Reliability of satellite-to-ground optical transmissions · High to very high data rates ~10 Gbps...

69
Reliability of satellite-to-ground optical transmissions Lucien Canuet Jérôme Lacan (ISAE) Angélique Rissons (ISAE) Nicolas Védrenne (ONERA) Géraldine Artaud (CNES)

Transcript of Reliability of satellite-to-ground optical transmissions · High to very high data rates ~10 Gbps...

  • Reliability of satellite-to-ground optical

    transmissions Lucien Canuet

    Jérôme Lacan (ISAE)

    Angélique Rissons (ISAE)

    Nicolas Védrenne (ONERA)

    Géraldine Artaud (CNES)

  • SATELLITE OPTICAL DOWNLINKS - GENERAL CONTEXT

    Telecom

    Telemetry

    & payload

    2

    Applications of optical links • Data transfer (telemetry/payload) from scientific or defense spacecraft (LEO) • Telecommunication (GEO satellites) • Metropolitan area networks (where fiber optics impractical) • Deep space probes …

  • High to very high data rates

    ~10 Gbps

    >1 Tbps achievable if optical fiber technologies are

    exploited (WDM, DWDM, Optical amplifiers etc.) Decongestion of the RF spectrum

    Enhanced security (high directivity of the beam)

    Stealthy links and jamming capacity reduced

    Very large range (« Deep Space » applications)

    3

    SATELLITE OPTICAL DOWNLINKS - GENERAL CONTEXT

  • High to very high data rates

    ~10 Gbps

    >1 Tbps achievable if optical fiber technologies are

    exploited (WDM, DWDM, Optical amplifiers etc.) Decongestion of the RF spectrum

    Enhanced security (high directivity of the beam)

    Stealthy links and jamming capacity reduced

    Very large range (« Deep Space » applications)

    Links highly affected by atmospheric turbulence

    4

    SATELLITE OPTICAL DOWNLINKS - GENERAL CONTEXT

  • High to very high data rates

    ~10 Gbps

    >1 Tbps achievable if optical fiber technologies are

    exploited (WDM, DWDM, Optical amplifiers etc.) Decongestion of the RF spectrum

    Enhanced security (high directivity of the beam)

    Stealthy links and jamming capacity reduced

    Very large range (« Deep Space » applications)

    Links highly affected by atmospheric turbulence

    Improvement of the link budget and telecom performances:

    + Coupling of incident flux into optical fiber (SMF)

    + Adaptive Optics (AO)

    + Optimisation of digital (coding/interleaving) techniques

    Joint optimisation of AO and coding techniques to improve reliability of

    LEO and GEO downlinks (telemetry and telecoms applications)

    5

    SATELLITE OPTICAL DOWNLINKS - GENERAL CONTEXT

  • PART I : JOINT OPTIMIZATION – PROBLEM OVERVIEW

    PART II : AO FOR OPTICAL DONWLINKS

    PART III : PHYSICAL LAYER PERFORMANCE ASSESSMENT

    PART IV : AO/CROSS-LAYER OPTIMIZATION

    6

    PRESENTATION OUTLINE

  • Coupling losses and signal fadings

    Atmospheric propagation channel

    Scintillation

    (Pupil plane) Turbulent Wave front

    Plane Wave

    7

    Phase fluctuations

    (Focal plane)

    Atmospheric optical turbulence

    Δ(Temperature, Pressure,

    Humidity) Δ(refractive index) Perturbed wave front

    Mitigation techniques ? Coupled flux

    Speckles

    PSF

    Experimental results PhD Thesis Kassem

    Saab (CNES/ONERA)

    THE ATMOSPHERIC PROPAGATION CHANNEL

    Turbulence Fiber Mode

    +

  • +Variance résiduelle totale fixe => fixe taux de couplage moyen

    +Variation du Drx

    +Variation de la proportion des postes d'erreur spatiale et temporelle

    8

    ADAPTIVE OPTICS PRINCIPLE

    SFM

    Principle overview

    Opto-mechanical system:

    Real time correction of

    phase distorsions

    Three key components:

    Deformable mirror

    Wavefront sensor

    Real-time computer

    Perturbed Field

    Corrected Field

  • +Variance résiduelle totale fixe => fixe taux de couplage moyen

    +Variation du Drx

    +Variation de la proportion des postes d'erreur spatiale et temporelle

    9

    ADAPTIVE OPTICS PRINCIPLE

    SFM

    Principle overview

    Opto-mechanical system:

    Real time correction of

    phase distorsions

    Three key components:

    Deformable mirror

    Wavefront sensor

    Real-time computer

    Perturbed Field

    Corrected Field

  • 10

    ADAPTIVE OPTICS PRINCIPLE

    SFM

    Principle overview

    Opto-mechanical system:

    Real time correction of

    phase distorsions

    Three key components:

    Deformable mirror

    Wavefront sensor

    Real-time computer

    Perturbed Field

    Corrected Field

  • drrr corrres ))²()((12 S

    +Variance résiduelle totale fixe => fixe taux de couplage moyen

    +Variation du Drx

    +Variation de la proportion des postes d'erreur spatiale et temporelle

    Minimization of residual phase variance

    11

    ADAPTIVE OPTICS PRINCIPLE

    SFM

    Principle overview

    Opto-mechanical system:

    Real time correction of

    phase distorsions

    Three key components:

    Deformable mirror

    Wavefront sensor

    Real-time computer

    Limitations?

    Perturbed Field

    Corrected Field

  • 12

    Time

    HIGH PERF. AO

    LOW PERF. AO

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES C

    ou

    ple

    d f

    lux a

    tte

    nu

    ati

    on

  • “BURST”

    Raw data stream Code performance limited

    13

    SYMBOL

    50 % Redundancy

    Time

    HIGH PERF. AO

    LOW PERF. AO

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES

    CODEWORD

    Co

    up

    led

    flu

    x a

    tte

    nu

    ati

    on

  • “BURST”

    Raw data stream

    Interleaved data stream

    Deinterleaving

    Code performance limited

    Code performance increased

    14

    SYMBOL

    50 % Redundancy

    Time

    HIGH PERF. AO

    LOW PERF. AO

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES

    CODEWORD

    Co

    up

    led

    flu

    x a

    tte

    nu

    ati

    on

  • “BURST”

    Raw data stream

    Interleaved data stream

    Deinterleaving

    Code performance limited

    Code performance increased

    How to effectively allocate memory (interleaver) and redundancy (code)?

    15

    SYMBOL

    50 % Redundancy

    CODEWORD

    Time

    HIGH PERF. AO

    LOW PERF. AO

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES C

    ou

    ple

    d f

    lux a

    tte

    nu

    ati

    on

  • Statistical and temporal characterizations of the channel needed:

    instantaneous coupled optical power after partial AO

    “BURST”

    Raw data stream

    Interleaved data stream

    Deinterleaving

    Code performance limited

    Code performance increased

    Time

    Couple

    d f

    lux [a.u

    .]

    16

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES

    SYMBOL

    HIGH PERF. AO

    LOW PERF. AO

    50 % Redundancy

    Co

    up

    led

    flu

    x a

    tte

    nu

    ati

    on

    CODEWORD

  • Instantaneous mutual information (~channel capacity )

    Theoretical maximal data rate at which information can be transferred over the channel given noise level

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES MUTUAL INFORMATION

    Bije

    ctio

    n

    The greater the better

    17

    Mu

    tua

    l in

    form

    atio

    n

    [bits/c

    ha

    nnel u

    se

    ]

    Op

    tica

    l co

    up

    led

    po

    we

    r a

    tte

    nu

    ation

  • Series tempo flux im

    impact entrelacement-desentrelacement -> capa ergo = moyenne message contr OA pas d’influence sur moy

    Motiv mieux que BER cite JL

    Appli FSO très peu, jms conj avec OA

    Instantaneous mutual information (~channel capacity )

    Theoretical maximal data rate at which information can be transferred over the channel given noise level

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES MUTUAL INFORMATION

    Emulation of interleaving-deinterleaving at Rx

    Sliding average window

    Advantages of instantaneous mutual information (MI):

    18

    Mu

    tua

    l in

    form

    atio

    n

    [bits/c

    ha

    nnel u

    se

    ]

  • PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES MUTUAL INFORMATION

    Emulation of interleaving-deinterleaving at Rx

    Sliding average window

    Ideal infinite interleaver = fundamental limit

    Average power losses not recoverable by interleaving

    E[MI(t)]

    19

    Mu

    tua

    l in

    form

    atio

    n

    [bits/c

    ha

    nnel u

    se

    ] Advantages of instantaneous mutual information (MI):

  • Series tempo flux im

    impact entrelacement-desentrelacement -> capa ergo = moyenne message contr OA pas d’influence sur moy

    Motiv mieux que BER cite JL

    Appli FSO très peu, jms conj avec OA

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES MUTUAL INFORMATION

    Emulation of Error Correcting Code (ECC) decoding

    Shannon decoding theorem

    ECC coding rate = amount of non-redundant

    information in message

    R0PHY = 0.5

    20

    Mu

    tua

    l in

    form

    atio

    n

    [bits/c

    ha

    nnel u

    se

    ] Advantages of instantaneous mutual information (MI):

  • Series tempo flux im

    impact entrelacement-desentrelacement -> capa ergo = moyenne message contr OA pas d’influence sur moy

    Motiv mieux que BER cite JL

    Appli FSO très peu, jms conj avec OA

    PHYSICAL LAYER DIGITAL MITIGATION TECHNIQUES MUTUAL INFORMATION

    Emulation of Error Correcting Code (ECC) decoding

    Shannon decoding theorem

    Not Decoded = Link Outage

    Successfully Decoded

    PHY layer performance metric = Outage probability

    21

    Mu

    tua

    l in

    form

    atio

    n

    [bits/c

    ha

    nnel u

    se

    ] Advantages of instantaneous mutual information (MI):

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH

    22

    CODING possible at both PHY LAYER and HIGHER LAYERS

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    APPLICATION Rx

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH

    23

    CODING possible at both PHY LAYER and HIGHER LAYERS

    Erasure Code

    (packets)

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    Error Corr. Code

    (bits)

    INFO Redundancy INFO Redundancy Red. Redundancy

    INFO INFO Red.

    Red.

    Redundancy

    HL Erasure code redundancy

    PHY Error correcting code redundancy

    APPLICATION Rx

    + … …

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH

    24

    Erasure Code

    &

    Packet interleaving

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    Error Corr. Code

    &

    Symbol interleaving

    APPLICATION Rx

    Perf. metric: PER

    Perf. metric: MI/Outage Prob.

    CODING and INTERLEAVING possible at both PHY LAYER and HIGHER LAYERS

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH

    25

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    APPLICATION Rx

    Perf. metric: PER

    Perf. metric: MI/Outage Prob.

    CODING and INTERLEAVING possible at both PHY LAYER and HIGHER LAYERS

    Benefits of (optimized) cross-layer coding scheme:

    • Lowering Packet Error Rate (PER)

    • Alleviate drawbacks required by long interleavers needed on bursty channel

    Erasure Code

    &

    Packet interleaving

    Error Corr. Code

    &

    Symbol interleaving

  • Developed module

    Enhanced/Validated module

    End-to-end simulation modeling

    Simplified simulation modeling

    Analytic modeling

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    Higher

    Layers

    Tx

    Application

    Tx Data

    Application

    Rx Data

    Higher

    Layers

    Rx

    Modulator Demodulator Channel

    encoder

    Channel

    decoder

    Physical Layer

    OVERALL SYSTEM OVERVIEW

    26

  • PART I : JOINT OPTIMIZATION – PROBLEM OVERVIEW

    PART II : AO FOR OPTICAL DONWLINKS

    Partial AO Analytic Modeling

    Analytic Modeling of Partially Corrected Coupled Flux into SMFs

    PART III : PHYSICAL LAYER PERFORMANCE ASSESSMENT

    PART IV : AO/CROSS-LAYER OPTIMIZATION

    27

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    PRESENTATION OUTLINE

  • Analytical laws for each one of the errors are known

    2ph & ron

    + 2Alias + 2scintill.

    2fitting Fitting Error

    + 2PS

    + 2Tempo Temporal Error

    drrr corrres ))²()((12 S

    +Variance résiduelle totale fixe => fixe taux de couplage moyen

    +Variation du Drx

    +Variation de la proportion des postes d'erreur spatiale et temporelle

    Minimization of residual phase variance

    28

    PARTIAL ADAPTIVE OPTICS

    Intrinsic limitations = partial AO

    Aliasing Error

    SFM Neglect impact of noise and scintillation on phase sensor

    error

    Perturbed Field

    Corrected Field

  • Uncorrected high

    frequencies Perfectly corrected

    low frequencies

    Spatial Frequencies

    Pow

    er S

    pec

    tra

    l D

    ensi

    ty

    Fitting

    Error

    Ideal AO correction system: the low order residuals are perfectly corrected

    Total residual error

    29

    PARTIAL ADAPTIVE OPTICS

  • Uncorrected high

    frequencies

    Patially corrected

    low frequencies

    Spatial Frequencies

    Pow

    er S

    pec

    tra

    l D

    ensi

    ty

    Fitting

    Error

    Aliasing+Temporal

    Errors

    Partial AO correction system: low order residuals that are highly correlating

    Total residual error Non negligible impact

    on communication

    performances

    30

    PARTIAL ADAPTIVE OPTICS

  • 31

    INSTANTANEOUS COUPLED OPTICAL POWER ATTENUATION

    Neglecting amplitude spatial structures influence on coupling fluctuations:

    Scintillation Injection losses Average

    coupling losses

    Collected power

    fluctuations Rough approx, validated for medium elevation, small perturbations

  • 32

    Optical power attenuation probability density distribution Average fading time against normalized threshold

    Canuet L., Védrenne N., Conan J-M. , Petit C., Artaud G., Rissons A., and Lacan J., « Statistical properties of single-mode fiber

    coupling of satellite-to-ground laser links partially corrected by adaptive optics » J. Opt. Soc. Am. A 35, 148-162 (2018)

    INSTANTANEOUS COUPLED OPTICAL POWER ATTENUATION

    Neglecting amplitude spatial structures influence on coupling fluctuations:

    Scintillation Injection losses Average

    coupling losses

    Collected power

    fluctuations Rough approx, validated for medium elevation, small perturbations

    Illustration GEO-Downlink, Drx = 50cm, r0= 0.069 m, 9 radial orders at 1 kHz

  • PART I : JOINT OPTIMIZATION – PROBLEM OVERVIEW

    PART II : AO FOR OPTICAL DONWLINKS

    PART III : PHYSICAL LAYER PERFORMANCE ASSESSMENT

    Optical Communication Subsystem Overview

    Outage Probability

    Minimum Required Interleaver

    PART IV : AO/CROSS-LAYER OPTIMIZATION

    33

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    Modulator Demodulator Channel

    encoder

    Channel

    decoder

    Physical Layer

    PRESENTATION OUTLINE

  • PHYSICAL LAYER PERFORMANCE END-TO-END MODELING

    34

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    Modulator Demodulator Channel

    encoder

    Channel

    decoder

    Physical Layer

    EDFA

    PREAMPLIFIER

    OPTICAL

    FILTER

    EDFA

    PREAMPLIFIER

    OPTICAL

    FILTER

    PIN

    PHOTODIODE

    ELECTRICAL

    FILTER

    OOK Preamplified Detector

    BALANCED

    DETECTOR

    ELECTRICAL

    FILTER

    DELAY-LINE

    INTERFEROMETER

    DPSK Balanced Detector

    TB

  • PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m

    35

    Target:

    Min required power

    Outage probability for 10 Gbps link coderate R0=0.5

    Med. Perf. AO

    15 actuators 800 Hz

    5dB avg. attenuation

    Low. Perf. AO

    10 actuators 500 Hz

    7dB avg. attenuation

    DPSK system with -7dB AO

    DPSK system with -5dB AO

  • 36

    Target:

    Outage probability for 10 Gbps link coderate R0=0.5

    Med. Perf. AO

    15 actuators 800 Hz

    5dB avg. attenuation

    Low. Perf. AO

    10 actuators 500 Hz

    7dB avg. attenuation

    DPSK system with -5dB AO

    DPSK system with -7dB AO

    30 ms interleaver (300 Mb)

    PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m

  • 37

    Target:

    Outage probability for 10 Gbps link coderate R0=0.5

    30 ms interleaver (300 Mb)

    3 dB

    Optimizing interleaver at targeted outage probability & required power?

    Med. Perf. AO

    15 actuators 800 Hz

    5dB avg. attenuation

    Low. Perf. AO

    10 actuators 500 Hz

    7dB avg. attenuation

    OOK system with -3db AO

    DPSK system with -5dB AO

    DPSK system with -7dB AO

    High Perf. AO

    50 actuators at 2 kHz

    3dB avg. attenuation

    PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m

  • PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m | OOK

    Code rate

    38

    Minimum Required PHY interleaving depth High Perfo. AO | Outage Prob. 10-2

    PHY Code Rate

    Min

    . R

    equir

    ed P

    HY

    Inte

    rlea

    ver

    Mem

    ory

    [M

    b]

    Low redundancy

    Req. Rx Power = -41 dBm

    Req. Rx Power = -38 dBm

  • Code rate

    39

    Min

    . R

    equir

    ed P

    HY

    Inte

    rlea

    ver

    Mem

    ory

    [M

    b]

    Req. Rx Power = -41 dBm

    Req. Rx Power = -38 dBm

    Minimum Required PHY interleaving depth High Perfo. AO | Outage Prob. 10-2

    Partial AO

    Ideal AO

    Neglecting lower order residuals underestimate required memory by 50%

    PHY Code Rate

    PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m | OOK

  • Code rate

    40

    PHY Code Rate

    Minimum Required PHY interleaving depth High Perfo. AO | Outage Prob. 10-2

    Ideal Infinite interleaver limit

    Min

    . R

    equir

    ed P

    HY

    Inte

    rlea

    ver

    Mem

    ory

    [M

    b]

    Req. Rx Power = -41 dBm

    Req. Rx Power = -38 dBm

    PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m | OOK

  • Code rate

    41

    PHY Code Rate

    Minimum Required PHY interleaving depth High Perfo. AO | Outage Prob. 10-2

    Decrease in redundancy

    sharp increase in memory

    Min

    . R

    equir

    ed P

    HY

    Inte

    rlea

    ver

    Mem

    ory

    [M

    b]

    Req. Rx Power = -41 dBm

    Req. Rx Power = -38 dBm

    Transfer to HL

    PHYSICAL LAYER TRADE-OFF ASSESSMENT

    LEO application case Drx = 0.25 m | r0 = 0.056 m | OOK

  • PART I : JOINT OPTIMIZATION – PROBLEM OVERVIEW

    PART II : AO FOR OPTICAL DONWLINKS

    PART III : PHYSICAL LAYER PERFORMANCE ASSESSMENT

    PART IV : AO/CROSS-LAYER OPTIMIZATION

    Modeling of Cross-layer Coding Scheme

    Case Study: LEO Downlink Using DPSK

    42

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    Higher

    Layers

    Tx

    Higher

    Layers

    Rx

    Modulator Demodulator Channel

    encoder

    Channel

    decoder

    Physical Layer

    PRESENTATION OUTLINE

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH : Overview

    43

    CODING and INTERLEAVING possible at both PHY LAYER and HIGHER LAYERS

    Erasure code

    R0HL

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    Error correcting code

    R0PHY

    Red.

    Redundancy

    HL Redundancy

    PHY

    Redundancy APPLICATION Rx

    Perf. metric: MI/Outage Prob.

    Perf. metric: PER

    Fixed global code rate

    R0GLOBAL = R

    0PHYR

    0HL

    Useful Data Rate = raw data-rate x R0GLOBAL

    The PHY and HL coderates inherently related through definition of global coderate:

  • INFO Redundancy

    INFO Redundancy

    Error corr. code

    APPLICATION PHY LAYER HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    CROSS-LAYER APPROACH : Overview

    44

    Red.

    Redundancy

    HL Redundancy

    PHY

    Redundancy

    Fixed global code rate

    R0GLOBAL = R

    0PHYR

    0HL

    Useful Data Rate = raw data-rate x R0GLOBAL

    The PHY and HL coderates inherently related through definition of global coderate:

    Tx HL memory = HL interleaver depth x raw data-rate x R0PHY

    Tx PHY memory = PHY interleaver depth x raw data-rate Advantage to HL

    CODING and INTERLEAVING possible at both PHY LAYER and HIGHER LAYERS

    Erasure code

    R0HL

    APPLICATION Tx

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    TRANSPORT

    NETWORK

    DATA LINK

    PHYSICAL

    Higher layers

    FSO

    Channel

    Error correcting code

    R0PHY

    APPLICATION Rx

    Perf. metric: MI/Outage Prob.

    Perf. metric: PER

  • PHYSICAL LAYER

    R0PHY = 0.5

    CROSS-LAYER APPROACH : Modeling R

    0GLOBAL = R

    0PHYR

    0HL = 0.3

    45

    Mu

    tua

    l in

    form

    atio

    n

  • PHYSICAL LAYER

    HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    R0PHY = 0.5

    46

    Mu

    tua

    l in

    form

    atio

    n

    PH

    Y o

    utp

    ut P

    ER

    CROSS-LAYER APPROACH : Modeling R

    0GLOBAL = R

    0PHYR

    0HL = 0.3

  • PHYSICAL LAYER

    HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    R0PHY = 0.5

    47

    BAD

    GOOD

    Mu

    tua

    l in

    form

    atio

    n

    PH

    Y o

    utp

    ut P

    ER

    CROSS-LAYER APPROACH : Modeling R

    0GLOBAL = R

    0PHYR

    0HL = 0.3

    1-R0HL = 0.4

  • PHYSICAL LAYER

    HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    APPLICATION LAYER

    R0PHY = 0.5

    1-R0HL = 0.4

    48

    Mu

    tua

    l in

    form

    atio

    n

    PH

    Y o

    utp

    ut P

    ER

    H

    L o

    utp

    ut

    Decoded P

    ER

    CROSS-LAYER APPROACH : Modeling R

    0GLOBAL = R

    0PHYR

    0HL = 0.3

  • PHYSICAL LAYER

    HIGHER LAYERS DATA LINK | NETWORK |

    TRANSPORT

    APPLICATION LAYER FINAL PERFORMANCE METRIC : Average of decoded PER

    R0PHY = 0.5

    1-R0HL = 0.4

    49

    Mu

    tua

    l in

    form

    atio

    n

    PH

    Y o

    utp

    ut P

    ER

    H

    L o

    utp

    ut

    Decoded P

    ER

    CROSS-LAYER APPROACH : Modeling R

    0GLOBAL = R

    0PHYR

    0HL = 0.3

  • Average decoded PER against size of HL interleaving

    50

    Tx Higher Layers Interleaving Memory [Mb]

    CROSS-LAYER APPROACH : Benefits illustration

    R0

    GLOBAL = 0.8 | Req. Power = -38 dBm | PHY interleaver 50 Mb

    R0PHY = 0.8 R

    0HL = 1

    R0PHY = 0.82 R

    0HL = 0.97

    R0PHY = 0.86 R

    0HL = 0.93

    R0PHY = 0.90 R

    0HL = 0.89

  • Average decoded PER against size of HL interleaving

    51

    Tx Higher Layers Interleaving Memory [Mb]

    CROSS-LAYER APPROACH : Benefits illustration

    R0

    GLOBAL = 0.8 | Req. Power = -38 dBm | PHY interleaver 50 Mb

    R0PHY = 0.8 R

    0HL = 1

    R0PHY = 0.82 R

    0HL = 0.97

    R0PHY = 0.86 R

    0HL = 0.93

    R0PHY = 0.90 R

    0HL = 0.89

    No coding on HL

  • 52

    Tx Higher Layers Interleaving Memory [Mb]

    CROSS-LAYER APPROACH : Benefits illustration

    R0

    GLOBAL = 0.8 | Req. Power = -38 dBm | PHY interleaver 50 Mb

    R0PHY = 0.8 R

    0HL = 1

    R0PHY = 0.82 R

    0HL = 0.97

    R0PHY = 0.86 R

    0HL = 0.93

    R0PHY = 0.90 R

    0HL = 0.89

    Optimal allocation of

    redundancy btw PHY and HL

    Average decoded PER against size of HL interleaving

  • RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4 | 10 Gbps LEO link

    DPSK Receiver

    53

    1000

    800

    600

    400

    200

    0

    Min

    . To

    tal T

    x M

    em

    ory

    (P

    HY

    +H

    L)

    [Mb

    ]

    2 3 4 5 6 7 8 9 No coding

    (Redundancy)

    A lot of coding

    (Redundancy) Useful Data Rate [Gbps]

    High Perf. AO (-3 dB)

    Med Perf. AO (-5 dB)

    Low Perf. AO (-7 dB)

  • 54

    High Perf. AO (-3 dB)

    Med Perf. AO (-5 dB)

    Low Perf. AO (-7 dB)

    1000

    800

    600

    400

    200

    0

    Min

    . To

    tal T

    x M

    em

    ory

    (P

    HY

    +H

    L)

    [Mb

    ]

    2 3 4 5 6 7 8 9 No coding

    (Redundancy)

    A lot of coding

    (Redundancy) Useful Data Rate [Gbps]

    RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4 | 10 Gbps LEO link

    DPSK Receiver

  • Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 97

    PHY Coderate : 0.48 | HL Coderate : 0.62

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 37

    PHY Coderate : 0.36 | HL Coderate : 0.83

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 87

    PHY Coderate : 0.85 | HL Coderate : 0.94

    HL interl. exclusively

    55

    1000

    800

    600

    400

    200

    0

    Min

    . To

    tal T

    x M

    em

    ory

    (P

    HY

    +H

    L)

    [Mb

    ]

    2 3 4 5 6 7 8 9 No coding

    (Redundancy)

    A lot of coding

    (Redundancy) Useful Data Rate [Gbps]

    High Perf. AO (-3 dB)

    Med Perf. AO (-5 dB)

    Low Perf. AO (-7 dB)

    RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4 | 10 Gbps LEO link

    DPSK Receiver

    Unfad. Rx Power [dBm] : -41

    PHY mem. [Mb] : 102 | HL mem. [Mb] : 0

    PHY Coderate : 0.5 | HL Coderate : 1

  • Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 97

    PHY Coderate : 0.48 | HL Coderate : 0.62

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 37

    PHY Coderate : 0.36 | HL Coderate : 0.83

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 87

    PHY Coderate : 0.85 | HL Coderate : 0.94

    HL interl. exclusively

    56

    1000

    800

    600

    400

    200

    0

    Min

    . To

    tal T

    x M

    em

    ory

    (P

    HY

    +H

    L)

    [Mb

    ]

    2 3 4 5 6 7 8 9 No coding

    (Redundancy)

    A lot of coding

    (Redundancy) Useful Data Rate [Gbps]

    High Perf. AO (-3 dB)

    Med Perf. AO (-5 dB)

    Low Perf. AO (-7 dB)

    HL interleaving optimal in less challenging conditions

    Physical turbulence mitigation techniques (AO) can have significant impact on overall system

    design optimization by driving hardware trade-offs (eg. ASIC vs RAM interleaver)

    RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4 | 10 Gbps LEO link

    DPSK Receiver

    Unfad. Rx Power [dBm] : -41

    PHY mem. [Mb] : 102 | HL mem. [Mb] : 0

    PHY Coderate : 0.5 | HL Coderate : 1

  • Developed module

    Enhanced/Validated module

    End-to-end simulation modeling

    Simplified simulation modeling

    Analytic modeling

    Adaptive

    Optics

    Atmos.

    Propagation

    Channel

    Higher

    Layers

    Tx

    Application

    Tx Data

    Application

    Rx Data

    Higher

    Layers

    Rx

    Modulator Demodulator Channel

    encoder

    Channel

    decoder

    Physical Layer

    SIGNIFICANT RESULTS

    57

    • First accurate model of partially corrected coupled flux into SMFs

    • Detailed investigation of required physical layer interleaving depth and ECC

    • First application of cross-layer coding/interleaving scheme to sat. opt. transmissions

    • Investigation of overall optimization of AO and data reliability mechanisms

    CONCLUSION

    How to ensure reliable optical downlinks?

  • RECOMMENDATION FOR FUTURE WORK

    Experimental validation- LEO Downlink planned (DLR’s OSIRIS & ONERA’s LISA)

    Investigation of performance evolution over the duration of a whole link

    Input turbulence conditions not well known (except astron. observation

    sites)

    Transposition of approach to GEO uplink

    58

  • PUBLICATIONS AND COMMUNICATIONS

    59

    Peer-reviewed publication Canuet L., Védrenne N., Conan J-M. , Petit C., Artaud G., Rissons A., and Lacan J., « Statistical properties of

    single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics » J. Opt.

    Soc. Am. A 35, 148-162 (2018)

    International conferences Canuet L., Védrenne N., Conan J-M., Artaud G., Rissons A., and Lacan J., “Evaluation of communication

    performance for adaptive optics corrected GEO-to-ground laser links”, in proceedings of ICSO (International

    Conference on Space Optics) 2016, Biarritz, France

    Canuet L., Lacan J., Védrenne N., Artaud G., and Rissons A., “Performance Evaluation of Coded Transmission

    for Adaptive-Optics Corrected Satellite-To-Ground Laser Links”, in proceedings of ICSOS (IEEE International

    Conference on Space Optical Systems and Applications), November 2017 – Naha, Okinawa, Japan

    Canuet L., Lacan J., Védrenne N., Artaud G., and Rissons A., “Cross-layer optimization for adaptive-optics

    corrected satellite-to-ground laser links”, in proceedings of the 8th international symposium – OPTRO 2018

    optronics in defense and security, 6-8 February 2018, Paris

  • ACKNOWLEDGEMENTS

    Committee members Pr. Peucheret

    Pr. Belmonte

    Pr. Kahn

    Dr. Sodnik

    Dr. Perlot

    Advisors Jérôme Lacan

    Angélique Rissons

    Nicolas Védrenne

    Géraldine Artaud

    ONERA Jean-Marc Conan

    Cyril Petit

    CNES Bouchra Benammar

    Airbus DS Sylvain Poulenard

    Hervé Haag

    Thomas Anfray

    Thales AS

    Michel Sotom

    Arnaud Le Kernec

    TéSA Corinne Mailhes

  • PHYSICAL LAYER TRADE-OFF ASSESSMENT Minimum required interleaving depth

    Code rate

    61

    PHY Code Rate

    Min

    . R

    equir

    ed P

    HY

    Inte

    rlea

    ver

    Mem

    ory

    [M

    b]

    Req. Rx Power = -41 dBm

    Req. Rx Power = -38 dBm

    Minimum Required PHY interleaving depth High Perfo. OA | Outage Prob. 10-2

    Analytic estimation

    Analytic estimation based on statistical and temporal characteristics of coupled flux

  • 0.60 | 1.00 0.65 | 0.92 0.70 |

    0.92

    0.75 | 0.80 0.80 |

    0.75

    0.85 | 0.70 0.90 | 0.67 0.95 | 0.62 1.00 | 0.60

    PHY coderate | HL coderate

    Min

    . T

    X T

    ota

    l M

    em

    ory

    [M

    b]

    1000

    0

    RX Total mem. [Mb] :

    102

    PHY mem. [Mb] : 102

    HL mem. [Mb] : 0

    NOT ERROR-FREE FOR

    CONSIDERED INTERLEAVERS

    RANGE

    MINIMUM MEMORY REQUIRED FOR ERROR-FREE TRANSMISSION

    10 Gbps link | R0

    GLOBAL = 0.6 (6 Gbps throughput) | High Perf. AO

    62

    RX Total mem. [Mb] :

    678

    PHY mem. [Mb] : 502

    HL mem. [Mb] : 176 Functioning point

    requiring both PHY and

    HL interleaving

  • 0.60 | 1.00 0.65 | 0.92 0.70 | 0.92 0.75 | 0.80 0.80 | 0.75 0.85 | 0.70 0.90 | 0.67 0.95 | 0.62 1.00 | 0.60

    NOT ERROR-FREE FOR

    CONSIDERED INTERLEAVERS

    RANGE

    Region of HL Interleaving only

    RX Total mem. [Mb] : 88

    PHY mem. [Mb] : 0

    HL mem. [Mb] : 88 RX Total mem. [Mb] : 65

    PHY mem. [Mb] : 0

    HL mem. [Mb] : 65

    Optimal allocation of

    redundancy

    PHY coderate | HL coderate

    Min

    . T

    X T

    ota

    l M

    em

    ory

    [M

    b]

    1000

    0

    Functioning point requiring

    minimum overall memory and

    power

    RX Total mem. [Mb] : 972

    PHY mem. [Mb] : 0

    HL mem. [Mb] : 972

    MINIMUM MEMORY REQUIRED FOR ERROR-FREE TRANSMISSION

    10 Gbps link | R0

    GLOBAL = 0.6 (6 Gbps throughput) | High Perf. AO

    63

  • Unfad. Rx Power [dBm] : -40

    PHY mem. [Mb] : 202 | HL mem. [Mb] : 0

    PHY Coderate : 0.30 | HL Coderate : 1

    Total Latency [ms] : 20.25

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 40

    PHY Coderate : 0.39 | HL Coderate : 0.77

    Total Latency [ms] : 10.25

    Unfad. Rx Power [dBm] : -39

    PHY mem. [Mb] : 102 | HL mem. [Mb] : 0

    PHY Coderate : 0.5 | HL Coderate : 1

    Total Latency [ms] : 10.25

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 0

    PHY Coderate : 0.5 | HL Coderate : 1

    Total Latency [ms] : 0

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 202 | HL mem. [Mb] :

    0

    PHY Coderate : 0.7 | HL Coderate : 1

    Total Latency [ms] : 20.25

    Unfad. Rx Power [dBm] : -41

    PHY mem. [Mb] : 102 | HL mem. [Mb] : 0

    PHY Coderate : 0.7 | HL Coderate : 1

    Total Latency [ms] : 10.25

    Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 102 | HL mem. [Mb] :

    0

    PHY Coderate : 0.9 | HL Coderate : 1

    Total Latency [ms] : 10.25

    HL intel.

    exclusively

    RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4

    OOK Receiver

  • Increase in Drx

    =

    Aperture averaging of scintillation

    Adaptive Optics

    =

    Real-time correction of phase fluctuations only

    +

    For a fixed Drx scintillation effects are imposed upon the detector

    The design of the AO system must be done

    consequently

    Trade-offs scintillation/phase fluctuations mitigation and therefore performances/cost

    High perfs AO Limited by scintillation Low perfs AO Limited by phase fluctuations

    65

    PHYSICAL MITIGATION TECHNIQUES : APERTURE AVERAGING PLUS

    AO

    Cou

    pled

    flux

    Cou

    pling

    loss

    es

    Irradi

    ance

    Atten

    uatio

    n

    [a.u

    .]

    Ti

    m

    e

    [s]

    Coupled flux Coupling losses Irradiance

    Time [s]

    Atten

    uation

    [a

    .u.]

    Time [s]

    Atten

    uation

    [a

    .u.]

  • EM field of incoming wave

    Unperturbed amplitude Log-amplitude

    Phase (corrected)

    Instantaneous coupled optical power attenuation

    Neglecting amplitude spatial structures influence on coupling fluctuations:

    Scintillation Injection losses

    Pupil transmittance SMF mode

    Rustic approx, justified for GEO downlinks (medium elevation, small perturbations)

    Cou

    ple

    d flu

    x [a

    .u.]

    Time [s]

    End-to-end wave optics simulation results

    66

    INSTANTANEOUS COUPLED OPTICAL POWER ATTENUATION

    Simplified Model

    Wave Optics σ2 = 0.001

    Perfect AO correction

    |Difference|

    Average

    coupling losses

    Collected power

    fluctuations

  • Phase decomposition into Zernike polynomials (= Orthonormal basis over a plane and circular domain)

    Zernike coefficient #i Zernike polynomial #i

    Phase decomposition after “re-orthonormalisation”

    Retro-propagated SMF mode in pupil plane

    Set of Zernike polynomials not orthonormal

    Statistical properties (PDF) of each ai : known analytically (Independent Gaussian variables BUT not identical)

    Temporal properties (PSD) of each ai : known analytically

    Transfer Matrix {ai}{bi} : known analytically

    “Spatial variance” of the phase fluctuations

    in the focal plane

    Closed-form injection efficiency approximation :

    Injection efficiency

    without aberrations

    67

    INJECTION LOSSES STATISTICAL CHARACTERIZATION

  • Scintillation Injection losses

    Instantaneous coupled optical power attenuation

    + Temporal properties (PSD, coherence time)

    Analytic expressions

    Statistical laws (PDF/CDF)

    Typical Log-normal distribution “Exponentiated sum of

    non-identical Gamma variates”

    68

    INJECTION LOSSES STATISTICAL CHARACTERIZATION

  • Unfad. Rx Power [dBm] : -38

    PHY mem. [Mb] : 0 | HL mem. [Mb] : 37

    PHY Coderate : 0.36 | HL Coderate : 0.83

    69

    High Perf. AO (-3 dB)

    Med Perf. AO (-5 dB)

    Low Perf. AO (-7 dB)

    1000

    800

    600

    400

    200

    0

    Min

    . To

    tal T

    x M

    em

    ory

    (P

    HY

    +H

    L)

    [Mb

    ]

    2 3 4 5 6 7 8 9 No coding

    (Redundancy)

    A lot of coding

    (Redundancy) Useful Data Rate [Gbps]

    Unfad. Rx Power [dBm] : -41

    PHY mem. [Mb] : 102 | HL mem. [Mb] : 0

    PHY Coderate : 0.5 | HL Coderate : 1

    Unfad. Rx Power [dBm] : -39

    PHY mem. [Mb] : 102 | HL mem. [Mb] :0

    PHY Coderate : 0.7 | HL Coderate : 1

    RESOURCES OPTIMIZATION USING MINIMUM TOTAL MEMORY

    TARGET PER = 10-4 | 10 Gbps LEO link

    DPSK Receiver