Remote Sensing Activities in NICT

14
1 1 Remote Sensing Activities in NICT Remote Sensing Activities in NICT Nobuhiro Takahashi Nobuhiro Takahashi National Institute of Information and National Institute of Information and Communications Technology Communications Technology (NICT) (NICT) Polar Polar Snowfall Snowfall Hydrology Hydrology Mission Mission WS WS 2007.6.26 2007.6.26 - - 28 28

Transcript of Remote Sensing Activities in NICT

11

Remote Sensing Activities in NICTRemote Sensing Activities in NICT

Nobuhiro TakahashiNobuhiro TakahashiNational Institute of Information and National Institute of Information and Communications TechnologyCommunications Technology (NICT)(NICT)

Polar Polar SnowfallSnowfall HydrologyHydrology MissionMission WSWS2007.6.262007.6.26--2828

22

ContentsContents

AtomsphericAtomspheric Remote Sensing Researches Remote Sensing Researches in NICTin NICT

GPMGPMEarthCAREEarthCARELidarLidarSensing NetworkSensing NetworkTHz THz

Activities in Global Satellite Mapping of Activities in Global Satellite Mapping of PrecpitationPrecpitation (GSMaP) project(GSMaP) project

33

Research structure in NICT Research structure in NICT Information and

Network Systems

Space Environment

Group

Electromagnetic Compatibility

Group

RadiowaveRemote Sensing

Group

Environment Sensing and

Network Group

Applied Electromagnetic

Research

Wireless Communications

Basic and Advanced Research

Sensing network

GPM EarthCARE LidarTHz &

SMILESsubtropical

environment remote sensing

3D-sensing of megacity atmosphere- Doppler lidar- mulipul wind profiler

Global preipitation measurement(with JAXA and NASA)-Ka-band radar (BBM to EM)-Calibrator-Dual-frequency algorithm-TRMM

Cloud Aeorosol Radiation Experiment- Cloud profiling radar (CPR)- Level 1 algorithm

Superconducting Submillimeter-wave Limb-Emission Sounder on SpacestationNew remote sensing technology with THz region

CO2 measurement with spaceborne DIAL- differenctial absorption lidar

Remote sensing facility-COBRA(C-band polarimetric radar)-400MHz & 1.3 GHz wind profile-Long range ocean radar

44

Development of Remote Sensing Technologies at NICTDevelopment of Remote Sensing Technologies at NICTGPM --- electrical EM for KaPR EarhCARE --- CPR(except for antenna and signal processor)

Subtropical Environment remote sensing facility for GPM validation

Ground Based DIAL

Air-borne DIAL

2μm Eye-Safe Laser

Telescope

Receiver

COCO22

COCO22

CO2cell

Dual frquency precipitation radar (DPR)Frequency: Ku-band (13.6 GHz), Ka-band (35.5 GHz)Sensitivity: Ku-band --- same as TRMM PR (18 dBZ)

Ka-band --- 6 dB better than TRMM PR (12 dBZ)Field of view: Swath width 245 km; Footprint 5 kmAntenna type: Active Phased Array Antenna

KuPR(JAXA) KaPR

(NICT&JAXA)• Dual Frequency Radar• Multi-frequency Radiometer• H2-A Launch• Non-Sun Synchronous Orbit• ~65° Inclination• ~400 km Altitude• ~5 km Horizontal Resolution• 250 m Vertical Resolution

• Sun-synchronous orbit, nominal altitude 450.8 or 443.8 km• Launch schedule: 2012•Mission period: 2 (+1) years

Some specifications of CPRTx frequency : 94.05 GHzTx peak power : 1.8 kWPulse width : 3.3μsAntenna diameter : 2.5 mIFOV : 650 mBeam direction : Nadir onlyMinimum sensitivity : -36dBZ (10-km averaged)Data sampling interval : 100 m (V), 1 km (H)Doppler measurement : Pulse-pair method

CO2 monitoring with lider

Far field antenna pattern measurement (Apr. 2007)

400 MHz & 1.3 GHz wind profilers

COBRA (C-band, polarimetricradar)

Quasi Optic Feed

KaPR EM (1/8 model)CPR

Sensors• Atmospheric LIDAR (ATLID)• Cloud Profiling RADAR (CPR)• Multi Spectrum Imager (MSI)• Broad Band Radiometer (BBR)

55

Development of Remote Sensing Technologies at NICTDevelopment of Remote Sensing Technologies at NICT

SIMLES/THz --- High frequency measurment of atomosphere

Sensing Network Sensing Network ------ 3D3D--Sensing of Sensing of MegacityMegacity AtmosphereAtmosphere

3D wind radar planned

Synchronized thru network

Wind measurement

10km

Eye-safe Laser beam

Sync. system

microwave to higher frequency (500 GHz)

EOS/MLSOdin/SMRUARS/MLS

1991 20042001

JEM/SMILES

2009

--- Targets ---Clouds:・ICE Cloud (scattering)・Size Distribution

- Sensitivity for 100-1000μm- Shape with polarization observation

Humidity:Particularly upper tropospheric humidity (UTH)

Molecules:related with pollution and global worming

・Pollution molecules such as CO, H2CO, HCN, CH3CN, O3

・Global worming species such as NNO, CH4, CH3Cl

To observe precise urban area winds-> ”3-D wind radar system”

Wind of block-scale to City-scale: -> Scanning 3D Doppler lidars

Use

of

THz

regi

on

Ozone measurement from JEM

Limb sounder measurement

66

ActitiviesActitivies relating to the snowfall measurementrelating to the snowfall measurement

GPM/DPRGPM/DPRrain/snow classification by differential attenuation (Ku and Ka)rain/snow classification by differential attenuation (Ku and Ka)dual frequency algorithm applicable for DSD estimationdual frequency algorithm applicable for DSD estimation66--dB better sensitivity (12dBZ) than TRMM/PRdB better sensitivity (12dBZ) than TRMM/PR

EarthCAREEarthCARE/CPR/CPRHigh sensitivity measurement: High sensitivity measurement: --36 36 dBZdBZ (10 km average)(10 km average)Doppler measurement of polar snow.Doppler measurement of polar snow.

THz measurement THz measurement ------ New look of (light) snow with New look of (light) snow with THz region (Just started the basic study).THz region (Just started the basic study).Sensing Network technology Sensing Network technology ------ possibility to deploy possibility to deploy dual dual dopplerdoppler lidarslidars and multiple (portable) wind and multiple (portable) wind profilersprofilers

Now the time to consider PostNow the time to consider Post--GPM, GPM, --EarthCAREEarthCAREprogramprogram

77

GSMaP Project : Global precipitation mappingGSMaP Project : Global precipitation mapping

Geostationary Satellite

6 hours1 day1 month

MWRProduct

0.25º grid

Cloud Motion VectorKalman filter

from IR infrormation

Combined IR/MWRProduct

0.1º grid·1 hour

TRMMTMI

AquaAMSR-E

DMSPSSM/I×3

ADEOS-IIAMSR

GSMaP (Global Satellite Mapping of Precipitation): GSMaP (Global Satellite Mapping of Precipitation): Started 2002 under JST/CREST (- Nov. 2007), 25 members, lead by Prof. Ken’ichi Okamoto (Osaka Prefecture Univ.)

GSMaP objective:Development of reliable microwave radiometer algorithm“Based on the common physical precipitation model with precipitation radar.”

Achievements: rain type classification (10 types), profile model, DSD model, bright band modelRecent challengings: echo top estimation, non-uniform beam filling, snow model

6-hourly rain map GSMaP_MWR

GSMaPMicrowave Radiometer Algorithms

Hourly rain map GSMaP_MVK

88

Backup slidesBackup slides

99

According to the IPCC report the average surface temperature will increase but with large uncertainties. The estimated increase at the end of the 21st century ranges from 1.4 to 5.8 degrees depending the model used. The half of the uncertainty comes from our ignorance of the effect of clouds and aerosols on climate. Their accurate measurements are the must for predicting the warming.

Development of CPR for Development of CPR for EarthCAREEarthCARE

Some specifications of CPRTx frequency : 94.05 GHzTx peak power : 1.8 kWPulse width : 3.3μsAntenna diameter : 2.5 mIFOV : 650 mBeam direction : Nadir onlyMinimum sensitivity : -36dBZ (10-km averaged)Data sampling interval : 100 m (V), 1 km (H)Doppler measurement : Pulse-pair method

Sensors• Atmospheric LIDAR (ATLID)• Cloud Profiling RADAR (CPR)• Multi Spectrum Imager (MSI)• Broad Band Radiometer (BBR)

SatelliteOrbit• Sun-synchronous (Local time 13:30 (TBD))• nominal altitude 450.8 or 443.8 km• repeat coverage cycle: 11 days or 31 daysLaunch schedule: 2012Mission period: 2 (+1) years

EarthCARE is a joint satellite mission of ESA and JAXA to measure the 3D structure of clouds and aerosol distribution with a combination of cloud radar and lidar in order to improve the predictability of global warming. NICT develops the space-borne cloud profiling radar (CPR) jointly with JAXA for this mission.

1010

EarthCARE衛星用雲レーダ概観図

CPR (雲レーダ)

衛星直下の雲の鉛直分布を測定できるミリ波帯パルスレーダ。雲から返ってくるエコーの強さより、雲の濃さや雲粒の大きさだけでなく、ドップラ速度の測定により鉛直方向の動きを測定する。

主反射鏡

アンテナ給電部

機器搭載プラットフォーム

アンテナ支持部

アンテナ展開機構

主な仕様観測高度 地表から–0.5 km~20 k高度サンプリング 100 m雲観測感度 -36 dBZ (大気上端にて送信周波数 94.05 GHzピーク送信出力 1.5 kW以上送信パルス幅 3.33 マイクロ秒主反射鏡直径 2.5 mアンテナビーム幅 0.095 度ドップラ測定手法 パルスペア法

EarthCARE 衛星搭載雲レーダの概要(1)

収納時

1111

EarthCARE 衛星搭載雲レーダの概要(2)

機器搭載プラットフォームの内部

受信部1

受信部2

電源部

データ処理部1

データ処理部2

送信部1

送信部2

送信管1

送信管2

アンテナ給電部

アンテナ給電部の内部

送受分離用グリッド

円偏波変換干渉器2次反射鏡

送信系ミラー

受信系ミラー

送信管

アップコンバータ

低雑音増幅器

局部発信器パルス変調器

準光学給電部

ダウンコンバータ

アンテナ

データ処理部

送信波 受信信号

雲レーダのブロック図

1212

Technology Development for the global Technology Development for the global easurementeasurementof CO2 with Spaceof CO2 with Space--borne DIAL borne DIAL (Differential Absorption (Differential Absorption LidarLidar))

2μm Eye-Safe Laser

CO2cell

Telescope

Ground Based DIAL observation

Receiver

Air-borne DIAL

Atmospheric Concentration of Carbon Dioxide COCO22

Basic technology development for high sensitivity measurement of global warming gasses (such as CO2) from a next-generation satellite

Feasibility study and system design verification with ground-based and airborne systems

We have already developed a high-power laser (#1 in the world: 400 mJ in the 2-micron band)

2006: Conceptual design of a ground-based system, component technology development

COCO22

1313

3D3D--Sensing of Sensing of MegacityMegacity AtmosphereAtmosphere⎯⎯⎯⎯ to observe local environment in urban areas to observe local environment in urban areas ⎯⎯⎯⎯

Clouds over belt highway-8 contain hazardous chemicals

Concerns on environments in mega-cities;

However, cannot be resolved or captured in existing weather-forecast/environ. monitoring systems

Needs 3-D & Hig-Res. Obs. System of Urban Atmosphere

Policy making & social benefit (human life & property)

Demonstrate effectiveness of technologyShow usefulness in social services

Heat island in TokyoRed: above50°C

Heavy rains and Floods inside mega-cities

Remote-sensing instruments/NICT (Ntnl. Inst. of Info. Comm. Tech.) of Ministry of Telecom. & Kyoto Univ.

Chemistry & Air quality/Univ. of Tokyo

High-res. (2km mesh) urban weather forecast/Japan Met. AgencyNetwork-connected sensors

3-D remote-sensing

1414

30.0 31.0 32.0 33.0 34.0 35.0 10.0m/s

0 100km12 18 20/00 06 12 18 21/00 06

25

30

35

40

Local Model of Met. Agency

Obs. (Tokyo)

Existing wind profilers

Vertical profile only.Assuming homogenietyin the area S.

S

Data points in a 3-D volumeNo assumption of spatial homogeniety

can observe fine-structure of the field

Current status: difficulty to forecast sub-city-scale events.

Urban climate

Heat-island in Tokyo was not reproduced by Japan Met. Agency models.

2001/7/20 13:30 JST120100806040200

O3 (ppbv)

To observe precise urban area winds-> ”3-D wind radar system”

Wind measurement

50km50km

50km

3D3D--sensing of sensing of MegacityMegacity: Concerns and Observations: Concerns and Observations

3D wind radar planned

Synchronized thru network

Wind measurement

10km

Wind of block-scale to City-scale: -> Scanning 3D Doppler lidars

Eye-safe Laser beam

Sync. system

Ox transport

Transport by wind is important. Ox is evident Not in source region, but suburban area. of Tokyo