Research Article A More Accurate Half-Discrete...

9
Hindawi Publishing Corporation Journal of Function Spaces and Applications Volume 2013, Article ID 628250, 8 pages http://dx.doi.org/10.1155/2013/628250 Research Article A More Accurate Half-Discrete Hilbert Inequality with a Nonhomogeneous Kernel Qiliang Huang and Bicheng Yang Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, China Correspondence should be addressed to Bicheng Yang; [email protected] Received 8 May 2013; Accepted 3 June 2013 Academic Editor: Kehe Zhu Copyright © 2013 Q. Huang and B. Yang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By using the way of weight functions and the idea of introducing parameters, a more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel and a best constant factor is presented. We also consider its best extension with the parameters, the equivalent forms, and the operator expressions as well as some reverses. 1. Introduction If , ≥0, = { } =1 2 , = { } =1 2 , and ‖‖ = {∑ =1 2 } 1/2 >0 and ‖‖ = {∑ =1 2 } 1/2 >0, then we have the following discrete Hilbert inequality (cf. [1]): =1 =1 + < ‖‖ ‖‖ , (1) where the constant factor is the best possible. Moreover, for , (≥0) ∈ 2 ( + ), ‖‖ = {∫ 0 2 ()} 1/2 >0, and ‖‖ > 0, we have the following Hilbert integral inequality (cf. [2]): 0 () () + < , (2) with the same best constant factor . Inequalities (1)-(2) are important in the analysis and its applications (cf. [3]). ere are lots of improvements, generalizations, and applications of inequalities (1)-(2) for more details, refer to the literatures [415]. We find a result on the half-discrete Hilbert-type inequal- ity with the nonhomogeneous kernel, which were published early as follows (cf. [16, eorem 351]): 0 −2 ( =1 1 + ) < ( 1 , 1 ) =1 , (3) where > 1, > 1, 1/ + 1/ = 1, and (, V) = 0 ( −1 /(1 + ) +V ) (, V > 0) is the beta function. But the constant factors (1/, 1/) were not considered whether the best possible. Recently, Yang gave a half-discrete Hilbert inequality with the nonhomogeneous kernel as follows (cf. [17]): =1 0 () 1 + < ( =1 2 0 2 ()) 1/2 , (4) where the constant factor is the best possible. And some half-discrete Hilbert-type inequalities with the nonhomoge- neous kernel were given (cf. [18]). In this paper, by using the way of weight functions and the idea of introducing parameters and by means of Hadamard’s inequality, we give the more accurate inequalities of (3) and (4) as follows: 0 −2 ( =1 1 + − /2 ) < ( 1 , 1 ) =1 , (5) =1 0 () 1 + − /2 < ( =1 2 0 2 ()) 1/2 , (6) with the best constant factors (1/, 1/) and . We also consider their best extensions with the parameters, the

Transcript of Research Article A More Accurate Half-Discrete...

Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013 Article ID 628250 8 pageshttpdxdoiorg1011552013628250

Research ArticleA More Accurate Half-Discrete Hilbert Inequality witha Nonhomogeneous Kernel

Qiliang Huang and Bicheng Yang

Department of Mathematics Guangdong University of Education Guangzhou Guangdong 510303 China

Correspondence should be addressed to Bicheng Yang bcyanggdeieducn

Received 8 May 2013 Accepted 3 June 2013

Academic Editor Kehe Zhu

Copyright copy 2013 Q Huang and B Yang This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

By using the way of weight functions and the idea of introducing parameters a more accurate half-discrete Hilbert inequality witha nonhomogeneous kernel and a best constant factor is presented We also consider its best extension with the parameters theequivalent forms and the operator expressions as well as some reverses

1 Introduction

If 119886119899 119887119899ge 0 119886 = 119886

119899infin

119899=1isin 1198972 119887 = 119887

119899infin

119899=1isin 1198972 and 119886 =

suminfin

119899=11198862

119899

12

gt 0 and 119887 = suminfin

119899=11198872

119899

12

gt 0 then we havethe following discrete Hilbert inequality (cf [1])

infin

sum

119899=1

infin

sum

119898=1

119886119898119887119899

119898 + 119899

lt 120587 119886 119887 (1)

where the constant factor 120587 is the best possible Moreoverfor 119891 119892(ge0) isin 119871

2

(119877+) 119891 = int

infin

0

1198912

(119909)119889119909

12

gt 0 and119892 gt 0 we have the following Hilbert integral inequality (cf[2])

infin

0

119891 (119909) 119892 (119910)

119909 + 119910

119889119909 119889119910 lt 12058710038171003817100381710038171198911003817100381710038171003817

10038171003817100381710038171198921003817100381710038171003817 (2)

with the same best constant factor 120587 Inequalities (1)-(2) areimportant in the analysis and its applications (cf [3]) Thereare lots of improvements generalizations and applications ofinequalities (1)-(2) formore details refer to the literatures [4ndash15]

We find a result on the half-discrete Hilbert-type inequal-ity with the nonhomogeneous kernel which were publishedearly as follows (cf [16 Theorem 351])

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

1 + 119909119899

)

119902

119889119909 lt 119861119902

(

1

119901

1

119902

)

infin

sum

119899=1

119886119902

119899 (3)

where 119901 gt 1 119902 gt 1 1119901 + 1119902 = 1 and 119861(119906 V) =

int

infin

0

(119905119906minus1

119889119905(1 + 119905)119906+V) (119906 V gt 0) is the beta function But

the constant factors119861(1119901 1119902) were not consideredwhetherthe best possible Recently Yang gave a half-discrete Hilbertinequality with the nonhomogeneous kernel as follows (cf[17])

infin

sum

119899=1

119886119899int

infin

0

119891 (119909)

1 + 119909119899

119889119909 lt 120587(

infin

sum

119899=1

1198862

119899int

infin

0

1198912

(119909)119889119909)

12

(4)

where the constant factor 120587 is the best possible And somehalf-discrete Hilbert-type inequalities with the nonhomoge-neous kernel were given (cf [18])

In this paper by using theway of weight functions and theidea of introducing parameters and by means of Hadamardrsquosinequality we give the more accurate inequalities of (3) and(4) as follows

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

1 + 119909119899 minus 1199092

)

119902

119889119909 lt 119861119902

(

1

119901

1

119902

)

infin

sum

119899=1

119886119902

119899 (5)

infin

sum

119899=1

119886119899int

infin

0

119891 (119909)

1 + 119909119899 minus 1199092

119889119909 lt 120587(

infin

sum

119899=1

1198862

119899int

infin

0

1198912

(119909)119889119909)

12

(6)

with the best constant factors 119861(1119901 1119902) and 120587 We alsoconsider their best extensions with the parameters the

2 Journal of Function Spaces and Applications

equivalent forms and the operator expressions as well assome reverses

2 Some Lemmas

In the following lemmas we assumed that 120572 120573 120582 gt 0 120572 lt

120582120573 120572 le min1 2 minus 120573 1205741isin (minusinfininfin) and 0 le 120574

2le 12

Lemma 1 Define the weight functions as follows

120596120572(119899) = (119899 minus 120574

2)120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

(119899 isin N)

(7)

120603120572(119909) = (119909 minus 120574

1)120572

infin

sum

119899=1

(119899 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(8)

Setting 119896 = 119896(120572 120573 120582) = (1120573)119861(120572120573 120582 minus 120572120573) one has thefollowing inequalities

0 lt 119896 (1 minus 120579 (119909)) lt 120603120572(119909) lt 120596

120572(119899) = 119896 (9)

where 120579(119909) = (1120573119896) int

(119909minus1205741)120573(1minus1205742)120573

0

(119906120572120573minus1

(1 + 119906)120582

)119889119906 isin

(0 1) and 120579(119909) = 119874((119909 minus 1205741)120572

) (119909 isin (1205741infin))

Proof Putting 119906 = (119909 minus 1205741)120573

(119899 minus 1205742)120573 in (7) we have

120596120572(119899) =

1

120573

int

infin

0

119906120572120573minus1

(1 + 119906)120582

119889119906 =

1

120573

119861(

120572

120573

120582 minus

120572

120573

) = 119896 (10)

For fixed 119909 isin (1205741infin) setting

119891 (119905) =

(119909 minus 1205741)120572

(119905 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119905 minus 1205742)120573

]

120582

(119905 isin (1205742infin)) (11)

in view of the conditions we find that 1198911015840(119905) = minus(1 minus 120572)(119909 minus

1205741)120572

(119905 minus 1205742)120572minus2

[1 + (119909 minus 1205741)120573

(119905 minus 1205742)120573

]120582

minus 120582120573(119909 minus 1205741)120572+120573

(119905 minus

1205742)120572+120573minus2

[1+(119909minus1205741)120573

(119905minus1205742)120573

]120582+1

lt 0 and 11989110158401015840(119905) gt 0 By thefollowing Hadamard inequality (cf [15])

119891 (119899) lt int

119899+12

119899minus12

119891 (119905) 119889119905 (119899 isin N) (12)

and letting 119906 = (119909 minus 1205741)120573

(119905 minus 1205742)120573 it follows that

120603120572(119909) =

infin

sum

119899=1

119891 (119899) lt

infin

sum

119899=1

int

119899+12

119899minus12

119891 (119905) 119889119905 = int

infin

12

119891 (119905) 119889119905

le int

infin

1205742

119891 (119905) 119889119905 =

1

120573

int

infin

0

119906120572120573minus1

(1 + 119906)120582

119889119906

=

1

120573

119861(

120572

120573

120582 minus

120572

120573

) = 119896

120603120572(119909) =

infin

sum

119899=1

119891 (119899) gt int

infin

1

119891 (119905) 119889119905

= int

infin

1205742

119891 (119905) 119889119905 minus int

1

1205742

119891 (119905) 119889119905

= 119896 minus

1

120573

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

(1 + 119906)120582

119889119906

= 119896 (1 minus 120579 (119909)) gt 0

(13)

where

0 lt 120579 (119909) =

1

120573119896

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

(1 + 119906)120582

119889119906

lt

1

120573119896

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

119889119906 =

(1 minus 1205742)120572

(119909 minus 1205741)120572

120572119896

(14)

Hence we prove that (9) is valid

Lemma 2 Suppose that 1119901 + 1119902 = 1 (119901 = 0 1) and 119886119899ge 0

and119891(119909) ge 0 is a realmeasurable function in (1205741infin)Then the

following are considered (i) For 119901 gt 1 one has the following

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1

times[

[

[

int

infin

1205741

119891(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901

1119901

le 1198961119902

int

infin

1205741

120603120572(119909)(119909 minus 120574

1)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

(15)

Journal of Function Spaces and Applications 3

1198711=

int

infin

1205741

(119909 minus 1205741)119902120572minus1

120603119902minus1

120572 (119909)

times[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

119889119909

1119901

le 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

(16)

where 120603120572(119909) and 120596

120572(119899) are indicated by (7) and (8)

(ii) For 119901 lt 1 (119901 = 0) one has the reverses of (15) and (16)

Proof (i) By (7)ndash(9) andHolderrsquos inequality (cf [15]) we findthat

[

[

[

int

infin

1205741

119891(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901

=

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times [

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

119891 (119909)]

times[

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

]119889119909

119901

le int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119891119901

(119909) 119889119909

times

[

[

[

[

[

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119889119909

]

]

]

]

]

119901minus1

= int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

(119899 minus 1205742)1minus120572

times [(119899 minus 1205742)119902(1minus120572)minus1

120596120572(119899)]

119901minus1

= (119899 minus 1205742)1minus119901120572

119896119901minus1

times int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119899 minus 1205742)1minus120572

119889119909

(17)

119869119901

le 119896119901minus1

infin

sum

119899=1

int

infin

1205741

119891119901

(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119889119909

= 119896119901minus1

int

infin

1205741

infin

sum

119899=1

(119899 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times (119909 minus 1205741)120572+119901(1minus120572)minus1

119891119901

(119909) 119889119909

= 119896119901minus1

int

infin

1205741

120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

119891119901

(119909) 119889119909

(18)

Hence (15) is valid Using Holderrsquos inequality again we have

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

=

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times[

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

][

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

119886119899]

119902

le [120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

]

119902minus1

times

infin

sum

119899=1

119886119902

119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119899 minus 1205742)(1minus120572)119902119901

(119909 minus 1205741)1minus120572

= 120603119902minus1

120572(119909) (119909 minus 120574

1)1minus119902120572

times

infin

sum

119899=1

(119899 minus 1205742)(1minus120572)(119902minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119909 minus 1205741)1minus120572

119886119902

119899

4 Journal of Function Spaces and Applications

119871119902

1le int

infin

1205741

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119886119902

119899119889119909

=

infin

sum

119899=1

[

[

[

(119899 minus 1205742)

120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

times (119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

=

infin

sum

119899=1

120596120572(119899) (119899 minus 120574

2)119902(1minus120572)minus1

119886119902

119899

= 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

(19)

Hence (16) is valid(ii) For 0 lt 119901 lt 1 (119902 lt 0) or 119901 lt 0 (0 lt 119902 lt 1) using the

reverse Holder inequality and in the same way we have thereverses of (15) and (16)

3 Main Results

Some functions and spaces are introduced as follow

120601 (119909) = (119909 minus 1205741)119901(1minus120572)minus1

120601 (119909) = (1 minus 120579 (119909)) 120601 (119909)

120595 (119899) = (119899 minus 1205742)119902(1minus120572)minus1

(119909 isin (1205741infin) 119899 isin N 120579 (119909) is indicated as Lemma 1)

119871119901120601(1205741infin) =119891

10038171003817100381710038171198911003817100381710038171003817119901120601

=int

infin

1205741

120601 (119909)1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889119909

1119901

ltinfin

119897119902120595

= 119886=119886119899infin

119899=1 119886119902120595=

infin

sum

119899=1

120595 (119899)1003816100381610038161003816119886119899

1003816100381610038161003816

119902

1119902

ltinfin

(20)

Note If 119901 gt 1 then 119871119901120601(1205741infin) and 119897

119902120595are normal spaces

if 0 lt 119901 lt 1 or 119901 lt 0 then both 119871119901120601(1205741infin) and 119897

119902120595are

not normal spaces but we still use the formal symbols in thefollowing

Theorem 3 Suppose that 119901 gt 1 1119901 + 1119902 = 1 120572 120573 120582 gt

0 120572 lt 120582120573 120572 le min1 2 minus 120573 1205741

isin (minusinfininfin) 0 le

1205742le 12 and 119891(119909) 119886

119899ge 0 such that 119891 isin 119871

119901120601(1205741infin)

119886 = 119886119899infin

119899=1isin 119897119902120595

119891119901120601

gt 0 and 119886119902120595

gt 0 then we havethe following equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (x)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

(21)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891 (119909) 119889119909

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119901

1119901

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

(22)

119871 =

int

infin

1205741

(119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119902

119889119909

1119902

lt 119896119886119902120595

(23)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof By the Lebesgue term-by-term integration theoremwe find that there are two expressions of 119868 in (21) In viewof (15) 120603

120572(119909) lt 119896 and 0 lt 119891

119901120601lt infin we have (22) By

Holderrsquos inequality we find that

119868 =

infin

sum

119899=1

[

[

[

(119899 minus 1205742)120572minus1119901

int

infin

1205741

119891 (119909) 119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119899 minus 1205742)1119901minus120572

119886119899]

le 119869

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119869119886119902120595

(24)

Hence (21) is valid by (22) On the other hand assuming that(21) is valid and setting

119886119899= (119899 minus 120574

2)119901120572minus1[

[

[

int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901minus1

(119899 isin N) (25)

then we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899= 119869119901

= 119868 (26)

Journal of Function Spaces and Applications 5

By (15) it follows that 119869 lt infin If 119869 = 0 then (22) is triviallyvalid If 119869 gt 0 then 0 lt 119886

119902120595= 119869119901minus1

lt infin By (21) we have

119886119902

119902120595= 119869119901

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595lt 119896

10038171003817100381710038171198911003817100381710038171003817119901120601

(27)

Hence (22) is valid which is equivalent to (21)In view of (16) and120603

120572(119909) lt 119896 we obtain (23) By Holderrsquos

inequality again we have

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

le 119871int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

= 11987110038171003817100381710038171198911003817100381710038171003817119901120601

(28)

Then (21) is valid by using (23) Supposing that (21) is validand setting

119891 (119909) = (119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(29)

then it follows that

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909) 119889119909 = 119871119902

= 119868 (30)

In view of (16) and (9) we find 119871 lt infin If 119871 = 0 then (23) istrivially valid if 119871 gt 0 that is 0 lt 119891

119901120601lt infin then by (21)

we have

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= 119871119902

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119871 =10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601lt 119896119886

119902120595

(31)

Hence (23) is valid which is equivalent to (21)Then (21) (22)and (23) are equivalent We prove that the constant factor in(21) is the best possible For 0 lt 120576 lt 119902120572 setting 119886 = 119886

119899infin

119899=1

and 119891(119909) as follows (119901 119902 gt 1)

119886119899= (119899 minus 120574

2)120572minus120576119902minus1

119891 (119909) =

(119909 minus 1205741)120572+120576119901minus1

119909 isin (1205741 1 + 120574

1)

0 119909 isin [1 + 1205741infin)

(32)

if there exists a positive number 1198961015840 le 119896 such that (21) is stillvalid as we replace 119896 by 1198961015840 then substitution of 119886 and

119891(119909)we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

(33)

For 119901 119902 gt 1 letting = 120572 minus 120576119902 we find by Lemma 1 that

119868 = int

1205741+1

1205741

(119909 minus 1205741)120576minus1

(119909 minus 1205741)120572minus120576119902

times

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

120603(119909) 119889119909

gt 119896 ( 120573 120582) int

1205741+1

1205741

(119909 minus 1205741)120576minus1

[1 minus 119874((119909 minus 1205741)

)] 119889119909

= 119896(120572 minus

120576

119902

120573 120582) (

1

120576

minus 119874 (1))

(34)

By simple calculation we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899=

infin

sum

119899=1

(119899 minus 1205742)minus1minus120576

lt (1 minus 1205742)minus1minus120576

+ int

infin

1

(119910 minus 1205742)minus1minus120576

119889119910 =

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1

(35)

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

)

1119901

(36)

In view of (33) (34) and 119902 gt 1 it follows that

119896(120572 minus

120576

119902

120573 120582) [1 minus 120576119874 (1)]

lt 120576119868 lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

lt 1198961015840

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]

1119902

(37)

Thenwe have 119896(120572 120573 120582) = 119896 le 1198961015840 for 120576 rarr 0+ Hence 1198961015840 = 119896 is

the best value of (21) By the equivalency the constant factor kin (22) ((23)) is the best possible Otherwise we would reacha contradiction by (24) ((28)) that the constant factor in (21)is not the best possible

Remark 4 (i) Define a half-discrete Hilbert operator 119879

119871119901120601(1205741infin) rarr 119897

1199011205951minus119901 as follows For 119891 isin 119871

119901120601(1205741infin) we

define 119879119891 isin 1198971199011205951minus119901 satisfying

119879119891 (119899) = int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909 (119899 isin N) (38)

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Journal of Function Spaces and Applications

equivalent forms and the operator expressions as well assome reverses

2 Some Lemmas

In the following lemmas we assumed that 120572 120573 120582 gt 0 120572 lt

120582120573 120572 le min1 2 minus 120573 1205741isin (minusinfininfin) and 0 le 120574

2le 12

Lemma 1 Define the weight functions as follows

120596120572(119899) = (119899 minus 120574

2)120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

(119899 isin N)

(7)

120603120572(119909) = (119909 minus 120574

1)120572

infin

sum

119899=1

(119899 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(8)

Setting 119896 = 119896(120572 120573 120582) = (1120573)119861(120572120573 120582 minus 120572120573) one has thefollowing inequalities

0 lt 119896 (1 minus 120579 (119909)) lt 120603120572(119909) lt 120596

120572(119899) = 119896 (9)

where 120579(119909) = (1120573119896) int

(119909minus1205741)120573(1minus1205742)120573

0

(119906120572120573minus1

(1 + 119906)120582

)119889119906 isin

(0 1) and 120579(119909) = 119874((119909 minus 1205741)120572

) (119909 isin (1205741infin))

Proof Putting 119906 = (119909 minus 1205741)120573

(119899 minus 1205742)120573 in (7) we have

120596120572(119899) =

1

120573

int

infin

0

119906120572120573minus1

(1 + 119906)120582

119889119906 =

1

120573

119861(

120572

120573

120582 minus

120572

120573

) = 119896 (10)

For fixed 119909 isin (1205741infin) setting

119891 (119905) =

(119909 minus 1205741)120572

(119905 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119905 minus 1205742)120573

]

120582

(119905 isin (1205742infin)) (11)

in view of the conditions we find that 1198911015840(119905) = minus(1 minus 120572)(119909 minus

1205741)120572

(119905 minus 1205742)120572minus2

[1 + (119909 minus 1205741)120573

(119905 minus 1205742)120573

]120582

minus 120582120573(119909 minus 1205741)120572+120573

(119905 minus

1205742)120572+120573minus2

[1+(119909minus1205741)120573

(119905minus1205742)120573

]120582+1

lt 0 and 11989110158401015840(119905) gt 0 By thefollowing Hadamard inequality (cf [15])

119891 (119899) lt int

119899+12

119899minus12

119891 (119905) 119889119905 (119899 isin N) (12)

and letting 119906 = (119909 minus 1205741)120573

(119905 minus 1205742)120573 it follows that

120603120572(119909) =

infin

sum

119899=1

119891 (119899) lt

infin

sum

119899=1

int

119899+12

119899minus12

119891 (119905) 119889119905 = int

infin

12

119891 (119905) 119889119905

le int

infin

1205742

119891 (119905) 119889119905 =

1

120573

int

infin

0

119906120572120573minus1

(1 + 119906)120582

119889119906

=

1

120573

119861(

120572

120573

120582 minus

120572

120573

) = 119896

120603120572(119909) =

infin

sum

119899=1

119891 (119899) gt int

infin

1

119891 (119905) 119889119905

= int

infin

1205742

119891 (119905) 119889119905 minus int

1

1205742

119891 (119905) 119889119905

= 119896 minus

1

120573

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

(1 + 119906)120582

119889119906

= 119896 (1 minus 120579 (119909)) gt 0

(13)

where

0 lt 120579 (119909) =

1

120573119896

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

(1 + 119906)120582

119889119906

lt

1

120573119896

int

(119909minus1205741)120573(1minus1205742)120573

0

119906120572120573minus1

119889119906 =

(1 minus 1205742)120572

(119909 minus 1205741)120572

120572119896

(14)

Hence we prove that (9) is valid

Lemma 2 Suppose that 1119901 + 1119902 = 1 (119901 = 0 1) and 119886119899ge 0

and119891(119909) ge 0 is a realmeasurable function in (1205741infin)Then the

following are considered (i) For 119901 gt 1 one has the following

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1

times[

[

[

int

infin

1205741

119891(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901

1119901

le 1198961119902

int

infin

1205741

120603120572(119909)(119909 minus 120574

1)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

(15)

Journal of Function Spaces and Applications 3

1198711=

int

infin

1205741

(119909 minus 1205741)119902120572minus1

120603119902minus1

120572 (119909)

times[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

119889119909

1119901

le 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

(16)

where 120603120572(119909) and 120596

120572(119899) are indicated by (7) and (8)

(ii) For 119901 lt 1 (119901 = 0) one has the reverses of (15) and (16)

Proof (i) By (7)ndash(9) andHolderrsquos inequality (cf [15]) we findthat

[

[

[

int

infin

1205741

119891(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901

=

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times [

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

119891 (119909)]

times[

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

]119889119909

119901

le int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119891119901

(119909) 119889119909

times

[

[

[

[

[

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119889119909

]

]

]

]

]

119901minus1

= int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

(119899 minus 1205742)1minus120572

times [(119899 minus 1205742)119902(1minus120572)minus1

120596120572(119899)]

119901minus1

= (119899 minus 1205742)1minus119901120572

119896119901minus1

times int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119899 minus 1205742)1minus120572

119889119909

(17)

119869119901

le 119896119901minus1

infin

sum

119899=1

int

infin

1205741

119891119901

(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119889119909

= 119896119901minus1

int

infin

1205741

infin

sum

119899=1

(119899 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times (119909 minus 1205741)120572+119901(1minus120572)minus1

119891119901

(119909) 119889119909

= 119896119901minus1

int

infin

1205741

120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

119891119901

(119909) 119889119909

(18)

Hence (15) is valid Using Holderrsquos inequality again we have

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

=

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times[

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

][

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

119886119899]

119902

le [120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

]

119902minus1

times

infin

sum

119899=1

119886119902

119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119899 minus 1205742)(1minus120572)119902119901

(119909 minus 1205741)1minus120572

= 120603119902minus1

120572(119909) (119909 minus 120574

1)1minus119902120572

times

infin

sum

119899=1

(119899 minus 1205742)(1minus120572)(119902minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119909 minus 1205741)1minus120572

119886119902

119899

4 Journal of Function Spaces and Applications

119871119902

1le int

infin

1205741

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119886119902

119899119889119909

=

infin

sum

119899=1

[

[

[

(119899 minus 1205742)

120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

times (119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

=

infin

sum

119899=1

120596120572(119899) (119899 minus 120574

2)119902(1minus120572)minus1

119886119902

119899

= 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

(19)

Hence (16) is valid(ii) For 0 lt 119901 lt 1 (119902 lt 0) or 119901 lt 0 (0 lt 119902 lt 1) using the

reverse Holder inequality and in the same way we have thereverses of (15) and (16)

3 Main Results

Some functions and spaces are introduced as follow

120601 (119909) = (119909 minus 1205741)119901(1minus120572)minus1

120601 (119909) = (1 minus 120579 (119909)) 120601 (119909)

120595 (119899) = (119899 minus 1205742)119902(1minus120572)minus1

(119909 isin (1205741infin) 119899 isin N 120579 (119909) is indicated as Lemma 1)

119871119901120601(1205741infin) =119891

10038171003817100381710038171198911003817100381710038171003817119901120601

=int

infin

1205741

120601 (119909)1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889119909

1119901

ltinfin

119897119902120595

= 119886=119886119899infin

119899=1 119886119902120595=

infin

sum

119899=1

120595 (119899)1003816100381610038161003816119886119899

1003816100381610038161003816

119902

1119902

ltinfin

(20)

Note If 119901 gt 1 then 119871119901120601(1205741infin) and 119897

119902120595are normal spaces

if 0 lt 119901 lt 1 or 119901 lt 0 then both 119871119901120601(1205741infin) and 119897

119902120595are

not normal spaces but we still use the formal symbols in thefollowing

Theorem 3 Suppose that 119901 gt 1 1119901 + 1119902 = 1 120572 120573 120582 gt

0 120572 lt 120582120573 120572 le min1 2 minus 120573 1205741

isin (minusinfininfin) 0 le

1205742le 12 and 119891(119909) 119886

119899ge 0 such that 119891 isin 119871

119901120601(1205741infin)

119886 = 119886119899infin

119899=1isin 119897119902120595

119891119901120601

gt 0 and 119886119902120595

gt 0 then we havethe following equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (x)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

(21)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891 (119909) 119889119909

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119901

1119901

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

(22)

119871 =

int

infin

1205741

(119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119902

119889119909

1119902

lt 119896119886119902120595

(23)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof By the Lebesgue term-by-term integration theoremwe find that there are two expressions of 119868 in (21) In viewof (15) 120603

120572(119909) lt 119896 and 0 lt 119891

119901120601lt infin we have (22) By

Holderrsquos inequality we find that

119868 =

infin

sum

119899=1

[

[

[

(119899 minus 1205742)120572minus1119901

int

infin

1205741

119891 (119909) 119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119899 minus 1205742)1119901minus120572

119886119899]

le 119869

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119869119886119902120595

(24)

Hence (21) is valid by (22) On the other hand assuming that(21) is valid and setting

119886119899= (119899 minus 120574

2)119901120572minus1[

[

[

int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901minus1

(119899 isin N) (25)

then we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899= 119869119901

= 119868 (26)

Journal of Function Spaces and Applications 5

By (15) it follows that 119869 lt infin If 119869 = 0 then (22) is triviallyvalid If 119869 gt 0 then 0 lt 119886

119902120595= 119869119901minus1

lt infin By (21) we have

119886119902

119902120595= 119869119901

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595lt 119896

10038171003817100381710038171198911003817100381710038171003817119901120601

(27)

Hence (22) is valid which is equivalent to (21)In view of (16) and120603

120572(119909) lt 119896 we obtain (23) By Holderrsquos

inequality again we have

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

le 119871int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

= 11987110038171003817100381710038171198911003817100381710038171003817119901120601

(28)

Then (21) is valid by using (23) Supposing that (21) is validand setting

119891 (119909) = (119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(29)

then it follows that

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909) 119889119909 = 119871119902

= 119868 (30)

In view of (16) and (9) we find 119871 lt infin If 119871 = 0 then (23) istrivially valid if 119871 gt 0 that is 0 lt 119891

119901120601lt infin then by (21)

we have

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= 119871119902

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119871 =10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601lt 119896119886

119902120595

(31)

Hence (23) is valid which is equivalent to (21)Then (21) (22)and (23) are equivalent We prove that the constant factor in(21) is the best possible For 0 lt 120576 lt 119902120572 setting 119886 = 119886

119899infin

119899=1

and 119891(119909) as follows (119901 119902 gt 1)

119886119899= (119899 minus 120574

2)120572minus120576119902minus1

119891 (119909) =

(119909 minus 1205741)120572+120576119901minus1

119909 isin (1205741 1 + 120574

1)

0 119909 isin [1 + 1205741infin)

(32)

if there exists a positive number 1198961015840 le 119896 such that (21) is stillvalid as we replace 119896 by 1198961015840 then substitution of 119886 and

119891(119909)we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

(33)

For 119901 119902 gt 1 letting = 120572 minus 120576119902 we find by Lemma 1 that

119868 = int

1205741+1

1205741

(119909 minus 1205741)120576minus1

(119909 minus 1205741)120572minus120576119902

times

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

120603(119909) 119889119909

gt 119896 ( 120573 120582) int

1205741+1

1205741

(119909 minus 1205741)120576minus1

[1 minus 119874((119909 minus 1205741)

)] 119889119909

= 119896(120572 minus

120576

119902

120573 120582) (

1

120576

minus 119874 (1))

(34)

By simple calculation we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899=

infin

sum

119899=1

(119899 minus 1205742)minus1minus120576

lt (1 minus 1205742)minus1minus120576

+ int

infin

1

(119910 minus 1205742)minus1minus120576

119889119910 =

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1

(35)

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

)

1119901

(36)

In view of (33) (34) and 119902 gt 1 it follows that

119896(120572 minus

120576

119902

120573 120582) [1 minus 120576119874 (1)]

lt 120576119868 lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

lt 1198961015840

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]

1119902

(37)

Thenwe have 119896(120572 120573 120582) = 119896 le 1198961015840 for 120576 rarr 0+ Hence 1198961015840 = 119896 is

the best value of (21) By the equivalency the constant factor kin (22) ((23)) is the best possible Otherwise we would reacha contradiction by (24) ((28)) that the constant factor in (21)is not the best possible

Remark 4 (i) Define a half-discrete Hilbert operator 119879

119871119901120601(1205741infin) rarr 119897

1199011205951minus119901 as follows For 119891 isin 119871

119901120601(1205741infin) we

define 119879119891 isin 1198971199011205951minus119901 satisfying

119879119891 (119899) = int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909 (119899 isin N) (38)

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Journal of Function Spaces and Applications 3

1198711=

int

infin

1205741

(119909 minus 1205741)119902120572minus1

120603119902minus1

120572 (119909)

times[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

119889119909

1119901

le 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

(16)

where 120603120572(119909) and 120596

120572(119899) are indicated by (7) and (8)

(ii) For 119901 lt 1 (119901 = 0) one has the reverses of (15) and (16)

Proof (i) By (7)ndash(9) andHolderrsquos inequality (cf [15]) we findthat

[

[

[

int

infin

1205741

119891(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901

=

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times [

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

119891 (119909)]

times[

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

]119889119909

119901

le int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119891119901

(119909) 119889119909

times

[

[

[

[

[

int

infin

1205741

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119889119909

]

]

]

]

]

119901minus1

= int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

(119899 minus 1205742)1minus120572

times [(119899 minus 1205742)119902(1minus120572)minus1

120596120572(119899)]

119901minus1

= (119899 minus 1205742)1minus119901120572

119896119901minus1

times int

infin

1205741

119891119901

(119909) (119909 minus 1205741)(1minus120572)(119901minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119899 minus 1205742)1minus120572

119889119909

(17)

119869119901

le 119896119901minus1

infin

sum

119899=1

int

infin

1205741

119891119901

(119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119909 minus 1205741)(1minus120572)(119901minus1)

(119899 minus 1205742)1minus120572

119889119909

= 119896119901minus1

int

infin

1205741

infin

sum

119899=1

(119899 minus 1205742)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times (119909 minus 1205741)120572+119901(1minus120572)minus1

119891119901

(119909) 119889119909

= 119896119901minus1

int

infin

1205741

120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

119891119901

(119909) 119889119909

(18)

Hence (15) is valid Using Holderrsquos inequality again we have

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902

=

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times[

(119909 minus 1205741)(1minus120572)119902

(119899 minus 1205742)(1minus120572)119901

][

(119899 minus 1205742)(1minus120572)119901

(119909 minus 1205741)(1minus120572)119902

119886119899]

119902

le [120603120572(119909) (119909 minus 120574

1)119901(1minus120572)minus1

]

119902minus1

times

infin

sum

119899=1

119886119902

119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119899 minus 1205742)(1minus120572)119902119901

(119909 minus 1205741)1minus120572

= 120603119902minus1

120572(119909) (119909 minus 120574

1)1minus119902120572

times

infin

sum

119899=1

(119899 minus 1205742)(1minus120572)(119902minus1)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

1

(119909 minus 1205741)1minus120572

119886119902

119899

4 Journal of Function Spaces and Applications

119871119902

1le int

infin

1205741

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119886119902

119899119889119909

=

infin

sum

119899=1

[

[

[

(119899 minus 1205742)

120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

times (119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

=

infin

sum

119899=1

120596120572(119899) (119899 minus 120574

2)119902(1minus120572)minus1

119886119902

119899

= 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

(19)

Hence (16) is valid(ii) For 0 lt 119901 lt 1 (119902 lt 0) or 119901 lt 0 (0 lt 119902 lt 1) using the

reverse Holder inequality and in the same way we have thereverses of (15) and (16)

3 Main Results

Some functions and spaces are introduced as follow

120601 (119909) = (119909 minus 1205741)119901(1minus120572)minus1

120601 (119909) = (1 minus 120579 (119909)) 120601 (119909)

120595 (119899) = (119899 minus 1205742)119902(1minus120572)minus1

(119909 isin (1205741infin) 119899 isin N 120579 (119909) is indicated as Lemma 1)

119871119901120601(1205741infin) =119891

10038171003817100381710038171198911003817100381710038171003817119901120601

=int

infin

1205741

120601 (119909)1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889119909

1119901

ltinfin

119897119902120595

= 119886=119886119899infin

119899=1 119886119902120595=

infin

sum

119899=1

120595 (119899)1003816100381610038161003816119886119899

1003816100381610038161003816

119902

1119902

ltinfin

(20)

Note If 119901 gt 1 then 119871119901120601(1205741infin) and 119897

119902120595are normal spaces

if 0 lt 119901 lt 1 or 119901 lt 0 then both 119871119901120601(1205741infin) and 119897

119902120595are

not normal spaces but we still use the formal symbols in thefollowing

Theorem 3 Suppose that 119901 gt 1 1119901 + 1119902 = 1 120572 120573 120582 gt

0 120572 lt 120582120573 120572 le min1 2 minus 120573 1205741

isin (minusinfininfin) 0 le

1205742le 12 and 119891(119909) 119886

119899ge 0 such that 119891 isin 119871

119901120601(1205741infin)

119886 = 119886119899infin

119899=1isin 119897119902120595

119891119901120601

gt 0 and 119886119902120595

gt 0 then we havethe following equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (x)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

(21)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891 (119909) 119889119909

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119901

1119901

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

(22)

119871 =

int

infin

1205741

(119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119902

119889119909

1119902

lt 119896119886119902120595

(23)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof By the Lebesgue term-by-term integration theoremwe find that there are two expressions of 119868 in (21) In viewof (15) 120603

120572(119909) lt 119896 and 0 lt 119891

119901120601lt infin we have (22) By

Holderrsquos inequality we find that

119868 =

infin

sum

119899=1

[

[

[

(119899 minus 1205742)120572minus1119901

int

infin

1205741

119891 (119909) 119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119899 minus 1205742)1119901minus120572

119886119899]

le 119869

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119869119886119902120595

(24)

Hence (21) is valid by (22) On the other hand assuming that(21) is valid and setting

119886119899= (119899 minus 120574

2)119901120572minus1[

[

[

int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901minus1

(119899 isin N) (25)

then we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899= 119869119901

= 119868 (26)

Journal of Function Spaces and Applications 5

By (15) it follows that 119869 lt infin If 119869 = 0 then (22) is triviallyvalid If 119869 gt 0 then 0 lt 119886

119902120595= 119869119901minus1

lt infin By (21) we have

119886119902

119902120595= 119869119901

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595lt 119896

10038171003817100381710038171198911003817100381710038171003817119901120601

(27)

Hence (22) is valid which is equivalent to (21)In view of (16) and120603

120572(119909) lt 119896 we obtain (23) By Holderrsquos

inequality again we have

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

le 119871int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

= 11987110038171003817100381710038171198911003817100381710038171003817119901120601

(28)

Then (21) is valid by using (23) Supposing that (21) is validand setting

119891 (119909) = (119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(29)

then it follows that

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909) 119889119909 = 119871119902

= 119868 (30)

In view of (16) and (9) we find 119871 lt infin If 119871 = 0 then (23) istrivially valid if 119871 gt 0 that is 0 lt 119891

119901120601lt infin then by (21)

we have

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= 119871119902

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119871 =10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601lt 119896119886

119902120595

(31)

Hence (23) is valid which is equivalent to (21)Then (21) (22)and (23) are equivalent We prove that the constant factor in(21) is the best possible For 0 lt 120576 lt 119902120572 setting 119886 = 119886

119899infin

119899=1

and 119891(119909) as follows (119901 119902 gt 1)

119886119899= (119899 minus 120574

2)120572minus120576119902minus1

119891 (119909) =

(119909 minus 1205741)120572+120576119901minus1

119909 isin (1205741 1 + 120574

1)

0 119909 isin [1 + 1205741infin)

(32)

if there exists a positive number 1198961015840 le 119896 such that (21) is stillvalid as we replace 119896 by 1198961015840 then substitution of 119886 and

119891(119909)we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

(33)

For 119901 119902 gt 1 letting = 120572 minus 120576119902 we find by Lemma 1 that

119868 = int

1205741+1

1205741

(119909 minus 1205741)120576minus1

(119909 minus 1205741)120572minus120576119902

times

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

120603(119909) 119889119909

gt 119896 ( 120573 120582) int

1205741+1

1205741

(119909 minus 1205741)120576minus1

[1 minus 119874((119909 minus 1205741)

)] 119889119909

= 119896(120572 minus

120576

119902

120573 120582) (

1

120576

minus 119874 (1))

(34)

By simple calculation we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899=

infin

sum

119899=1

(119899 minus 1205742)minus1minus120576

lt (1 minus 1205742)minus1minus120576

+ int

infin

1

(119910 minus 1205742)minus1minus120576

119889119910 =

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1

(35)

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

)

1119901

(36)

In view of (33) (34) and 119902 gt 1 it follows that

119896(120572 minus

120576

119902

120573 120582) [1 minus 120576119874 (1)]

lt 120576119868 lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

lt 1198961015840

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]

1119902

(37)

Thenwe have 119896(120572 120573 120582) = 119896 le 1198961015840 for 120576 rarr 0+ Hence 1198961015840 = 119896 is

the best value of (21) By the equivalency the constant factor kin (22) ((23)) is the best possible Otherwise we would reacha contradiction by (24) ((28)) that the constant factor in (21)is not the best possible

Remark 4 (i) Define a half-discrete Hilbert operator 119879

119871119901120601(1205741infin) rarr 119897

1199011205951minus119901 as follows For 119891 isin 119871

119901120601(1205741infin) we

define 119879119891 isin 1198971199011205951minus119901 satisfying

119879119891 (119899) = int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909 (119899 isin N) (38)

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Journal of Function Spaces and Applications

119871119902

1le int

infin

1205741

infin

sum

119899=1

1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

times

(119899 minus 1205742)(1minus120572)(119902minus1)

(119909 minus 1205741)1minus120572

119886119902

119899119889119909

=

infin

sum

119899=1

[

[

[

(119899 minus 1205742)

120572

int

infin

1205741

(119909 minus 1205741)120572minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

times (119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

=

infin

sum

119899=1

120596120572(119899) (119899 minus 120574

2)119902(1minus120572)minus1

119886119902

119899

= 119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

(19)

Hence (16) is valid(ii) For 0 lt 119901 lt 1 (119902 lt 0) or 119901 lt 0 (0 lt 119902 lt 1) using the

reverse Holder inequality and in the same way we have thereverses of (15) and (16)

3 Main Results

Some functions and spaces are introduced as follow

120601 (119909) = (119909 minus 1205741)119901(1minus120572)minus1

120601 (119909) = (1 minus 120579 (119909)) 120601 (119909)

120595 (119899) = (119899 minus 1205742)119902(1minus120572)minus1

(119909 isin (1205741infin) 119899 isin N 120579 (119909) is indicated as Lemma 1)

119871119901120601(1205741infin) =119891

10038171003817100381710038171198911003817100381710038171003817119901120601

=int

infin

1205741

120601 (119909)1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889119909

1119901

ltinfin

119897119902120595

= 119886=119886119899infin

119899=1 119886119902120595=

infin

sum

119899=1

120595 (119899)1003816100381610038161003816119886119899

1003816100381610038161003816

119902

1119902

ltinfin

(20)

Note If 119901 gt 1 then 119871119901120601(1205741infin) and 119897

119902120595are normal spaces

if 0 lt 119901 lt 1 or 119901 lt 0 then both 119871119901120601(1205741infin) and 119897

119902120595are

not normal spaces but we still use the formal symbols in thefollowing

Theorem 3 Suppose that 119901 gt 1 1119901 + 1119902 = 1 120572 120573 120582 gt

0 120572 lt 120582120573 120572 le min1 2 minus 120573 1205741

isin (minusinfininfin) 0 le

1205742le 12 and 119891(119909) 119886

119899ge 0 such that 119891 isin 119871

119901120601(1205741infin)

119886 = 119886119899infin

119899=1isin 119897119902120595

119891119901120601

gt 0 and 119886119902120595

gt 0 then we havethe following equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (x)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

(21)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891 (119909) 119889119909

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119901

1119901

lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

(22)

119871 =

int

infin

1205741

(119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

]

]

]

119902

119889119909

1119902

lt 119896119886119902120595

(23)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof By the Lebesgue term-by-term integration theoremwe find that there are two expressions of 119868 in (21) In viewof (15) 120603

120572(119909) lt 119896 and 0 lt 119891

119901120601lt infin we have (22) By

Holderrsquos inequality we find that

119868 =

infin

sum

119899=1

[

[

[

(119899 minus 1205742)120572minus1119901

int

infin

1205741

119891 (119909) 119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119899 minus 1205742)1119901minus120572

119886119899]

le 119869

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119869119886119902120595

(24)

Hence (21) is valid by (22) On the other hand assuming that(21) is valid and setting

119886119899= (119899 minus 120574

2)119901120572minus1[

[

[

int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909]

]

]

119901minus1

(119899 isin N) (25)

then we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899= 119869119901

= 119868 (26)

Journal of Function Spaces and Applications 5

By (15) it follows that 119869 lt infin If 119869 = 0 then (22) is triviallyvalid If 119869 gt 0 then 0 lt 119886

119902120595= 119869119901minus1

lt infin By (21) we have

119886119902

119902120595= 119869119901

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595lt 119896

10038171003817100381710038171198911003817100381710038171003817119901120601

(27)

Hence (22) is valid which is equivalent to (21)In view of (16) and120603

120572(119909) lt 119896 we obtain (23) By Holderrsquos

inequality again we have

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

le 119871int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

= 11987110038171003817100381710038171198911003817100381710038171003817119901120601

(28)

Then (21) is valid by using (23) Supposing that (21) is validand setting

119891 (119909) = (119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(29)

then it follows that

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909) 119889119909 = 119871119902

= 119868 (30)

In view of (16) and (9) we find 119871 lt infin If 119871 = 0 then (23) istrivially valid if 119871 gt 0 that is 0 lt 119891

119901120601lt infin then by (21)

we have

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= 119871119902

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119871 =10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601lt 119896119886

119902120595

(31)

Hence (23) is valid which is equivalent to (21)Then (21) (22)and (23) are equivalent We prove that the constant factor in(21) is the best possible For 0 lt 120576 lt 119902120572 setting 119886 = 119886

119899infin

119899=1

and 119891(119909) as follows (119901 119902 gt 1)

119886119899= (119899 minus 120574

2)120572minus120576119902minus1

119891 (119909) =

(119909 minus 1205741)120572+120576119901minus1

119909 isin (1205741 1 + 120574

1)

0 119909 isin [1 + 1205741infin)

(32)

if there exists a positive number 1198961015840 le 119896 such that (21) is stillvalid as we replace 119896 by 1198961015840 then substitution of 119886 and

119891(119909)we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

(33)

For 119901 119902 gt 1 letting = 120572 minus 120576119902 we find by Lemma 1 that

119868 = int

1205741+1

1205741

(119909 minus 1205741)120576minus1

(119909 minus 1205741)120572minus120576119902

times

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

120603(119909) 119889119909

gt 119896 ( 120573 120582) int

1205741+1

1205741

(119909 minus 1205741)120576minus1

[1 minus 119874((119909 minus 1205741)

)] 119889119909

= 119896(120572 minus

120576

119902

120573 120582) (

1

120576

minus 119874 (1))

(34)

By simple calculation we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899=

infin

sum

119899=1

(119899 minus 1205742)minus1minus120576

lt (1 minus 1205742)minus1minus120576

+ int

infin

1

(119910 minus 1205742)minus1minus120576

119889119910 =

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1

(35)

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

)

1119901

(36)

In view of (33) (34) and 119902 gt 1 it follows that

119896(120572 minus

120576

119902

120573 120582) [1 minus 120576119874 (1)]

lt 120576119868 lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

lt 1198961015840

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]

1119902

(37)

Thenwe have 119896(120572 120573 120582) = 119896 le 1198961015840 for 120576 rarr 0+ Hence 1198961015840 = 119896 is

the best value of (21) By the equivalency the constant factor kin (22) ((23)) is the best possible Otherwise we would reacha contradiction by (24) ((28)) that the constant factor in (21)is not the best possible

Remark 4 (i) Define a half-discrete Hilbert operator 119879

119871119901120601(1205741infin) rarr 119897

1199011205951minus119901 as follows For 119891 isin 119871

119901120601(1205741infin) we

define 119879119891 isin 1198971199011205951minus119901 satisfying

119879119891 (119899) = int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909 (119899 isin N) (38)

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Journal of Function Spaces and Applications 5

By (15) it follows that 119869 lt infin If 119869 = 0 then (22) is triviallyvalid If 119869 gt 0 then 0 lt 119886

119902120595= 119869119901minus1

lt infin By (21) we have

119886119902

119902120595= 119869119901

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595lt 119896

10038171003817100381710038171198911003817100381710038171003817119901120601

(27)

Hence (22) is valid which is equivalent to (21)In view of (16) and120603

120572(119909) lt 119896 we obtain (23) By Holderrsquos

inequality again we have

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

le 119871int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909

1119901

= 11987110038171003817100381710038171198911003817100381710038171003817119901120601

(28)

Then (21) is valid by using (23) Supposing that (21) is validand setting

119891 (119909) = (119909 minus 1205741)119902120572minus1[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(29)

then it follows that

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= int

infin

1205741

(119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909) 119889119909 = 119871119902

= 119868 (30)

In view of (16) and (9) we find 119871 lt infin If 119871 = 0 then (23) istrivially valid if 119871 gt 0 that is 0 lt 119891

119901120601lt infin then by (21)

we have

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601= 119871119902

= 119868 lt 11989610038171003817100381710038171198911003817100381710038171003817119901120601

119886119902120595

that is 119871 =10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601lt 119896119886

119902120595

(31)

Hence (23) is valid which is equivalent to (21)Then (21) (22)and (23) are equivalent We prove that the constant factor in(21) is the best possible For 0 lt 120576 lt 119902120572 setting 119886 = 119886

119899infin

119899=1

and 119891(119909) as follows (119901 119902 gt 1)

119886119899= (119899 minus 120574

2)120572minus120576119902minus1

119891 (119909) =

(119909 minus 1205741)120572+120576119901minus1

119909 isin (1205741 1 + 120574

1)

0 119909 isin [1 + 1205741infin)

(32)

if there exists a positive number 1198961015840 le 119896 such that (21) is stillvalid as we replace 119896 by 1198961015840 then substitution of 119886 and

119891(119909)we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

(33)

For 119901 119902 gt 1 letting = 120572 minus 120576119902 we find by Lemma 1 that

119868 = int

1205741+1

1205741

(119909 minus 1205741)120576minus1

(119909 minus 1205741)120572minus120576119902

times

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

120603(119909) 119889119909

gt 119896 ( 120573 120582) int

1205741+1

1205741

(119909 minus 1205741)120576minus1

[1 minus 119874((119909 minus 1205741)

)] 119889119909

= 119896(120572 minus

120576

119902

120573 120582) (

1

120576

minus 119874 (1))

(34)

By simple calculation we have

119886119902

119902120595=

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899=

infin

sum

119899=1

(119899 minus 1205742)minus1minus120576

lt (1 minus 1205742)minus1minus120576

+ int

infin

1

(119910 minus 1205742)minus1minus120576

119889119910 =

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1

(35)

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

= int

1205741+1

1205741

(119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

)

1119901

(36)

In view of (33) (34) and 119902 gt 1 it follows that

119896(120572 minus

120576

119902

120573 120582) [1 minus 120576119874 (1)]

lt 120576119868 lt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901120601

119886119902120595

lt 1198961015840

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]

1119902

(37)

Thenwe have 119896(120572 120573 120582) = 119896 le 1198961015840 for 120576 rarr 0+ Hence 1198961015840 = 119896 is

the best value of (21) By the equivalency the constant factor kin (22) ((23)) is the best possible Otherwise we would reacha contradiction by (24) ((28)) that the constant factor in (21)is not the best possible

Remark 4 (i) Define a half-discrete Hilbert operator 119879

119871119901120601(1205741infin) rarr 119897

1199011205951minus119901 as follows For 119891 isin 119871

119901120601(1205741infin) we

define 119879119891 isin 1198971199011205951minus119901 satisfying

119879119891 (119899) = int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909 (119899 isin N) (38)

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Journal of Function Spaces and Applications

Then by (22) it follows that 1198791198911199011205951minus119901 le 119896119891

119901120601 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (22) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)(ii) Define a half-discrete Hilbert operator 119879 119897

119902120595rarr

1198711199021206011minus119902(1205741infin) in the following way For 119886 isin 119897

119902120595 we define

119879119886 isin 119871

1199021206011minus119902 satisfying

119879119886 (119909) =

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

(119909 isin (1205741infin))

(39)

Then by (23) it follows that 1198791198861199021206011minus119902 le 119896119886

119902120595 that is 119879

is the bounded operator with 119879 le 119896 Since the constantfactor 119896 in (23) is the best possible then we have 119879 = 119896 =

(1120573)119861(120572120573 120582 minus 120572120573)

Theorem 5 Suppose that 0 lt 119901 lt 1 1119901 + 1119902 = 1 120572 120573 120582 gt0 120572 lt 120582120573 120572 le min1 2 minus 120573 120574

1isin (minusinfininfin) 0 le 120574

2le 12

and 119891(119909) 119886119899ge 0 such that 119891 isin 119871

119901120601(1205741infin) 119886 = 119886

119899infin

119899=1isin

119897119902120595

119891119901120601gt 0 and 119886

119902120595gt 0 Then one has the following

equivalent inequalities

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

= int

infin

1205741

119891 (119909)

infin

sum

119899=1

119886119899119889119909

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

(40)

119869 =

infin

sum

119899=1

(119899 minus 1205742)119901120572minus1[

[

[

int

infin

1205741

119891(119909)

[1+(119909minus1205741)120573

(119899minus1205742)120573

]

120582

119889119909]

]

]

119901

1119901

gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

(41)

= int

infin

1205741

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

infin

sum

119899=1

119886119899

[1+(119909minus1205741)120573

(119899minus1205742)120573

]120582

]

119902

119889119909

1119902

gt 119896119886119902120595

(42)

where the constant factor 119896 = (1120573)119861(120572120573 120582 minus 120572120573) is the bestpossible

Proof In view of (9) the reverse of (15) and 0 lt 119891119901120601lt infin

we have (41) Using the reverse Holder inequality we obtainthe reverse form of (24) as follows

119868 ge 119869119886119902120595 (43)

Then by (41) (40) is valid

On the other hand if (40) is valid setting 119886119899as in (25)

then (26) still holds with 0 lt 119901 lt 1 By (40) it follows that119869 gt 0 If 119869 = infin then (41) is trivially valid if 119869 lt infin then0 lt 119886

119902120595= 119869119901minus1

lt infin and we have

119886119902

119902120595= 119869119901

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is 119869 = 119886119902minus1

119902120595gt 119896

10038171003817100381710038171198911003817100381710038171003817119901 120601

(44)

Then (41) is valid which is equivalent to (40)By the reverse of (16) and120603(119909) gt 119896(1minus120579(119909)) and by 119902 lt 0

we have

gt 119896(119902minus1)119902

1198711ge 119896(119902minus1)119902

119896

infin

sum

119899=1

(119899 minus 1205742)119902(1minus120572)minus1

119886119902

119899

1119902

= 119896119886119902120595

(45)

Hence (42) is valid By the reverse Holder inequality againwe obtain

119868 = int

infin

1205741

[

[

[

(119909 minus 1205741)120572minus1119902

(1 minus 120579 (119909))1119901

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

times [(1 minus 120579 (119909))1119901

(119909 minus 1205741)1119902minus120572

119891 (119909)] 119889119909

ge 10038171003817100381710038171198911003817100381710038171003817119901 120601

(46)

Then (40) is valid by (42) On the other hand if (40) is validsetting

119891 (119909) =

(119909 minus 1205741)119902120572minus1

[1 minus 120579 (119909)]119902minus1

[

[

[

infin

sum

119899=1

119886119899

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

]

]

]

119902minus1

(119909 isin (1205741infin))

(47)

then 119891119901119901120601

= int

infin

1205741

[1 minus 120579(119909)](119909 minus 1205741)119901(1minus120572)minus1

119891119901

(119909)119889119909 = 119902

= 119868

By the reverse of (16) we have gt 0 If = infin then (42) istrivially valid if 0 lt lt infin then by (40) we obtain

10038171003817100381710038171198911003817100381710038171003817

119901

119901120601

= 119902

= 119868 gt 11989610038171003817100381710038171198911003817100381710038171003817119901 120601

119886119902120595

that is = 10038171003817100381710038171198911003817100381710038171003817

119901minus1

119901120601

gt 119896119886119902120595

(48)

Hence (42) is valid which is equivalent to (40) It follows that(40) (41) and (42) are equivalent

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Journal of Function Spaces and Applications 7

If there exists a positive number 1198961015840 ge 119896 such that (40) isstill valid as we replace 119896 by 1198961015840 then in particular we have

119868 =

infin

sum

119899=1

119886119899int

infin

1205741

119891 (119909)

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

gt 119896101584010038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

119886119902120595

(49)

where 119886 = 119886119899infin

119899=1and

119891 are taken as in (32) (0 lt 120576 lt 119901(120573120582 minus120572)) Since by (35) we find in

10038171003817100381710038171003817

119891

10038171003817100381710038171003817119901 120601

= int

1+1205741

1205741

[1 minus 119874 ((119909 minus 1205741)120572

)] (119909 minus 1205741)120576minus1

119889119909

1119901

= (

1

120576

minus 119874(1))

1119901

119868 le

infin

sum

119899=1

(119899 minus 1205742)120572minus120576119902minus1

int

infin

1205741

(119909 minus 1205741)120572+120576119901minus1

[1 + (119909 minus 1205741)120573

(119899 minus 1205742)120573

]

120582

119889119909

=

1

120573

infin

sum

119899=1

(119899 minus 1205742)minus120576minus1

int

infin

0

119906120572120573+120576120573119901minus1

(1 + 119906)120582

119889119906

le

1

120573

[

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

(50)

then by (35) (49) and the above results we obtain (noticethat 119902 lt 0)

1

120573

[

120576 + 1 minus 1205742

(1 minus 1205742)120576+1]119861(

120572

120573

+

120576

120573119901

120582 minus

120572

120573

minus

120576

120573119901

)

ge 120576119868 gt 1205761198961015840

(

1

120576

minus 119874(1))

1119901

(

120576 + 1 minus 1205742

120576(1 minus 1205742)120576+1)

1119902

= 1198961015840

(1 minus 120576119874(1))1119901

(

120576 + 1 minus 1205742

(1 minus 1205742)120576+1)

1119902

(51)

For 120576 rarr 0+ we have 119896 = (1120573)119861(120572120573 120582 minus 120572120573) ge 119896

1015840Hence 119896 = 119896

1015840 is the best value of (40) By the equivalencythe constant factor k in (41) ((42)) is the best possibleOtherwise wewould reach a contradiction by (43) ((46)) thatthe constant factor in (40) is not the best possible

In the same way for 119901 lt 0 we also have the followingresult

Theorem 6 If the assumption of 119901 gt 1 in Theorem 3 isreplaced by 119901 lt 0 then the reverses of (21) (22) and (23)are valid and equivalent Moreover the same constant factor isthe best possible

Remark 7 (i) If 1205741= 1205742= 0 120582 = 120573 = 1 and 120572 = 1119901

then 119896 = 119861(1119901 1119902) and (23) reduces to (3) In particularfor 119901 = 119902 = 2 (21) reduces to (4)

(ii) For 1205741= 0 120574

2= 12 and 120572 = 1119901 in (21) and (23) it

followsinfin

sum

119899=1

119886119899int

infin

0

119891 (119909)

(1 + (119909119899 minus 1199092)120573

)

120582

119889119909

lt 119896int

infin

0

119909119901minus2

119891119901

(119909)119889119909

1119901

infin

sum

119899=1

119886119902

119899

1119902

(52)

int

infin

0

119909119902minus2

(

infin

sum

119899=1

119886119899

(1 + (119909119899 minus 1199092)120573

)

120582

)

119902

119889119909 lt 119896119902

infin

sum

119899=1

119886119902

119899 (53)

where the constant factors both 119896 = (1120573)119861(1119901120573 120582 minus 1119901120573)and 119896119902 are the best possibles In particular for 120582 = 120573 = 1(53) comes to (5) for 120582 = 120573 = 1 and 119901 = 119902 = 2 in (52) weobtain (6) Hence inequality (21) is the best extension of (4)and (6) and inequality (23) is the best extension of (3) and(5) with the parameters

Acknowledgment

This paper is supported by the 2012 Knowledge ConstructionSpecial Foundation Item of Guangdong Institution of HigherLearning College and University (no 2012KJCX0079)

References

[1] H Weyl Singulare integral gleichungen mit besonderer be-rucksichtigung des fourierschen integral theorems [Inaugeral-Dissertation] Gottingen 1908

[2] I Schur ldquoBernerkungen sur Theorie der beschrankten Bilin-earformenmit unendlich vielen veranderlichenrdquo Journal fur dieReine und Angewandte Mathematik vol 140 pp 1ndash28 1911

[3] D S Mitrinovic J E Pecaric and A M Fink InequalitiesInvolving Functions and Their Integrals and Derivatives KluwerAcaremic Boston Mass USA 1991

[4] Y Bicheng ldquoOn Hilbertrsquos Integral Inequalityrdquo Journal of Math-ematical Analysis and Applications vol 220 no 2 pp 778ndash7851998

[5] B Yang and L Debnath ldquoOn the extended Hardy-Hilbertrsquosinequalityrdquo Journal of Mathematical Analysis and Applicationsvol 272 no 1 pp 187ndash199 2002

[6] J Jin and L Debnath ldquoOn a Hilbert-type linear series operatorand its applicationsrdquo Journal of Mathematical Analysis andApplications vol 371 no 2 pp 691ndash704 2010

[7] B Yang and T M Rassias ldquoOn a new extension of Hilbertrsquosinequalityrdquo Mathematical Inequalities and Applications vol 8no 4 pp 575ndash582 2005

[8] M Krnic and J Pecaric ldquoHilbertrsquos inequalities and theirreversesrdquo Publicationes Mathematicae Debrecen vol 67 no 3-4 pp 315ndash331 2005

[9] L E Azar ldquoOn some extensions of hardy-hilbertrsquos inequalityand applicationsrdquo Journal of Inequalities and Applications vol2008 Article ID 546829 2008

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Journal of Function Spaces and Applications

[10] Q Huang and B Yang ldquoOn a multiple hilbert-type integraloperator and applicationsrdquo Journal of Inequalities and Applica-tions vol 2009 Article ID 192197 2009

[11] Q Huang ldquoOn a Multiple hilbertrsquos inequality with parametersrdquoJournal of Inequalities and Applications vol 2010 Article ID309319 2010

[12] B Yang The Norm of Operator and Hilbert-Type InequalitiesScience Press Beijing China 2009 (Chinese)

[13] B Yang Hilbert-Type Integral Inequalities Bentham ScienceDubai UAE 2009

[14] B Yang Discrete Hilbert-Type Inequalities Bentham ScienceDubai UAE 2011

[15] J Kuang Applied Inequalities Shangdong Science TechnicPress Jinan China 2010 (Chinese)

[16] G H Hardy J E Littlewood and G Polya InequalitiesCambridge University Press Cambridge UK 1934

[17] B Yang ldquoA mixed Hilbert-type inequality with a best constantfactorrdquo International Journal of Pure and Applied Mathematicsvol 20 no 3 pp 319ndash328 2005

[18] B Yang ldquoOn a half-discrete reverse hilbert-yype inequality witha non-homogeneous kernelrdquo Journal of Inner Mongolia NormalUniversity (Natural Science Edition) vol 40 no 5 pp 433ndash4362011 (Chinese)

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of