Report the Art of the Speed

download Report the Art of the Speed

of 27

Transcript of Report the Art of the Speed

  • 8/10/2019 Report the Art of the Speed

    1/27

    2009

    Efficientuseofprofessionalsensorsincar

    andtire

    performance

    measurement

    and

    comparison

    3/3/2009

    The art of the speed

  • 8/10/2019 Report the Art of the Speed

    2/27

    Summary(Workinprogress)

    Companiesinvolveddescription

    o CorrsysDatronSystem

    o OresteBertaS.A.

    o OptimumG

    Testpresentationandbriefdefinition

    Summaryoftestandsensorsrequired

    Slipangleo Definitions

    Descriptionandimportanceoftheparameter

    SlipAnglewithsteering

    Yawcenter

    Lateralaccelerationincornering

    Stabilityandresponse

    o Sensors

    Sensorsused

    Hintsandadviceforsensorssetup

    o Calculation

    Geometricalmethod

    Mathematicalmethod

    o Datadiscussion

    Turncentermigration

    Slipanglevariationwithspeedinskidpadtesting

    Bodyslipangleandbodyslipanglespeed

    Understeergradiento Definitions

    o Sensors

    Sensorsused

    o Datadiscussion

    Influenceofthesetup

    Influenceofthespeed

    .(MoreTest)

    AppendixA:Mathchannelcreation

    AppendixB:summarysymbolsusedinthisreport

  • 8/10/2019 Report the Art of the Speed

    3/27

    Summary

    of

    tests

    and

    sensors

    required

    Slip AngleFront

    Slip AngleRear

    Dynamic CamberAng le (DCA)

    Ride Height -Laser

    WheelPulse

    3 wayAcceleromet er

    TireTemperatu

    SlipangleFrontaxle x x

    SlipangleRearaxle x x

    BodySlipangle x x

    WheelsSlipangle x x

    TurnCenter x x

    CGradius x x x x

    FrontRadius x x

    RearRadius x x

    Yawrate x x

    Yawacceleration x x

    Yawmoment x x

    Yawcenter x x

    Yawdamping x x

    LongitudinalSpeed x x x

    LateralSpeed x x

    UndersteerGradient x x x x

    Ackermanangle x x x x

    WheelCamber x

    Suspension

    compliance x x

    FrictionCircle x

    LoadTransfer x x

    TireTemperature x

    Camberandpressure

    evaluation x

    TireStability x x x

    Rideheight x

    Tiresrollangle x

  • 8/10/2019 Report the Art of the Speed

    4/27

    Tirevertical

    deflection x

    Longitudinal

    acceleration x

    Verticalacceleration x

    Lateralacceleration

    front x x

    Lateralaccelerationrear x x

    Lateralacceleration

    CG x

    Accelerometerbias

    error x x x

    SlipRatio x x x x

    Wheelpulse

    harmonics x

    Rollangle x

    Pitchangle x

    Slipanglespeed x x

    Steeringangle

    smoothness

    Steeringsensitivity x

    CornerWeight x x

    Chassistorsion x

    Chassisstiffness x

    Tiresverticalstiffness x

    DamperFrequency

  • 8/10/2019 Report the Art of the Speed

    5/27

    SLIPANGLE:

    DEFINITIONS

    Descriptionandimportanceoftheparameter:

    The slipangle is theanglebetweenapoints speedvectorand its longitudinal component inagiven

    coordinate system.A slip angle sensoruses anopticalmethod to calculateboth componentsof the

    velocity vector. As it is shown in the following picture the slip angle changes with the system of

    coordinates.Therefore,thexaxisofthesensormustbealignedwiththelongitudinalaxisofthecarin

    ordertoobtainreliableresults.

    Inthepreviousfigure,xandyaretheaxisinthesensorscoordinatesystemwhilexandyare

    theaxis inthecarcoordinatesystem. Ifanangle existsbetweenthetworeference frames,theslip

    anglemeasuredbythesensorwillnotbetheslipangleinthecarcoordinatesystem.

    The importance of measuring this parameter arises from the fact that there is a direct relationship

    betweenthelateralforcecreatedbyatireanditsslipangle.Besides, thebodyslipanglegivesanidea

    oftheattitudeofthecaruponthetrajectorypath,whileacomparisonbetweenthefrontandrearaxles

    slipanglesmeasuresthechangeinthatattitudeandifthecarifdriftingorrotatingabouttheCG.

    Whenslipangleispresentinbothfrontarearaxlesitcouldbeduetobodydrifting,bodydriftingwith

    rotationandpurerotationwithoutbodydrifting.Figures2to5analyzesthosecasesinabicyclemodel.

    Figure1.Slipanglemeasurementindifferentcoordinatessystem

    FRONTREARCG

    b a

    Vyf=Vyr=VyCGVehicleinpuredrifting.

    YawRate=0

    VyfVyr VyCG

    Figure2.Vehicleinpuredrift,noyawrate

  • 8/10/2019 Report the Art of the Speed

    6/27

    FRONTREARCG

    b a

    Vyf>Vyr;butsamesign

    VyCG>0

    Vyf

    Vyr

    VyCG

    Figure3.Vehicledriftingandwithyawrate

    Vehicledrifting.

    YawRate>0

    FRONTREARCG

    b a

    Vyf>Vyr;butdifferentsign

    VyCG>0

    Vyf

    Vyr

    VyCG

    Figure4.Vehicledriftingandwithyawrate

    Vehicledrifting.

    YawRate>0

    FRONTREARCG

    b a

    Vyf*a=Vyr*b

    VyCG=0

    Vyf

    Vyr

    VyCG

    Figure5.VehiclewithyawrateandnotCGlateralSpeed

    CGLatSpeed=0

    YawRate>0

  • 8/10/2019 Report the Art of the Speed

    7/27

    Slipanglewithsteering:

    Whensteeringangleispresent(infrontwheelsduetodriverinput,inrearwheelsduetoinitialtoeand

    bumpsteer),theslipangleofthetireisnottheslipangleofthecaratthatpoint.Asitwasmentionat

    thebeginningofthissection,theslipangle isdifferent ineachcoordinatesystem.Theanglebetween

    onereferenceframeandtheother(steeringangle)maygeneratenegativetireslipanglewhiletheslip

    angleinthecarispositive.Figures6to9showaprogressioninthesteeringangleandhowthetireslip

    anglechangeswhilethecarslipangleremainsconstant. Inthose figures c istheslipangle inthecar

    coordinatesystem,t istheslipangle inthetirecoordinateangleand isthesteeringangle(orangle

    betweenthechassislongitudinalaxisandthedirectionwherethetireispointing).

    t=c t>0c>0

    t=0 c=t0

    >c

    Figure6.Slipangleforzerosteeringangle Figure7.Carslipangleandtireslipangle,bothpositive

    Figure8.Steeringangleequalscarslipangle Figure9.Tireslipanglenegative,carslipanglepositive

  • 8/10/2019 Report the Art of the Speed

    8/27

    Yawcenter:

    Fromfigures3to5 it iseasytoconcludethat ifyawrateexist,thenthere isapointwherethe lateral

    speediszero.Thispointiscalledtheyawcenteranditisthepointwherethecarisrotatingaboutina

    coordinateframewhichismovingwiththesamevehiclesinlinespeed.Thus,theyawcenterpointitis

    inpurelongitudinalmotion.

    Thereare3possibilitiesfortheyawcenterlongitudinallocation:

    Infrontof thecar (Abs(FrontLateralSpeed)Abs(RearLateralSpeed)andbothwiththesamesign)

  • 8/10/2019 Report the Art of the Speed

    9/27

    Lateralaccelerationincornering

    An accelerometer placed in the CG of the car pointing transverse to the inline axis of the car will

    measurethelateralaccelerationrelatedtothechassisframe.However,whenacarisnegotiatingaturn,

    theCG lateralacceleration is in linewiththe instantradiusandtherefore ifbodyslipangle ispresent,

    theaccelerometerwillnotbeabletomeasurethetotal lateralacceleration.Figure10showsthiswith

    moredetail.

    Note that there is a component of the lateral acceleration in the radius direction measured by the

    longitudinal accelerometer. However, the body slip angle is not the angle between the lateral and

    longitudinalacceleration,sincethe longitudinalaccelerometeralsomeasures thechange in thespeed

    magnitude. If recognizing each contribution to the longitudinal acceleration would be possible, still

    wouldnotbe recommendable tocalculate the slipangleusingaccelerometers.The reasonsare, first

    becauseofallthenoiseregisteredbythosedevices(thatiswhythelongitudinalspeedisnotmeasured

    by integrating the longitudinal accelerometer, and second due to the inertial nature of the sensor,

    making the measurement in transient extremely inaccurate (the same reason why it is not

    recommended touseone slipanglesensorandagyro).Anothercommonmistake is to think thatby

    integratingthelateralaccelerometerispossibletofindthelateralspeed.Thefactisthatthevariationin

    thelateralspeedmultipliedbythemasswillgiveyouthesumofalltheforcesactingattheCG,however

    thelateralaccelerometerisonlymeasuringareactionforceduetothecartryingtochangeitsvelocity

    vector. Ifyouattachanaccelerometertoyourbodypointingto theground, itwillmeasure1G.The

    integration of that signal will have as result a time increasing speed, however your speed is zero,

    becauseyouarenottakingintoaccountthereactionforcegeneratedbythegroundinyourfeet.

    Figure10.Accelerationindifferentframes

    Lateral accelerometer

    Component of the total lateral

    acceleration measured by the

    longitudinalaccelerometer

    TurnCenter

    Body

    Slip

    angle

  • 8/10/2019 Report the Art of the Speed

    10/27

    Stabilityandresponse:

    Stability istheabilityofthecartominimizethe impactofanydisturbanceandtoremain inthesame

    state that itwas in the instantprevious to the disturbance appearance. The input couldbe internal

    (driversteeringorbraking)orexternal(wind,abumpintheroad). Ontheotherhand,response isthe

    abilitytoreachanewstateassoonastheconditionschange.Stabilityisrequiredinsituationscloseto

    steadystate, forexampleaNASCARrace,withstraightlinesandlongcurveswherethespeedofchange

    of the driver inputs (steering angle) is not so big.However, if the car is required to take a chicane

    response isdesiredandnotstability. It iseasytounderstandthatthemorestabilitythe lessresponse

    andviceversa. Vehicleswithlowyawinertia(massconcentratedneartheCGorsmallwheelbase)have

    moreresponsesincesmalleryawmoment isneededtodisturbtheirequilibriumstate.Forthiskindof

    carsthebodyslipanglespeedshouldbebigforasmallrangeofbodyslipangles.ThescatterplotofCG

    slipanglerateversusCGslipanglelookslikeanovalinverticalposition,asshowninfigurenumber11

    Vehicleswithhighyaw inertia(massconcentratedontheaxlesor longwheelbase)areverystableand

    are not affected too much by any disturbances. Therefore, the body slip angle speed is smaller

    comparedtoacarwithhighresponse,andtherangeofbodyslipangles iswider.Figure12showsthe

    CG slipangle rateversus thebody slipangle for thiscar.Note that it looks likeanoval inhorizontal

    positionduetothelessbodyslipangleratethatcanreachincomparisonwiththebodyslipangles.

    Body

    slip

    angle

    [deg]

    Bodyslipanglerate[deg/s]

    Bodyslipangle[deg]

    Bodyslipanglerate[deg/s]

    Figure11.Bodyslipangleratevsbodyslipangleforacarwithhighresponse

    Figure12.Bodyslipangleratevsbodyslipangleforacarwithhighstability

  • 8/10/2019 Report the Art of the Speed

    11/27

    SENSORS

    Sensorsused:

    A slip angle sensor is designed to measure the lateral and longitudinal components of a vehicles

    velocity.CorrsysDatronCorrevitS350was thesensor selected tomeasure the slipangles in thecar.

    Thisdeviceisanoncontactopticalsensorwitharesolutionof2.47mm.Amongotheradvantagesithas

    thepossibilityofdirectconnectiontoaPCandvirtuallyalldataacquisitionsystem.

    Usingtwoslipanglesensorsitispossibletocalculate(amongstotherthings):

    Slipangleofthefrontandrearofthevehicle

    Locationoftheyawaxis

    Yawrate

    Balanceofthevehicle Realturnradius

    When used in conjunction with other common vehicle sensors, slip angle sensors also allow you

    calculate:

    Slipangleofthefrontandreartires

    Longitudinalslipratio

    Tiremodel

    Responseofthevehicletoinputs(steering,throttle,brake,gearchange,etc.)

    Drivingstyleandresponse

    Thereforeonesensorwaspositionedatthefrontandanotheroneattherearofthevehicle.Figure13

    showstheinstallationofbothsensors.

    Figure13.Slipanglesensorssetup

  • 8/10/2019 Report the Art of the Speed

    12/27

    Hintsandadvicesforsensorssetup:

    1) Each slip angle light unit is calibrated by Corrsys

    Datron to a specific signalconditioning unit. If an un

    matchedpair isused together it is likely that the recorded

    slipangleswillbe incorrect(e.g.theoutputwillbescaledor

    offset). It is important to label light/signalconditioningunit

    pairs.

    2)Accesstotheserialportonthesignalconditioningunit is

    needed at least before the first use, if not continuously

    during testing (for setup and calibration). If the units are

    placed in an inaccessible place it may be necessary to run

    jumperwirestoanaccessiblelocationtoallowquickchanges

    ofsensitivity/calibration.

    3)With the sensor / lampboxplugged into the signalconditioningunit the resistanceof the system

    (measuredat thepower supplywires)wasmeasured tobeapproximately1.The resistancewillbe

    significantlyhigherifabulbhasblown.

    4) When using the Lemo connectors (analog voltage outputs,

    Figure15),itiseasytosetupanundesirableearthloopcondition

    between the data logger and the signalconditioning unit. The

    outercasingsofthetwoLemoconnectorsareelectricallyjoined,

    andiftwo0Vwiresareruntoeachofthesefromthedatalogger,

    anearth loop conditionexists.The solution is to runa single0V

    wire,twistedwiththetwosignalwires,inasinglewiringloomand

    connectittooneoftheLemocasings.

    5)The sensorsare ratedatapproximately40Weach (theywere

    measured at 3.26A at 11.9V 38.8W), therefore it may be

    necessary touse individual switches foreachsensor tominimize

    batterydrainduringsetup/test.Appropriatewireshouldbeused

    (i.e.donotruntwoormoresensorsusingasingle22gageTefzel

    wire). If individualswitchesareusedforthe lightunits, it iseasyforthedriver/engineertoforgetto

    switchthemon.Abettersolutionistouseadigitaloutputchannelonthedataloggingsystemtoswitch

    arelaywhichwillturntheunitsonandoffatthebeginningandendofeachsession.Analternativeon

    vehicleswithaconfigurabledashboardistosetanalarmwhenwheelmotionisdetectedtoremindthe

    drivertoswitchonthesensors.

    6)Theanalogoutputof lateralvelocity (AV2) canonlyproduceamaximumvoltageof5V.Theusual

    measurement range is 5V, however, some data acquisition systems (e.g. race systems such as the

    MoTeCADL)canonlymeasurepositivevoltages.Thereforeitiseithernecessarytoscaleandoffsetthe

    lateraloutputsignalto2.5V2.5Vviatheserialinterfaceonthesignalconditioningunits,orconnectthe

    Figure 15.Lemoconnectors

    Figure 14.Sensorlabeling

  • 8/10/2019 Report the Art of the Speed

    13/27

    casingoftheLemoconnectorstoasuitable5Vreferencefromthedata loggertoallowthefull5V5V

    output. When using the second approach it is important that the Lemo connectors are electrically

    isolatedfromothercablesorthevehiclechassis.

    7)Therearslipanglesensorlightconewasmeasuredatapproximately29C(85F)after10minutesof

    running(ambienttemperaturewasapprox.15.5C(60F)).Thesensorbodywasnotashot.Thissensor

    wasintheairflow.

    8)WhenusingthesensorsonaFormulaFordZeteccar,occasionally(butconsistentlyatthesameplace

    onthetrack)therearsensorwoulddropoutandreadzero longitudinaland lateralvelocity.Thiswas

    attributedtostrongsunlightata lowangleonaparticularcorneratthattimeofday.Thistheorywas

    reinforcedbythefactthatthefrontsensor(shadedwithinthenoseconeandbythefrontwing)was

    stillreadingnormally.Itisthereforerecommendedthatthesensorsbeprotectedfromdirectsunlightif

    sunlightinterferenceisfoundtobeaproblem.Asafurthernote,sensordropout/accuracydegradationmayalsooccurifadriverusesalargeamountofcurb(forexampleinV8SupercarsinAustralia)andthe

    sensormovesoutofthe30050mmcalibratedrangefromtheground.Brightlycoloredcurbsmayalso

    reflectmoresunlightintothesensorandcausesignaldegradation.Rearsensordropoutmayalsooccur

    underheavybrakinginavehiclewithasignificantamountofdive.

    9)Toensurethatthesensorswillnotbesubjectedtotemperaturesoutsidetheiroperatingrange,the

    vehiclecan initiallybe runwithThermax indicatorsat thepointswhere thesensorswillbemounted.

    Thiswillgivethemaximumtemperatureatthatlocationonthevehicle,andhelppreventdamagetothe

    sensors.

    10)Orderallconnectorsbeforebeginningwiring.

    11)Whenusingracedataloggingsystems(e.g.MoTeC,Pi,etc.),ensureallpinassignments/changesare

    recorded.

    12)Allconnectorsshouldbeclearlylabeled.

    13)Allwiring(particularlysignalwires)shouldbetwistedto

    reduce the effect of electromagnetic interference. Twisted

    wiresshouldthenbeprotected (withheatshrink tubing, for

    example)toprotectfromheat,oil,etc.

    5) Lizard Skins (used on bicycles to protect shock

    absorbers/frames,figure16)canbeusefulforkeepinglarger

    wiring looms tidy. Stretch the Lizard Skin around the loom

    andfastentheVelcrostrip.Unlikeheatshrink,theyareeasy

    toadjustandremove.

    Figure 16.Lizardskinsprotectingabicycleframe

  • 8/10/2019 Report the Art of the Speed

    14/27

    CALCULATION

    Oncethedataisacquiredforthepointswherethesensorswereinstalled,itisnecessarytoextrapolate

    the information totheremainingpoints inthechassis,speciallythe tiresand thecenterofgravity. In

    thissection,twomethodswillbeexplained.For further informationaboutthemathchannelsused in

    thiscalculationleasegotoAppendixA.

    Geometricalmethod:

    For a given point, its instant centerof rotationmustbe somewhere in the line perpendicular to its

    velocityvector.Consequently,ifthespeedvectoroftwopoints (aandb)thatbelongtoarigidbody

    isknown,theinstantcenterofrotationforthementionedbodycanbeeasilyfoundastheintersection

    betweenthetwolinesperpendiculartoaandbspeedsvectors.

    Ifthecarisinstrumentedwithonlyonesensor,theturncenterlocationinspacecannotbeknownasit

    couldbeanypointalongsaidline.

    Oncethe instantcenterposition isknown, theslipangleofeachpoint inthebodymaybecalculated

    usingthe inversemethod.Thismeans,foranyselectedpoint,thespeedvector isperpendiculartothe

    linepassingthroughtheICandthatpoint.

    Thesame isappliedtothewheels.As itwassaidbefore,differentcoordinatesystems implydifferent

    slipangles.Thereisananglebetweenthecarslongitudinalaxisandthefronttiresyaxis,whichisthe

    steeringangle.Thus,theslipangleforanyofthetwofronttireswillbetheanglecalculatedusingthe

    methodmentionedaboveminusthesteeringangleforthatwheel.Infact,thesamecouldbeappliedfor

    both rear tires iftoe inor toeoutarepresent.Commonlytiredata isprovided inawheelcoordinate

    Figure17 .GeometricalICcalculation

  • 8/10/2019 Report the Art of the Speed

    15/27

    systemandnot inavehiclecoordinatesystem.That iswhy thisconversion is fundamental.Figure18

    showstheslipangleforthetireandtheinfluenceofthesteeringangle.

    Mathematicalmethod:

    Thereisanalternativemethodtothegeometricalmethodthatisbasedonthekinematicofarigidbody

    inrotationaltranslationalmotion.

    Aslipanglesensormeasuresthelongitudinalandtransversalcomponentsofthevelocityvectorinorder

    tocalculatetheslipangle,inthefollowingmanner:

    = x

    y

    x

    y

    V

    V

    V

    V

    arctg (1)

    UsingtwoslipanglesensorswecancalculatetheslipanglefortheCGandforthefrontandrearofthe

    car. In figure5,wecanseethatthesensorcoordinates in thevehiclesreferencesystemare (ax,ay).

    Thereforethevelocityvectorforthatpointis:

    ],[*)()]tan(*,[.

    xyxx aaYVVV ++= (2)

    Figure18.Tiresslipanglecalculation

  • 8/10/2019 Report the Art of the Speed

    16/27

    Where

    .

    Y istheyawvelocityofthecarwithrespecttotheCG, istheangularvelocityoftheCGwith

    respecttothecenterofthecornerand isthebodyslipangle.

    Replacing(2)in(1)

    yx

    xxfs

    aYV

    aYV

    *)(

    *)()tan(*.

    .

    +

    ++=

    (3)

    Equation (3)has twounknowns. Ifagyro isused, the term )( . +Y canbe replacedwith the signal

    coming from that sensor, and therefore, the system is solved for the body slip angle. This is the

    advantageofthismethod,withonlyoneslipanglesensorandagyrotheslipangleofanypointcanbe

    calculated byjust replacing its coordinates in equation 3. However, the accuracy of the gyro is not

    comparabletotheaccuracyoftheslipanglesensor,andso,thismethod is lessaccurate.Besides,the

    inertiaofthegyromakesthemeasurement intransientverypoorandwithabigerror,whentheslip

    anglesensorsdonthave thisproblembecause theyuseanopticalmethod,and thus the response is

    almostimmediate.

    Figure19.Carconfiguration

  • 8/10/2019 Report the Art of the Speed

    17/27

    Ontheotherhand,iftwoslipanglesensorsareused,theaccuracyisthesameasthepreviousmethod

    andthesystemcanbesolvedforthebodyslipangleandtheterm )(.

    +Y ,whichwedecidedtocallthe

    virtual gyro since it is the angular speed of the car, theoretically calculated and not empirically

    obtained.

    Asthesensormeasuresthelateralandlongitudinalcomponentsofthespeed,anewsystemisproposed

    inordertomaketheresolutioneasier:

    Solving for and )(.

    +Y , considering that both sensors are in the center line of the car (

    ):

    Knowingthatthecoordinatesofthefrontofthecarare(a,0),wecanuseexpression(3)tocalculatethe

    frontslipangle.

    x

    x

    V

    aYVf

    *)(*)tan(.

    ++=

    Thesamecanbedonefortherearandallfourwheels.

    Anotheradvantageofthismethodisthepossibilitytocalculatetheyawacceleration.Since += .

    Yr ,

    byderivationoftheexpressionforthevirtualgyroweobtain

  • 8/10/2019 Report the Art of the Speed

    18/27

    Figure20showshowtheslipanglesvarywithinalaponanovaltrackwithachicane.Redandyelloware

    thenon filteredsignalsofthe frontand rearslipanglesensors, respectively.Greenandvioletarethe

    calculated slipangles for the frontand rearaxle respectively. In thepoint selected, the frontaxle is

    travelinginonedirectionwhiletherearaxleistravelingintheopposite.Thisbigdifferenceinbothaxle

    speedsisaresultoftheyawraterequiredtotakethecorneratmaximumspeed.

    Figure20.Axlesslipangleinanovaltrackwithchicane

  • 8/10/2019 Report the Art of the Speed

    19/27

    DATADISCUSSION

    TurnCenterMigration

    Thenextpictureshowshowtheturncenterischangingalongalapinanovalcourseat50km/h.Inthe

    straightline,Ycoordinateisfarawayfromthecarslongitudinalaxis.Theoreticallyitshouldbeinthe

    infinite;however,even inthestraight linethecarstillhasa lateralspeedcomponentduetotransient

    behavior.Thismeansthatbeforeitreachesthesteadystategoingoutofcornerone,thedriverstartsto

    turnincorner2.

    Corner1hasagreaterradiusthanCorner2.But,inthegraphtheradiusthattheCGdescribesissmaller

    forCorner1becausethelateralaccelerationinthatpartofthecircuitissmallenoughtoconsiderthat

    the car is rotating around the center of the corner. On the other hand, to negotiate the remaining

    corner,thecarneedsagreaterbodyslipangleinordertoobtainthegripneeded,increasingtheradius

    and trying to rotate the rear axle around the front axle (increase of X coordinate) to achieve the

    desiredyawrate.

    Figure21.Turncentermigrationinanovaltrack

  • 8/10/2019 Report the Art of the Speed

    20/27

    Figure22showsaquasilinearrelationshipbetweenthexandycoordinatesoftheturncenter.Both

    coordinatesarerelatedtothecenterofgravityofthecar,xpositiveistowardthefrontofthecarand

    ypositive istothe left.Thenegativezoneofthexcoordinatecorrespondstothecarcornering.This

    indicatesthatthevehicleneedstogeneratepositivebodyslipangletonegotiateaturn,withpositive

    lateralspeed inthefront(tothe left)andnegative intherear(totherightofthechassis) inorderto

    achievetherequiredyawrate. Thepositivezoneisthecarinthestraightline,wheretheradiusgoesup

    alongwith the reduction of the lateral speed. The turn centermigrates toward the frontof the car

    becausethefrontaxlereducesitslateralspeedfasterthantherearaxle.Thatcouldbeduetotraction

    forceintheforcetryingtoalignthefronttireswiththedirectionofmotionoramisalignmentoftherear

    slipanglesensor,where it ismeasuring lateralspeed inthestraight line.As the lateralacceleration is

    small(peaksof0.9G)thelongitudinalforcesinthefronttiresareforcingthefrontofthecartotravelto

    theinsideofthecorner,andthatiswhythelateralspeedofthefrontaxleispositive,plusthefactthat

    thelongitudinalweighttransferissubtractingcorneringcapabilityintherearaxle.

    Finally,thespreadofthepoints isgreater inthepositivezone,while incorneringthepointsaremore

    closetoanactualline,showingthatthedriverhadmoreconsistencytohandlethecarattitudeanddrift

    duringthecornersthaninthestraights.

    Figure22.Scatterplotoftheturncentermigration

    y>0

    x>0CG

    x=1.092x=1.508

  • 8/10/2019 Report the Art of the Speed

    21/27

    SlipAnglevariationwithspeedinSkidPadtesting:

    Forthistest,thedriverwasaskedtodrivearoundthe50mradiusskidpadat20,40and60km/hand

    thenatthemaximumspeedpossible(90km/h inthiscase).Inallthecasesthedirectionofrotation is

    counterclockwise

    As the speed is increased the body slip angle decreases, going from positive values to negative at

    maximumspeed. Toexplainthis isnecessarytogobacktoFigures2to5. Ifthe longitudinalspeed is

    considered the same for the front, rear and CG (the car is a rigid body), then the slip angle is a

    measurementofthe lateralspeedofeachpoint.Thus,therearaxlehasalwaysits lateralspeedvector

    pointingtotheoutsideofthecorner,whilethefrontitisalmostpointingtotheinsideofthecorner.The

    lateralspeedintherearmighthavebeenduetotheweightdistributiontowardsthefront,sincethereis

    nolongitudinalaccelerationforbrakingintheskidpad(atthispointitisimportanttonotethatthetire

    isthesameforthefourwheels).Athigher lateralaccelerationsthefrontstarttodriftfortworeasons,

    beingthefirstonetheneedofmoregriponthefront(thetireislikeaspring,togeneratemoreforce,

    Figure23.Slipangledifferentspeedintheskidpad

    Speed:20km/h Speed:40km/h

    Speed:60km/h

    Speed:maxpossible

  • 8/10/2019 Report the Art of the Speed

    22/27

    more displacement is needed). The second one is that at grater speeds, even though there is no

    longitudinalacceleration,theaerodynamicdragmustbeequilibratedbyaddingthrustinthefronttires,

    reducing their cornering force capability (goingback to the springexample, the longitudinal forceat

    lowerlateralaccelerationsworksasapreloadbutathigherlateralaccelerationactslikeitwasreducing

    thestiffnessofthespring).

    Thus, to find the equilibrium at higher lateral acceleration the car needs to point in the direction

    tangenttothecorner.Anotherwaytosaythat isthatlesspositivebodyslipanglesmeansthatthe

    turncenterismovingtowardthefront,andthereforethecarisundersteer. From20km/hto90km/h

    thevariationinthefrontaxleslipanglewas3.1degwhileintherearwas2.8deg,andsothefrontend

    ofthecardneededmoredisplacementinordertogenerategrip,againthecarisundersteer.

    At60km/h it isclosetozeroandsotheturncenter is insomepoint inthe lineperpendiculartothe

    chassispassingthroughtheCG.

    Figure24containstheslipangleineachtireforeachcase.Notethatthefronttiresslipanglestakeinto

    accountthesteeringangle,whichisthereasonoftheoscillationofthosevaluesinthegraphs.Yetagain

    thevariationofthefronttiresslipangleisgreaterthanintherear.

    Figure24.Tiresslipangles,differentspeedintheskidpadtest

    Speed:20km/hSpeed: 40km/h

    Speed:60km/h

    Speed:maxpossible

  • 8/10/2019 Report the Art of the Speed

    23/27

    Bodyslipangleandbodyslipanglespeed

    Figure25showsthescatterplotofthebodyslipanglerateofchangevsthebodyslipangleforseveral

    lapsintheovaltrack,withthespeedvaryingfrom40to80km/h.

    TheenvelopeofthescatterplotlooksliketheFigure12indicatingthatthecarmighthavegoodstability.

    However, inthezoneofhighdensityofpointsthecarseemstohaveverygoodresponse. Infact,the

    envelope isformedforasuccessionofverticalovalscorrespondingtodifferentequilibriumstates.For

    eachsituation(inthiscasespeed)thecarreachesanequilibriumstateanditmovesarounditwithhigh

    response. If the situation requires more body slip angle, the vehicle will settle itself in a new high

    responsestate.

    Fi ure 25. Bod sli an le s eed vs bod sli an le

    Scatterplotenvelope

    Zoneofhighdensityof

    points.

    Lowlateralacceleration

  • 8/10/2019 Report the Art of the Speed

    24/27

    UNDERSTEERGRADIENT:

    DEFINITIONS

    Descriptionandimportanceoftheparameter:

    TheAckermanangleistheidealrequiredsteeringanglethatacarneedstonegotiateacornerwhenthe

    lateral forcesat the tiresarenegligible (slipanglesclose to zero),anda smallangleapproximation is

    suitable.Consequently, thedeviationof thesteeringangle from theAckermananglemaybeusedan

    evaluationof theundersteer/oversteer characteristicsof the car.However,as theAckermanangle is

    definedfornegligiblelateralaccelerations,acorrectionfactor isintroducedtoevaluatetheundersteer

    characteristic at any acceleration. That is whywedefined theparameterundersteer gradient (UG),

    whichisthedeviationweightedbythelateralacceleration.

    TheexpressiontocalculatetheAckermansteeringangleis:

    Andtheundersteergradientis:

    If thecar isundersteering,moresteeringangle isrequiredas the lateralacceleration increases.Thus,

    theundersteergradient inthiscase isgreaterthanzero.Thebiggerthisnumber,themoreundersteer

    willthevehiclebe.

    y

    manAcsteered

    AUG

    ker =

    3.57*kerRadius

    WheelbasemanAc =

    Radius

    Wheelbase

    (l)

    Radius

    Wheelbase

    =

    Figure26.Ackermanangle

  • 8/10/2019 Report the Art of the Speed

    25/27

    SENSORUSED

    In the Ackerman angle calculation the wheelbase

    remainsconstant,sotheonlyvariableistheradius.

    The radiusat theCGwascalculatedusing theslip

    angle sensors mentioned in the previous section

    (CorrsysDatronCorrevitS350).

    Thesteeredanglewasmeasuredusingastandard

    steeringanglesensor,sofurtherconsiderationsare

    notneeded.

    Finallythelateralaccelerationwasmeasuredusing

    a Corrsys Datron 3 way accelerometer. More

    informationaboutthissensor intheAcceleration

    andSpeedsectionofthisreport.Figure 27.CDS3wayaccelerometer

    Figure28.Installationoftherearslipanglesensor.Notethelightontheasphalt

  • 8/10/2019 Report the Art of the Speed

    26/27

    DATADISCUSSION

    Influenceofthesetup:

    Thisparameter isusefultoviewthesensibilityofthecarsbalanceandhandlingwithsetupchanges.

    During the test, the front antiroll

    stiffness was increased, not by

    changing the ARB, but by changing

    one of the ARB drop link pick up

    point position and therefore the

    motion ratio. The latter has two

    effects, the first one is more front

    antiroll stiffness, and the second is

    more weight transfer due to thesteering geometry since theantiroll

    bar drop link was attached to the

    upright. Figure 29 represents the

    dataobtainedontheovaltrackwith

    thebaselinesetup(redline)andwiththenewpositionfortheARBsdroplink(blackline).

    TheUGiszerointhestraightlinebecausethemathchannelwascreatedtoevaluatethisfunctionwhen

    thelateralaccelerationisaboveathresholdvaluesincetheUGisonlydefinedincornering.

    After the test the driver commented that he did not like the new configuration because it created

    oversteeron cornerentryandundersteeron cornerexit.On thegraph, theblack line isnegativeon

    cornerentry(oversteer)andposiviteoncornerexit(understeer).Thedriverscommentandthegraph

    areconsistent.

    Oversteerbehavior iscausedbythefrontaxlecreatinggripfasterthantherearone(trianglebetween

    lateralacceleration,rollangleandgrip).Understeerincornerexitisduetothesteadystatebehaviorof

    thecarandmore lateral loadtransfer inthe fronttires (insteadystatemore loadtransferonanaxle

    reducesitscorneringcapabilityduetothenonlinearitiesinthetiremodel).

    Influenceofthespeed:

    Toanalyzetheinfluenceofthespeedtwotestsweremade,bothwiththebaselinesetup,thefirstonein

    the25mSkidPad(steadystate),asshowninFigure30.Inthegraph,thefrontsensorslipangleisinred,

    therearsensorslipangle is inorange,thefrontaxleslipangle is ingreen,therearaxleslipangle is in

    purpleandthebodyslipangleisinblue.Theretheundersteertendencyofthecarisveryclear,asthe

    speedgoesup (form40to60km/h)moresteeringangle isneededandtheattitudeofthecar inthe

    cornerchanges(bodyslipangleapproachingtozero).

    Figure29.InfluenceofthesetupintheUG

  • 8/10/2019 Report the Art of the Speed

    27/27

    Thesecondtestwasontheovaltrack,ataspeedof30km/h(blackline),50km/h(greenline),70km/h

    (lightblueline),andmaximumpossible(redline).Thevehiclehaslessoversteerasthedriverincreases

    the speed. This could be due to more aero load in the rear wing, which means more lateral force

    capability intherearaxle.However,atmaximumspeedthecar isundersteeringoncornerentry.The

    reasonforthisisthatthedriverbrakeshardwhilegoingintothecorner(atlowerspeedshardbrakingis

    notneeded)andeventhoughthereismorevertical loadinbothfronttires,therearealsolongitudinal

    forcesactingatthecontactpatchandso, lesslateralgripmaybedeveloped.

    Figure30.Bodyslipanglevariationwithspeed

    Figure31.InfluenceofthespeedintheUG