldquoA new supersymmetricclassical Boussinesq equationrdquo Chinese Physics B vol 17 no 1pp 10ndash16 2008

[7] Y B Yuan D M Pu and S M Li ldquoBifurcations of travellingwave solutions in variant Boussinesq equationsrdquo Journal ofApplied Mathematics and Mechanics vol 27 no 6 pp 716ndash7262006

[8] Sirendaoreji and S Jiong ldquoAuxiliary equation method forsolving nonlinear partial differential equationsrdquo Physics LettersA vol 309 no 5-6 pp 387ndash396 2003

[9] Taogetusang and Sirendaoreji ldquoNew types of exact solitarywavesolutions for (2 + 1)-dimensional dispersive long-wave equa-tions and combined KdV-Burgers equationrdquo Chinese Journal ofEngineering Mathematics vol 23 no 5 pp 943ndash946 2006

[10] E G Fan and H Q Zhang ldquoSolitary wave solutions of a classof nonlinear wave equationsrdquo Acta Physica Sinica vol 46 no 7pp 1254ndash1258 1997

[11] W L Zhang G J Wu M Zhang J M Wang and J H HanldquoNew exact periodic solutions to (2+1)-dimensional dispersivelong wave equationsrdquo Chinese Physics B vol 17 no 4 pp 1156ndash1164 2008

[12] Z Bartoszewski ldquoSolving boundary value problems for delaydifferential equations by a fixed-point methodrdquo Journal ofComputational and Applied Mathematics vol 236 no 6 pp1576ndash1590 2011

[13] Z T Fu S K Liu S D Liu and Q Zhao ldquoNew Jacobi ellipticfunction expansion and new periodic solutions of nonlinearwave equationsrdquo Physics Letters A vol 290 no 1-2 pp 72ndash762001

[14] M L Wang Y B Zhou and Z B Li ldquoApplication of a homoge-neous balancemethod to exact solutions of nonlinear equationsinmathematical physicsrdquo Physics Letters A General Atomic andSolid State Physics vol 216 no 1ndash5 pp 67ndash75 1996

[15] E G Fan andH Q Zhang ldquoThe homogeneous balancemethodfor solving nonlinear soliton equationsrdquoActa Physica Sinica vol47 no 3 pp 353ndash362 1998

[16] S D Liu Z T Fu S K Liu and Q Zhao ldquoEnvelopingperiodic solutions to nonlinear wave equations with Jacobielliptic functionsrdquo Acta Physica Sinica vol 51 no 4 pp 718ndash722 2002

[17] A J M Jawad M D Petkovic P Laketa and A BiswasldquoDynamics of shallow water waves with Boussinesq equationrdquoScientia Iranica B vol 20 no 1 pp 179ndash184 2013

[18] X L Yan ldquoExistence and uniqueness theorems of solution forsymmetric contracted operator equations and their applica-tionsrdquoChinese Science Bulletin vol 36 no 10 pp 800ndash805 1991

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

10 Journal of Applied Mathematics

[19] J P Hao and X L Yan ldquoExact solution of large deformationbasic equations of circular membrane under central forcerdquoJournal of Applied Mathematics and Mechanics vol 27 no 10pp 1169ndash1172 2006

[20] X L Yan Exact Solution of Nonlinear Equations EconomicScientic Press Beijing China 2004

[21] Y-Z Peng ldquoExact solutions for some nonlinear partial differen-tial equationsrdquo Physics Letters A vol 314 no 5-6 pp 401ndash4082003

[22] L X Gong ldquoSome new exact solutions via the Jacobi ellipticfunctions to the nonlinear Schrodinger equationrdquo Acta PhysicaSinica vol 55 no 9 pp 4414ndash4419 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Analytical Solutions for the Elastic Circular Rod …downloads.hindawi.com/journals/jam/2014/487571.pdf · 2019. 7. 31. · Research Article Analytical Solutions

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of