REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH...

16
#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH COEFFICIENTS 1, 2, 7 OR 14 Ay¸ se Alaca School of Mathematics and Statistics, Carleton University, Ottawa, Canada [email protected] Jamilah Alanazi School of Mathematics and Statistics, Carleton University, Ottawa, Canada [email protected] Received: 11/2/15, Revised: 4/25/16, Accepted: 7/8/16, Published: 7/22/16 Abstract Using modular forms we determine explicit formulas for the number of representa- tions of a positive integer n by quaternary quadratic forms with coecients 1, 2, 7 or 14. 1. Introduction Let N, N 0 , Z, Q and C denote the sets of positive integers, non-negative integers, integers, rational numbers and complex numbers, respectively. The sum of divisors function σ(n) for n 2 N is given by σ(n)= X 1m|n m. (1.1) If n 62 N we set σ(n) = 0. For a 1 ,a 2 ,a 3 ,a 4 2 N, and n 2 N 0 we define N (a 1 ,a 2 ,a 3 ,a 4 ; n) := card{(x 1 ,x 2 ,x 3 ,x 4 ) 2 Z 4 | n = a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4 }. There are twenty-six quaternary quadratic forms a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4 with a 1 ,a 2 ,a 3 ,a 4 2 {1, 2, 7, 14}, gcd(a 1 ,a 2 ,a 3 ,a 4 ) = 1 and a 1 a 2 a 3 a 4 , namely (a 1 ,a 2 ,a 3 ,a 4 ) =(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 7), (1, 1, 1, 14), (1, 1, 2, 2), (1, 1, 2, 7), (1, 1, 2, 14), (1, 1, 7, 7), (1, 1, 7, 14), (1, 1, 14, 14), (1, 2, 2, 2), (1, 2, 2, 7), (1, 2, 2, 14), (1, 2, 7, 7), (1, 2, 7, 14), (1, 2, 14, 14), (1, 7, 7, 7), (1, 7, 7, 14), (1, 7, 14, 14), (1, 14, 14, 14), (2, 2, 2, 7), (2, 2, 7, 7), (2, 2, 7, 14), (2, 7, 7, 7), (2, 7, 7, 14), (2, 7, 14, 14). (1.2)

Transcript of REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH...

Page 1: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

#A55 INTEGERS 16 (2016)

REPRESENTATIONS BY QUATERNARY QUADRATIC FORMSWITH COEFFICIENTS 1, 2, 7 OR 14

Ayse AlacaSchool of Mathematics and Statistics, Carleton University, Ottawa, Canada

[email protected]

Jamilah AlanaziSchool of Mathematics and Statistics, Carleton University, Ottawa, Canada

[email protected]

Received: 11/2/15, Revised: 4/25/16, Accepted: 7/8/16, Published: 7/22/16

AbstractUsing modular forms we determine explicit formulas for the number of representa-tions of a positive integer n by quaternary quadratic forms with coe�cients 1, 2, 7or 14.

1. Introduction

Let N, N0, Z, Q and C denote the sets of positive integers, non-negative integers,integers, rational numbers and complex numbers, respectively. The sum of divisorsfunction �(n) for n 2 N is given by

�(n) =X

1m|nm. (1.1)

If n 62 N we set �(n) = 0. For a1, a2, a3, a4 2 N, and n 2 N0 we define

N(a1, a2, a3, a4;n) := card{(x1, x2, x3, x4) 2 Z4 | n = a1x21 + a2x

22 + a3x

23 + a4x

24}.

There are twenty-six quaternary quadratic forms a1x21 + a2x2

2 + a3x23 + a4x2

4 witha1, a2, a3, a4 2 {1, 2, 7, 14}, gcd(a1, a2, a3, a4) = 1 and a1 a2 a3 a4, namely

(a1, a2, a3, a4) =(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 7), (1, 1, 1, 14), (1, 1, 2, 2), (1, 1, 2, 7),(1, 1, 2, 14), (1, 1, 7, 7), (1, 1, 7, 14), (1, 1, 14, 14), (1, 2, 2, 2), (1, 2, 2, 7),(1, 2, 2, 14), (1, 2, 7, 7), (1, 2, 7, 14), (1, 2, 14, 14), (1, 7, 7, 7),(1, 7, 7, 14), (1, 7, 14, 14), (1, 14, 14, 14), (2, 2, 2, 7), (2, 2, 7, 7),(2, 2, 7, 14), (2, 7, 7, 7), (2, 7, 7, 14), (2, 7, 14, 14). (1.2)

Page 2: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 2

Formulas for N(1, 1, 1, 1;n), N(1, 1, 1, 2;n), N(1, 1, 2, 2;n) and N(1, 2, 2, 2;n) areknown. The formula

N(1, 1, 1, 1;n) = 8�(n)� 32�(n/4) (1.3)

is due to Jacobi, see [7], [2], [16, Theorem 9.5]. The formula

N(1, 1, 2, 2;n) = 4�(n)� 4�(n/2) + 8�(n/4)� 32�(n/8) (1.4)

was stated by Liouville, see [2], [11], [16, Theorem 18.1]. Formulas for N(1, 1, 1, 2;n)and N(1, 2, 2, 2;n) were also stated by Liouville, see [12], [16, Theorem 18.2].

In this paper we determine an explicit formula for N(a1, a2, a3, a4;n) (Theorems2.1–2.4) for each of the remaining twenty-two quaternary quadratic forms amongwhich (1, 1, 1, 7), (1, 1, 2, 7), (1, 1, 2, 14), and (1, 2, 2, 7) are universal forms. To thebest of our knowledge Theorems 2.1–2.4 are new.

For q 2 C with |q| < 1 we have1X

n=1

N(a1, a2, a3, a4;n)qn = '(qa1)'(qa2)'(qa3)'(qa4), (1.5)

where '(q) denotes Ramanujan’s theta function defined by

'(q) =1X

n=�1qn2

.

It is convenient to define F (q) for q 2 C with |q| < 1 by

F (q) =1Y

n=1

(1� qn). (1.6)

The infinite product representation of '(q) is due to Jacobi (see, for example [4,Corollary 1.3.4]), namely,

'(q) =F 5(q2)

F 2(q)F 2(q4). (1.7)

The Dedekind eta function ⌘(z) is the holomorphic function defined on the upperhalf plane H = {z 2 C | Im(z) > 0} by

⌘(z) = e⇡iz/121Y

n=1

(1� e2⇡inz). (1.8)

Throughout the remainder of the paper we take q = q(z) := e2⇡iz with z 2 H andso |q| < 1. Appealing to (1.6) we can express the Dedekind eta function (1.8) as

⌘(z) = q1/241Y

n=1

(1� qn) = q1/24F (q). (1.9)

Page 3: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 3

An eta quotient is defined to be a finite product of the form

f(z) =Y�

⌘r�(�z), (1.10)

where � runs through a finite set of positive integers and the exponents r� arenon-zero integers. Appealing to (1.7) and (1.9) we have

'(q) =⌘5(2z)

⌘2(z)⌘2(4z). (1.11)

Let � and be Dirichlet characters. For n 2 N we define ��, (n) by

��, (n) :=X

1m|n (m)�(n/m)m. (1.12)

If n 62 N we set ��, (n) = 0. Let �0 denote the trivial character, that is �0(n) = 1for all n 2 Z. Then ��0,�0(n) coincides with the sum of divisors function �(n) in(1.1). For m 2 Z we define six Dirichlet characters by

8><>:

�1(m) =⇣�7

m

⌘, �2(m) =

⇣�4m

⌘, �3(m) =

⇣28m

⌘,

�4(m) =⇣�8

m

⌘, �5(m) =

⇣ 8m

⌘, �6(m) =

⇣56m

⌘.

(1.13)

2. Statements of Main Results

We define the following five eta quotients

A1(q) = ⌘(2z)⌘(4z)⌘(14z)⌘(28z), (2.1)

A2(q) =⌘3(2z)⌘3(28z)⌘(4z)⌘(14z)

, (2.2)

A3(q) =⌘4(2z)⌘4(14z)

⌘(z)⌘(4z)⌘(7z)⌘(28z), (2.3)

A4(q) =⌘4(4z)⌘4(28z)

⌘(2z)⌘(8z)⌘(14z)⌘(56z), (2.4)

A5(q) =⌘3(2z)⌘(8z)⌘3(14z)⌘(56z)⌘(z)⌘(4z)⌘(7z)⌘(28z)

, (2.5)

and integers ar(n) (n 2 N) by

Ar(q) =1X

n=1

ar(n)qn, r 2 {1, 2, 3, 4, 5}. (2.6)

Page 4: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 4

Theorem 2.1. Let n 2 N and ar(n) (r 2 {1, 2, 3, 4, 5}) be as in (2.6). Then

(a) N(1, 1, 7, 7;n) =43�(n)� 8

3�(n/2) +

163�(n/4)� 28

3�(n/7) +

563�(n/14)

� 1123�(n/28) +

83a3(n),

(b) N(1, 1, 14, 14;n) =23�(n)� 2

3�(n/2)� 4

3�(n/4)� 14

3�(n/7) +

163�(n/8)

+143�(n/14) +

283�(n/28)� 112

3�(n/56) +

23a1(n)

� 4a2(n) +103

a3(n)� 43a4(n) + 8a5(n),

(c) N(1, 2, 7, 14;n) =23�(n)� 2

3�(n/2)� 4

3�(n/4)� 14

3�(n/7) +

163�(n/8)

+143�(n/14) +

283�(n/28)� 112

3�(n/56) +

23a1(n)

+43a3(n)� 4

3a4(n) + 4a5(n),

(d) N(2, 2, 7, 7;n) =23�(n)� 2

3�(n/2)� 4

3�(n/4)� 14

3�(n/7) +

163�(n/8)

+143�(n/14) +

283�(n/28)� 112

3�(n/56)� 10

3a1(n)

+ 4a2(n)� 23a3(n) +

203

a4(n)� 8a5(n).

We define the following four eta quotients

B1(q) =⌘2(2z)⌘3(7z)

⌘(z), (2.7)

B2(q) =⌘3(8z)⌘2(28z)

⌘(56z), (2.8)

B3(q) =⌘2(4z)⌘3(56z)

⌘(8z), (2.9)

B4(q) =⌘3(z)⌘2(14z)

⌘(7z), (2.10)

and integers br(n) (n 2 N) by

Br(q) =1X

n=1

br(n)qn, r 2 {1, 2, 3, 4}. (2.11)

Theorem 2.2. Let n 2 N. Let ��i,�j (n) be as in (1.12) for i, j 2 {0, 1, 2, 3}, and

Page 5: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 5

br(n) (r 2 {1, 2, 3, 4}) be as in (2.11). Then

(a) N(1, 1, 1, 7;n) =72��3,�0(n)� 1

4��0,�3(n) +

74��1,�2(n)� 1

2��2,�1(n) + 3b2(n)

� 21b3(n)� 32b4(n),

(b) N(1, 1, 2, 14;n) =74��3,�0(n)� 1

4��0,�3(n/2) +

74��1,�2(n/2)� 1

4��2,�1(n)

+218

b1(n)� 12b2(n) +

72b3(n) +

38b4(n),

(c) N(1, 2, 2, 7;n) =74��3,�0(n)� 1

4��0,�3(n/2) +

74��1,�2(n/2)� 1

4��2,�1(n)

� 78b1(n) +

32b2(n)� 21

2b3(n)� 1

8b4(n),

(d) N(1, 7, 7, 7;n) =12��3,�0(n)� 1

4��0,�3(n)� 1

4��1,�2(n) +

12��2,�1(n)� 3

2b1(n)

+ 3b2(n) + 3b3(n),

(e) N(1, 7, 14, 14;n) =14��3,�0(n)� 1

4��0,�3(n/2)� 1

4��1,�2(n/2) +

14��2,�1(n)

� 18b1(n) +

32b2(n) +

32b3(n) +

18b4(n),

(f) N(2, 7, 7, 14;n) =14��3,�0(n)� 1

4��0,�3(n/2)� 1

4��1,�2(n/2) +

14��2,�1(n)

+38b1(n)� 1

2b2(n)� 1

2b3(n)� 3

8b4(n).

We define the following six eta quotients

C1(q) =⌘3(2z)⌘(7z)⌘2(8z)⌘(28z)

⌘(z)⌘2(4z), (2.12)

C2(q) =⌘(2z)⌘2(7z)⌘(8z)⌘3(28z)

⌘2(14z)⌘(56z), (2.13)

C3(q) =⌘2(z)⌘3(4z)⌘(14z)⌘(56z)

⌘2(2z)⌘(8z), (2.14)

C4(q) =⌘6(2z)⌘(8z)⌘4(28z)

⌘2(z)⌘3(4z)⌘(14z)⌘(56z), (2.15)

C5(q) =⌘4(2z)⌘(7z)⌘6(28z)

⌘(z)⌘(4z)⌘3(14z)⌘2(56z), (2.16)

C6(q) =⌘4(4z)⌘6(14z)⌘(56z)

⌘(2z)⌘2(7z)⌘(8z)⌘3(28z), (2.17)

and integers cr(n) (n 2 N) by

Cr(q) =1X

n=1

cr(n)qn, r 2 {1, 2, 3, 4, 5, 6}. (2.18)

Page 6: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 6

Theorem 2.3. Let n 2 N. Let ��i,�j (n) be as in (1.12) for i, j 2 {0, 5} and cr(n)(r 2 {1, 2, 3, 4, 5, 6}) be as in (2.18). Then

(a) N(1, 1, 7, 14;n) =43��5,�0(n)� 28

3��5,�0(n/7) +

13��0,�5(n)� 7

3��0,�5(n/7)

+ 4c1(n) +103

c2(n) +43c3(n)� 3c4(n)� c5(n) + c6(n),

(b) N(1, 2, 7, 7;n) =43��5,�0(n)� 28

3��5,�0(n/7) +

13��0,�5(n)� 7

3��0,�5(n/7)

� 4c1(n)� 23c2(n) +

43c3(n) + 3c4(n) + c5(n)� c6(n),

(c) N(1, 2, 14, 14;n) =23��5,�0(n)� 14

3��5,�0(n/7) +

13��0,�5(n)� 7

3��0,�5(n/7)

+ 2c1(n) + 3c2(n) + c3(n)� 13c4(n)� 2c5(n) +

23c6(n),

(d) N(2, 2, 7, 14;n) =23��5,�0(n)� 14

3��5,�0(n/7) +

13��0,�5(n)� 7

3��0,�5(n/7)

� 2c1(n)� 3c2(n)� c3(n) +53c4(n) + 2c5(n) +

23c6(n).

We define the following six eta quotients

D1(q) =⌘4(2z)⌘2(4z)⌘(14z)⌘(56z)

⌘2(z)⌘(8z)⌘(28z), (2.19)

D2(q) =⌘2(2z)⌘4(4z)⌘(7z)⌘(28z)

⌘(z)⌘2(8z)⌘(14z), (2.20)

D3(q) =⌘3(2z)⌘(7z)⌘2(56z)

⌘(z)⌘(4z), (2.21)

D4(q) =⌘3(4z)⌘2(7z)⌘(56z)

⌘(2z)⌘(8z), (2.22)

D5(q) =⌘(2z)⌘(8z)⌘4(14z)⌘2(28z)

⌘(4z)⌘2(7z)⌘(56z), (2.23)

D6(q) =⌘(z)⌘2(8z)⌘3(14z)

⌘(7z)⌘(28z), (2.24)

and integers dr(n) (n 2 N) by

Dr(q) =1X

n=1

dr(n)qn, r 2 {1, 2, 3, 4, 5, 6}. (2.25)

Theorem 2.4. Let n 2 N. Let ��i,�j (n) be as in (1.12) for i, j 2 {0, 1, 4, 6} anddr(n) (r 2 {1, 2, 3, 4, 5, 6}) be as in (2.25). Then

(a) N(1, 1, 1, 14;n) =� 25��4,�1(n) +

710��1,�4(n) +

145��6,�0(n)� 1

10��0,�6(n)

+910

d1(n) +65d2(n) +

635

d3(n) +6310

d5(n) +95d6(n),

Page 7: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 7

(b) N(1, 1, 2, 7;n) =� 25��4,�1(n) +

710��1,�4(n) +

145��6,�0(n)� 1

10��0,�6(n)

� 110

d1(n) +65d2(n)� 7

5d3(n)� 7

10d5(n)� 1

5d6(n),

(c) N(1, 2, 2, 14;n) =� 15��4,�1(n) +

710��1,�4(n) +

75��6,�0(n)� 1

10��0,�6(n)

+2120

d1(n)� 110

d2(n)� 710

d3(n) +75d4(n) +

720

d5(n)

+310

d6(n),

(d) N(1, 7, 7, 14;n) =25��4,�1(n)� 1

10��1,�4(n) +

25��6,�0(n)� 1

10��0,�6(n)

� 12d1(n)� 7

5d3(n) +

125

d4(n) +12d5(n) +

75d6(n),

(e) N(1, 14, 14, 14;n) =15��4,�1(n)� 1

10��1,�4(n) +

15��6,�0(n)� 1

10��0,�6(n)

� 920

d1(n) +910

d2(n) +2710

d3(n) +95d4(n)� 3

20d5(n)

+910

d6(n),

(f) N(2, 2, 2, 7;n) =� 15��4,�1(n) +

710��1,�4(n) +

75��6,�0(n)� 1

10��0,�6(n)

+5120

d1(n) +910

d2(n) +6310

d3(n)� 635

d4(n)� 6320

d5(n)

� 2710

d6(n),

(g) N(2, 7, 7, 7;n) =25��4,�1(n)� 1

10��1,�4(n) +

25��6,�0(n)� 1

10��0,�6(n)

� 32d1(n) +

35d3(n) +

125

d4(n) +32d5(n)� 3

5d6(n),

(h) N(2, 7, 14, 14;n) =15��4,�1(n)� 1

10��1,�4(n) +

15��6,�0(n)� 1

10��0,�6(n)

+120

d1(n)� 110

d2(n)� 310

d3(n)� 15d4(n) +

2720

d5(n)

� 110

d6(n).

3. Spaces M2(�0(56), �i) for i = 0, 3, 5, 6

Let N 2 N and � be a Dirichlet character of modulus dividing N , and �0(N) bethe modular subgroup defined by

�0(N) =⇢✓

a bc d

◆ ��� a, b, c, d 2 Z, ad� bc = 1, c ⌘ 0 (mod N)�

.

Page 8: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 8

Let k 2 Z. We write Mk(�0(N),�) to denote the space of modular forms of weight kwith multiplier system � for �0(N), and Ek(�0(N),�) and Sk(�0(N),�) to denotethe subspaces of Eisenstein forms and cusp forms of Mk(�0(N),�), respectively. Itis known (see for example [14, p. 83] and [13]) that

Mk(�0(N),�) = Ek(�0(N),�)� Sk(�0(N),�). (3.1)

Let �0 be the trivial character and �i (i 2 {1, 2, 3, 4, 5, 6}) be as in (1.13). Wedefine the Eisenstein series

L(q) := E�0,�0(q) = � 124

+1X

n=1

�(n)qn, (3.2)

E�3,�0(q) =1X

n=1

��3,�0(n)qn, (3.3)

E�0,�3(q) = �4 +1X

n=1

��0,�3(n)qn, (3.4)

E�1,�2(q) =1X

n=1

��1,�2(n)qn, (3.5)

E�2,�1(q) =1X

n=1

��2,�1(n)qn, (3.6)

E�5,�0(q) =1X

n=1

��5,�0(n)qn, (3.7)

E�0,�5(q) = �12

+1X

n=1

��0,�5(n)qn, (3.8)

E�4,�1(q) =1X

n=1

��4,�1(n)qn, (3.9)

E�1,�4(q) =1X

n=1

��1,�4(n)qn, (3.10)

E�6,�0(q) =1X

n=1

��6,�0(n)qn, (3.11)

E�0,�6(q) = �10 +1X

n=1

��0,�6(n)qn. (3.12)

We use the following lemma to determine if certain eta quotients are modularforms. See [6, p. 174], [8, Corollary 2.3, p. 37], [9, Theorem 5.7, p. 99] and [10].

Lemma 3.1. (Ligozat’s Criteria) Let N 2 N and f(z) =Y

1�|N⌘r�(�z) be an

Page 9: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 9

eta quotient. Let s =Y

1�|N�|r�| and k =

12

X1�|N

r�. Suppose that the following

conditions are satisfied:

(L1)X

1�|N� · r� ⌘ 0 (mod 24),

(L2)X

1�|N

N

�· r� ⌘ 0 (mod 24),

(L3)X

1�|N

gcd(d, �)2 · r��

� 0 for each positive divisor d of N ,

(L4) k is an integer.

Then f(z) 2 Mk(�0(N),�), where the character � is given by �(m) =⇣ (�1)ks

m

⌘.

(L3)0 In addition to the above conditions, if the inequality in (L3) is strict foreach positive divisor d of N , then f(z) 2 Sk(�0(N),�).

We note that the eta quotients given by (2.1)–(2.5), (2.7)–(2.10), (2.12)–(2.17)and (2.19)–(2.24) are constructed with MAPLE in a way that they satisfy theconditions of Lemma 3.1 for N = 56 and k = 2.

The quaternary quadratic forms (a1, a2, a3, a4) given in (1.2) are grouped in Table3.1 according to the modular spaces to which '(qa1)'(qa2)'(qa3)'(qa4) belong.

M2(�0(56),�0) M2(�0(56),�3) M2(�0(56),�5) M2(�0(56),�6)(1, 1, 1, 1) (1, 1, 1, 7) (1, 1, 1, 2) (1, 1, 1, 14)(1, 1, 2, 2) (1, 1, 2, 14) (1, 1, 7, 14) (1, 1, 2, 7)(1, 1, 7, 7) (1, 2, 2, 7) (1, 2, 2, 2) (1, 2, 2, 14)(1, 1, 14, 14) (1, 7, 7, 7) (1, 1, 7, 14) (1, 7, 7, 14)(1, 2, 7, 14) (1, 7, 14, 14) (1, 2, 14, 14) (1, 14, 14, 14)(2, 2, 7, 7) (2, 7, 7, 14) (2, 2, 7, 14) (2, 2, 2, 7)

(2, 7, 7, 7)(2, 7, 14, 14)

Table 3.1

Theorem 3.1. Let �0 be the trivial character and �3,�5,�6 be as in (1.13). If(a1, a2, a3, a4) is in the first, second, third or fourth column of Table 3.1, then

(a) '(qa1)'(qa2)'(qa3)'(qa4) 2 M2(�0(56),�0),

(b) '(qa1)'(qa2)'(qa3)'(qa4) 2 M2(�0(56),�3),

(c) '(qa1)'(qa2)'(qa3)'(qa4) 2 M2(�0(56),�5),

Page 10: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 10

(d) '(qa1)'(qa2)'(qa3)'(qa4) 2 M2(�0(56),�6),

respectively.

Proof. We prove only (a) as the remaining ones can be proven similarly. From(1.11) we have

'2(q)'2(q7) =⌘10(2z)⌘10(14z)

⌘4(z)⌘4(4z)⌘4(7z)⌘4(28z), (3.13)

'2(q2)'2(q7) =⌘10(4z)⌘10(14z)

⌘4(2z)⌘4(7z)⌘4(8z)⌘4(28z), (3.14)

'(q)'(q2)'(q7)'(q14) =⌘3(2z)⌘3(4z)⌘3(14z)⌘3(28z)⌘2(z)⌘2(7z)⌘2(8z)⌘2(56z)

, (3.15)

'2(q)'2(q14) =⌘10(2z)⌘10(28z)

⌘4(z)⌘4(4z)⌘4(14z)⌘4(56z). (3.16)

Then the assertions directly follow from (3.13)–(3.16) and Lemma 3.1. 2

We deduce from [14, Sec. 6.1, p. 93] that

dim(E2(�0(56),�0)) = 7, dim(S2(�0(56),�0)) = 5. (3.17)

Also we deduce from [14, Sec. 6.3, p. 98] that

dim(E2(�0(56),�3)) = 8, dim(S2(�0(56),�3)) = 4, (3.18)dim(E2(�0(56),�5)) = 4, dim(S2(�0(56),�5)) = 6, (3.19)dim(E2(�0(56),�6)) = 4, dim(S2(�0(56),�6)) = 6. (3.20)

Theorem 3.2. Let �0 be the trivial character and �3,�5,�6 be as in (1.13).

(a) Ar(q) (r 2 {1, 2, 3, 4, 5}) given by (2.1)–(2.5) form a basis for S2(�0(56),�0).

(b) Br(q) (r 2 {1, 2, 3, 4}) given by (2.7)–(2.10) form a basis for S2(�0(56),�3).

(c)Cr(q) (r 2 {1, 2, 3, 4, 5, 6}) given by (2.12)–(2.17) form a basis for S2(�0(56),�5).

(d)Dr(q) (r 2 {1, 2, 3, 4, 5, 6}) given by (2.19)–(2.24) form a basis for S2(�0(56),�6).

Proof. (a) The eta quotients Ar(q) (r 2 {1, 2, 3, 4, 5}) are linearly independent overC. For each r 2 {1, 2, 3, 4, 5}, Ar(q) 2 S2(�0(56),�0) by Lemma 3.1. Then theassertion follows from (3.17). Similarly appealing to Lemma 3.1, the parts (b), (c)and (d) follow from (3.18), (3.19) and (3.20) respectively. 2

Theorem 3.3. Let �0 be the trivial character and �i (1 i 6) be as in (1.13).

(a) {L(q)� tL(qt) | t = 2, 4, 7, 8, 14, 28, 56} [ {Ar(q) | r = 1, 2, 3, 4, 5} is a basis forM2(�0(56),�0).

Page 11: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 11

(b) {E�3,�0(qt), E�0,�3(qt), E�1,�2(qt), E�2,�1(qt) | t = 1, 2}[{Br(q) | r = 1, 2, 3, 4}is a basis for M2(�0(56),�3).

(c) {E�5,�0(qt), E�0,�5(qt) | t = 1, 7} [ {Cr(q) | r = 1, 2, 3, 4, 5, 6} is a basis forM2(�0(56),�5).

(d) {E�6,�0(q), E�0,�6(q), E�4,�1(q), E�1,�4(q)} [ {Dr(q) | r = 1, 2, 3, 4, 5, 6} is abasis for M2(�0(56),�6).

Proof. (a) It follows from [14, Theorem 5.9, p. 88] with � = = �0 that {L(q) �tL(qt) | t = 2, 4, 7, 8, 14, 28, 56} is a basis for E2(�0(56),�0). Then the assertionfollows from (3.1), (3.17) and Theorem 3.2(a).

(b) Appealing to [14, Theorem 5.9, p. 88] with ✏ = �3 and �, 2 {�0,�1,�2,�3},we see that {E�0,�3(qt), E�1,�2(qt), E�2,�1(qt), E�3,�0(qt) | t = 1, 2} is a basis forE2(�0(56),�3). Then the assertion follows from (3.1), (3.18) and Theorem 3.2(b).

(c) Appealing to [14, Theorem 5.9, p. 88] with ✏ = �5 and �, 2 {�0,�5}, wesee that {E�0,�5(qt), E�5,�0(qt) | t = 1, 7} is a basis for E2(�0(56),�5). Then theassertion follows from (3.1), (3.19) and Theorem 3.2(c).

(d) By [14, Theorem 5.9, p. 88] with ✏ = �6 and �, 2 {�0,�1,�4,�6},{E�0,�6(q), E�6,�0(q), E�1,�4(q), E�4,�1(q)} is a basis for E2(�0(56),�6). Then theassertion follows from (3.1), (3.20) and Theorem 3.2(d). 2

4. Theta Function Identities

In this section we state some theta function identities (Theorems 4.1–4.4) fromwhich we deduce Theorems 2.1–2.4.

Theorem 4.1.

(a) '2(q)'2(q7) =43

L(q)� 83

L(q2) +163

L(q4)� 283

L(q7) +563

L(q14)

� 1123

L(q28) +83A3(q),

(b) '2(q)'2(q14) =23

L(q)� 23

L(q2)� 43

L(q4)� 143

L(q7) +163

L(q8)

+143

L(q14) +283

L(q28)� 1123

L(q56) +23A1(q)� 4A2(q)

+103

A3(q)�43A4(q) + 8A5(q),

Page 12: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 12

(c) '(q)'(q2)'(q7)'(q14) =23

L(q)� 23

L(q2)� 43

L(q4)� 143

L(q7)

+163

L(q8) +143

L(q14) +283

L(q28)� 1123

L(q56)

+23A1(q) +

43A3(q)�

43A4(q) + 4A5(q),

(d) '2(q2)'2(q7) =23

L(q)� 23

L(q2)� 43

L(q4)� 143

L(q7) +163

L(q8)

+143

L(q14) +283

L(q28)� 1123

L(q56)� 103

A1(q) + 4A2(q)

� 23A3(q) +

203

A4(q)� 8A5(q).

Proof. Let (a1, a2, a3, a4) be any of the quaternary quadratic forms listed in thefirst column of Table 3.1. By Theorem 3.1(a), we have '(qa1)'(qa2)'(qa3)'(qa4) 2M2(�0(56),�0). Then, by Theorem 3.3(a), '(qa1)'(qa2)'(qa3)'(qa4) must be a lin-ear combination of L(q)�tL(qt) (t = 2, 4, 7, 8, 14, 28, 56) and Ar(q) (r = 1, 2, 3, 4, 5),namely there exist coe�cients x1, x2, x3, x4, x5, x6, x7, y1, y2, y3, y4, y5 2 C such that

'(qa1)'(qa2)'(qa3)'(qa4) = x1 (L(q)� 2L(q2)) + x2 (L(q)� 4L(q4))+x3 (L(q)� 5L(q5)) + x4 (L(q)� 8L(q8))+x5 (L(q)� 10L(q10)) + x6 (L(q)� 20L(q20))+x7 (L(q)� 40L(q40)) + y1A1(q) + y2A2(q)+y3A3(q) + y4A4(q) + y5A5(q). (4.1)

We now prove part (a) of the theorem as the remaining parts can be provensimilarly. Let (a1, a2, a3, a4) = (1, 1, 7, 7). Appealing to [9, Theorem 3.13], we findthat the Sturm bound for the modular space M2(�0(56)) is 16. So, equating thecoe�cients of qn for 0 n 16 on both sides of (4.1), we find a system of linearequations with the unknowns x1, x2, x3, x4, x5, x6, x7, y1, y2, y3, y4 and y5. Then,using MAPLE we solve this system, and find that

x1 = x3 = x6 =43, x2 = x5 = �4

3, x7 = 0, y1 = y2 = y4 = y5 = 0, y3 =

83.

Substituting these values into (4.1) and doing some simplifications, we obtain theequation in part (a). 2

Theorems 4.2–4.4 below can be proven similarly.

Theorem 4.2. Let �0 be the trivial character and �1,�2,�3 be as in (1.13). Then

(a) '3(q)'(q7) =72E�3,�0(q)�

14E�0,�3(q) +

74E�1,�2(q)�

12E�2,�1(q)

+ 3B2(q)� 21B3(q)�32B4(q),

Page 13: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 13

(b) '2(q)'(q2)'(q14) =74E�3,�0(q)�

14E�0,�3(q

2) +74E�1,�2(q

2)� 14E�2,�1(q)

+218

B1(q)�12B2(q) +

72B3(q) +

38B4(q),

(c) '(q)'2(q2)'(q7) =74E�3,�0(q)�

14E�0,�3(q

2) +74E�1,�2(q

2)� 14E�2,�1(q)

� 78B1(q) +

32B2(q)�

212

B3(q)�18B4(q),

(d) '(q)'3(q7) =12E�3,�0(q)�

14E�0,�3(q)�

14E�1,�2(q) +

12E�2,�1(q)

� 32B1(q) + 3B2(q) + 3B3(q),

(e) '(q)'(q7)'2(q14) =14E�3,�0(q)�

14E�0,�3(q

2)� 14E�1,�2(q

2) +14E�2,�1(q)

� 18B1(q) +

32B2(q) +

32B3(q) +

18B4(q),

(f) '(q2)'2(q7)'(q14) =14E�3,�0(q)�

14E�0,�3(q

2)� 14E�1,�2(q

2) +14E�2,�1(q)

+38B1(q)�

12B2(q)�

12B3(q)�

38B4(q).

Theorem 4.3. Let �0 be the trivial character and �5 be as in (1.13). Then

(a) '2(q)'(q7)'(q14) =43E�5,�0(q)�

283

E�5,�0(q7) +

13E�0,�5(q)�

73E�0,�5(q

7)

+ 4C1(q) +103

C2(q) +43C3(q)� 3C4(q)� C5(q) + C6(q),

(b) '(q)'(q2)'2(q7) =43E�5,�0(q)�

283

E�5,�0(q7) +

13E�0,�5(q)�

73E�0,�5(q

7)

� 4C1(q)�23C2(q) +

43C3(q) + 3C4(q) + C5(q)� C6(q),

(c) '(q)'(q2)'2(q14) =23E�5,�0(q)�

143

E�5,�0(q7) +

13E�0,�5(q)�

73E�0,�5(q

7)

+ 2C1(q) + 3C2(q) + C3(q)�13C4(q)� 2C5(q) +

23C6(q),

(d) '2(q2)'(q7)'(q14) =23E�5,�0(q)�

143

E�5,�0(q7) +

13E�0,�5(q)�

73E�0,�5(q

7)

� 2C1(q)� 3C2(q)� C3(q) +53C4(q) + 2C5(q) +

23C6(q).

Theorem 4.4. Let �0 be the trivial character and �1,�4,�6 be as in (1.13). Then

(a) '3(q)'(q14) =� 25E�4,�1(q) +

710

E�1,�4(q) +145

E�6,�0(q)�110

E�0,�6(q)

+910

D1(q) +65D2(q) +

635

D3(q) +6310

D5(q) +95D6(q),

Page 14: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 14

(b) '2(q)'(q2)'(q7) =� 25E�4,�1(q) +

710

E�1,�4(q) +145

E�6,�0(q)�110

E�0,�6(q)

� 110

D1(q) +65D2(q)�

75D3(q)�

710

D5(q)�15D6(q),

(c) '(q)'2(q2)'(q14) =� 15E�4,�1(q) +

710

E�1,�4(q) +75E�6,�0(q)�

110

E�0,�6(q)

+2120

D1(q)�110

D2(q)�710

D3(q)

+75D4(q) +

720

D5(q) +310

D6(q),

(d) '(q)'2(q7)'(q14) =25E�4,�1(q)�

110

E�1,�4(q) +25E�6,�0(q)�

110

E�0,�6(q)

� 12D1(q)�

75D3(q) +

125

D4(q) +12D5(q) +

75D6(q),

(e) '(q)'3(q14) =15E�4,�1(q)�

110

E�1,�4(q) +15E�6,�0(q)�

110

E�0,�6(q)

� 920

D1(q) +910

D2(q) +2710

D3(q) +95D4(q)�

320

D5(q)

+910

D6(q),

(f) '3(q2)'(q7) =� 15E�4,�1(q) +

710

E�1,�4(q) +75E�6,�0(q)�

110

E�0,�6(q)

+5120

D1(q) +910

D2(q) +6310

D3(q)�635

D4(q)�6320

D5(q)

� 2710

D6(q),

(g) '(q2)'3(q7) =25E�4,�1(q)�

110

E�1,�4(q) +25E�6,�0(q)�

110

E�0,�6(q)

� 32D1(q) +

35D3(q) +

125

D4(q) +32D5(q)�

35D6(q),

(h) '(q2)'(q7)'2(q14) =15E�4,�1(q)�

110

E�1,�4(q) +15E�6,�0(q)�

110

E�0,�6(q)

+120

D1(q)�110

D2(q)�310

D3(q)

� 15D4(q) +

2720

D5(q)�110

D6(q).

5. Proofs of Main Results

Theorem 2.1 follows from (1.5), (2.6), (3.2) and Theorem 4.1. Theorem 2.2 followsfrom (1.5), (2.11), (3.3)–(3.6) and Theorem 4.2. Theorem 2.3 follows from (1.5),(2.18), (3.7), (3.8) and Theorem 4.3. Theorem 2.4 follows from (1.5), (2.25), (3.9)–(3.12) and Theorem 4.4.

Page 15: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 15

6. Remarks

By Theorem 3.1(a), '4(q) and '2(q)'2(q2) are in M2(�0(56),�0). Appealing toTheorem 3.3(a), we have

'4(q) =8L(q)� 32L(q4),'2(q)'2(q2) =4L(q)� 4L(q2) + 8L(q4)� 32L(q8),

from which we deduce the well-known results (1.3) and (1.4) respectively.By Theorem 3.1(c), '3(q)'(q2) and '(q)'3(q2) are in M2(�0(56),�5). Appealing

to Theorem 3.3(c), we obtain

'3(q)'(q2) = �2E�0,�5(q) + 8E�5,�0(q), (6.1)'(q)'3(q2) = �2E�0,�5(q) + 4E�5,�0(q). (6.2)

Then appealing to (1.5), (3.7), (3.8), (6.1) and (6.2) we deduce that for n 2 N

N(1, 1, 1, 2;n) = �2��0,�5(n) + 8��5,�0(n) = �2Xd|n

⇣8d

⌘d + 8

Xd|n

⇣8d

⌘n

d,

N(1, 2, 2, 2;n) = �2��0,�5(n) + 4��5,�0(n) = �2Xd|n

⇣8d

⌘d + 4

Xd|n

⇣8d

⌘n

d,

which agree with the results in [15, (4.3), (5.3)] and [1, Theorem 5.1, Theorem 5.2].

One can show that A3(�q) = �⌘(z)⌘(2z)⌘(7z)⌘(14z), where A3(q) is givenby (2.3). We note that �A3(�q) is used in [5, (3.16)] to give an expression for'2(�q)'2(�q7) as a linear combination of Eisenstein series and a cusp form, fromwhich we deduce the formula for N(1, 1, 7, 7;n) given in Theorem 2.1(a).

It would be interesting to determine general formulas for the number of represen-tations of a positive integer n by the quaternary quadratic forms with coe�cientsin {1, p1, p2, p1p2}, where p1 and p2 are distinct prime numbers. The case whenp1 = 2 and p2 = 5 is treated in [3].

Acknowledgements. The authors would like to thank the anonymous refereefor helpful comments on the original manuscript. The research of the first authorwas supported by a Discovery Grant from the Natural Sciences and EngineeringResearch Council of Canada (RGPIN-418029-2013).

References

[1] A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, The number of representations ofa positive integer by certain quaternary quadratic forms, Int. J. Number Theory 5 (2009),13-40.

Page 16: REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH ...emis.maths.adelaide.edu.au/journals/INTEGERS/papers/q55/q55.pdf#A55 INTEGERS 16 (2016) REPRESENTATIONS BY QUATERNARY QUADRATIC

INTEGERS: 16 (2016) 16

[2] A. Alaca, S. Alaca, M. F. Lemire and K. S. Williams, Nineteen quaternary quadratic forms,Acta Arith. 130 (2007), 277-310.

[3] A. Alaca and M. Altiary, Representations by quaternary quadratic forms with coe�cients 1,2, 5 or 10, submitted for publication (2016).

[4] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence,2006.

[5] S. Cooper and D. Ye, Level 14 and 15 analogues of Ramanujan’s elliptic functions to alter-native bases, Trans. Amer. Math. Soc. (2015) http://dx.doi.org/10.1090/tran6658

[6] B. Gordon and D. Sinor, Multiplicative properties of ⌘-products, Springer Lecture Notes inMath. 1395 (1989), 173-200.

[7] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829. Reprinted inGesammelte Werke Vol. 1, Chelsea, New York, 1969, 49-239.

[8] G. Kohler, Eta Products and Theta Series Identities, Springer Monographs in Mathematics,Springer, 2011.

[9] L. J. P. Kilford, Modular Forms: A Classical and Computational Introduction, 2nd edition,Imperial College Press, London, 2015.

[10] G. Ligozat, Courbes modulaires de genre 1, Bull. Soc. Math. France 43 (1975), 5-80.

[11] J. Liouville, Sur les deux formes x2+y2+2(z2+t2), J. Pures Appl. Math. 5 (1860), 269-272.

[12] J. Liouville, Sur les deux formes x2 + y2 + z2 + 2t2, x2 + 2(y2 + z2 + t2), J. Pures Appl.Math. 6 (1861), 225-230.

[13] J.-P. Serre, Modular forms of weight one and Galois representations, Algebraic NumberFields: L-functions and Galois Properties, Academic Press, London, 1977, 193-268.

[14] W. Stein, Modular Forms, a Computational Approach, Amer. Math. Soc., Graduate Studiesin Mathematics, 2007.

[15] K. S. Williams, On the representations of a positive integer by the forms x2 + y2 + z2 + 2t2

and x2 + 2y2 + 2z2 + 2t2, Int. J. Modern Math. 3 (2008), 225-230.

[16] K. S. Williams, Number Theory in the Spirit of Liouville, Cambridge University Press, 2011.