Remark on Inequalities between Hölder and Lehmer Means

5

Click here to load reader

Transcript of Remark on Inequalities between Hölder and Lehmer Means

Page 1: Remark on Inequalities between Hölder and Lehmer Means

Ž .Journal of Mathematical Analysis and Applications 247, 309]313 2000doi:10.1006rjmaa.2000.6834, available online at http:rrwww.idealibrary.com on

NOTE

Remark on Inequalities between Holder¨and Lehmer Means

Zheng Liu

Department of Mathematics and Physics, Anshan Institute of Iron and Steel Technology,Anshan 114002, Liaoning, People’s Republic of China

Submitted by William F. Ames

Received October 13, 1999

w xIn 1 Stolarsky established an inequality between the two variablew xmeans of Holder and Lehmer that is much stronger than that given in 2 .¨

w xHowever, it should be noted that the inequalities given in 2 are inconnection with more general n-variable means. So, it is natural to ask ifwe could generalize the result of Stolarsky to the n-variable means ofHolder and Lehmer with n G 3. Unfortunately, the answer is negative.¨

Let R, R , and N be the set of real numbers, positive numbers, andqnatural numbers, respectively.

For n g N, x , x , . . . , x g R , and t g R, the n-variable Holder mean¨1 2 n qof order t is defined by

1t¡ t t tx q x q ??? qx1 2 n, t / 0,~ ž /H x , x , . . . , x s nŽ .t 1 2 n

1¢ nx , x ??? x , t s 0,Ž .1 2 n

and the n-variable Lehmer mean of order t is defined by

x tq1 q x tq1 q ??? qx tq11 2 n

L x , x , . . . , x s .Ž .t 1 2 n t t tx q x q ??? qx1 2 n

Ž .It is well known that for each x , x , . . . , x g R , both H x , x , . . . , x1 2 n q t 1 2 nŽ .and L x , x , . . . , x are continuous nondecreasing functions of t fort 1 2 n

w xy` - t - q` and are strictly increasing unless all the x are equal 2, 3 .i

3090022-247Xr00 $35.00

Copyright Q 2000 by Academic PressAll rights of reproduction in any form reserved.

Page 2: Remark on Inequalities between Hölder and Lehmer Means

NOTE310

w xWe now extend 1, Theorem 1 to more comprehensive cases as follows:1Ž . Ž .THEOREM 1. Let x , x g R and t g R. If t g y1, y j 0, q` ,1 2 q 2

thenH x , x F L x , x . 1Ž . Ž . Ž .2 tq1 1 2 t 1 21Ž . Ž .If t g y`, y1 j y , 0 , then2

H x , x G L x , x . 2Ž . Ž . Ž .2 tq1 1 2 t 1 21Equality holds when t s y1, y , or 0; otherwise equality can hold only2

Ž .when x s x . Moreo¨er, 1 is best possible in the sense that 2 t q 1 cannot1 21Ž . Ž . Ž .be replaced by any larger number when t g y1, y j 0, q` , and 2 is2

best possible in the sense that 2 t q 1 cannot be replaced by any smaller1Ž . Ž .number when t g y`, y1 j y , 0 .2

w xThe proof is almost the same as in proving 1, Theorem 1 . We here onlyŽ . Ž .need to note that H 1 q « , 1 G L 1 q « , 1 for « small implies M y 1M N

G N and

t 2 t q 1 x 2 tq1 y t q 1 2 t q 1 x 2 t q t q 1 G 0Ž . Ž . Ž . Ž .1 11Ž . Ž .if t g y1, y j 0, q` as well as2

t 2 t q 1 x 2 tq1 y t q 1 2 t q 1 x 2 t q t q 1 F 0Ž . Ž . Ž . Ž .1 11Ž . Ž .if t g y`, y1 j y , 0 for x G 1.12

w xAlso, it is worth noticing that we can use 4, Theorem 3 to prove thistheorem in a different way.

Ž . w xClearly, inequality 1 is much stronger than that given in 2 for t ) 0Ž . w xand inequality 2 is much stronger than that given in 2 for t - 0.

THEOREM 2. Let x , x , . . . , x g R , n g N, and t g R. Then1 2 n q

H x , x , . . . , x and L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

are not comparable for n G 3 and t / y1, 0.

Proof. First, let x s ??? s x s 1, x s 1 q « , and « ) 0 suffi-1 ny1 nciently small. Then

1 n y 1 tŽ .2H x , x , . . . , x s 1 q « q «Ž .2 tq1 1 2 n 2n n

n y 1 t 2 n y 2 t y n q 1Ž . Ž . Ž .3 4q « q O « ,Ž .33n

1 n y 1 tŽ .2L x , x , . . . , x s 1 q « q «Ž .t 1 2 n 2n n

n y 1 t n y 2 t y nŽ . Ž .3 4q « q O « ,Ž .32n

Page 3: Remark on Inequalities between Hölder and Lehmer Means

NOTE 311

and we see that

H x , x , . . . , x y L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

13 4s n y 1 n y 2 t t q 1 « q O « .Ž . Ž . Ž . Ž .36n

Hence, for n G 3 and t / y1, 0,

H x , x , . . . , x - L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

Ž .if t g y1, 0 and

H x , x , . . . , x ) L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

Ž . Ž .if t g y`, y1 j 0, q` .Second, let x s ??? s x s 1, x s 1 y « , and « ) 0 sufficiently1 ny1 n

small. Then

1 n y 1 tŽ .2H x , x , . . . , x s 1 y « q «Ž .2 tq1 1 2 n 2n n

n y 1 t 2 n y 2 t y n q 1Ž . Ž . Ž .3 4y « q O « ,Ž .32n

1 n y 1 tŽ .2L x , x , . . . , x s 1 y « q «Ž .t 1 2 n 2n n

n y 1 t n y 2 t y nŽ . Ž .3 4y « q O « ,Ž .32n

and we see that

L x , x , . . . , x y H x , x , . . . , xŽ . Ž .t 1 2 n 2 tq1 1 2 n

13 4s n y 1 n y 2 t t q 1 « q O « .Ž . Ž . Ž . Ž .36n

Hence, for n G 3 and t / y1, 0,

H x , x , . . . , x ) L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

Ž .if t g y1, 0 and

H x , x , . . . , x - L x , x , . . . , xŽ . Ž .2 tq1 1 2 n t 1 2 n

Ž . Ž .if t g y`, y1 j 0, q` .Thus we can conclude that for n G 3 and t / y1, 0, H2 tq1

Ž . Ž .x , x , . . . , x and L x , x , . . . , x are not comparable.1 2 n t 1 2 n

Page 4: Remark on Inequalities between Hölder and Lehmer Means

NOTE312

Finally, we would like to give another interesting result:

THEOREM 3. Let x , x , . . . , x g R , n g N, and t g R. Then1 2 n q

L x , x , . . . , x q L x , x , . . . , xŽ . Ž .t 1 2 n yŽ tq1. 1 2 n G H x , x , . . . , xŽ .0 1 2 n2

holds for n s 2 and may not hold for n G 3.

Proof. For n s 2, it is immediate that

L x , x q L x , x 1 x tq1 q x tq1 x t q x tŽ . Ž .t 1 2 yŽ tq1. 1 2 1 2 1 2s q x x1 2t t tq1 tq1ž /2 2 x q x x q x1 2 1 2

G x x s H x , x .Ž .' 1 2 0 1 2

For n G 3, let x s ??? s x s 1, x s 1 y « , and « ) 0 sufficiently1 ny1 nsmall, then

L x , x , . . . , x q L x , x , . . . , xŽ . Ž .t 1 2 n yŽ tq1. 1 2 n

2

1 n y 12s 1 y « y «2n 2n

n y 1 n y 2 t t q 1 q n y 1Ž . Ž . Ž . Ž .3 4y « q O « ,Ž .32n

1 n y 12H x , x , . . . , x s 1 y « y «Ž .0 1 2 n 2n 2n

n y 1 2n y 1Ž . Ž .3 4y « q O « ,Ž .36n

and we see that

L x , x , . . . , x q L x , x , . . . , xŽ . Ž .t 1 2 n yŽ tq1. 1 2 nH x , x , . . . , x yŽ .0 1 2 n 2

12 3 4s n y 1 n y 2 3t q 3t q 1 « q O « ,Ž . Ž . Ž . Ž .36n

and it follows

L x , x , . . . , x q L x , x , . . . , xŽ . Ž .t 1 2 n yŽ tq1. 1 2 n- H x , x , . . . , xŽ .0 1 2 n2

for y` - t - q`.The proof of the theorem is complete.

Page 5: Remark on Inequalities between Hölder and Lehmer Means

NOTE 313

REFERENCES

1. K. B. Stolarsky, Holder means, Lehmer means, and xy1 logcosh x, J. Math. Anal. Appl.¨Ž .202 1996 , 810]818.

Ž .2. E. F. Beckenbach, A class of mean value functions, Amer. Math. Monthly 57 1950 , 1]6.3. E. F. Beckenbach and R. Bellman, ‘‘Inequalities,’’ Springer-Verlag, BerlinrNew York,

1983.Ž .4. Z. Pales, Inequalities for sums of powers, J. Math. Anal. Appl. 131 1988 , 265]270.´