Regulación neural de las respuestas endocrinas y autonómicas al estrés - Nature Neurosc 2009

download Regulación neural de las respuestas endocrinas y autonómicas al estrés - Nature Neurosc 2009

of 13

Transcript of Regulación neural de las respuestas endocrinas y autonómicas al estrés - Nature Neurosc 2009

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    1/13

    Aaptatin nr cnitins f strss is a prir-ity fr a rganiss. Strss can b bray finas an acta r anticipat isrptin f hstasis ran anticipat thrat t -bing. Strssr-ratinfratin fr a ar snsry systs (frxap, intrcpti cs, sch as b ansarity, an/r xtrcpti cs, sch as th sf a pratr) is cny t th brain, hich rcritsnra an nrncrin systs (ffctrs) tiniiz th nt cst t th ania. Th physigicarspns t strss ins an fficint an highy cn-sr st f intrcking systs an ais t aintainphysigic intgrity n in th st aning fcircstancs.

    Th atnic nrs syst (ANS) (BOX 1) pr-is th st iiat rspns t strssr xpsr thrgh its sypathtic an parasypathtic ars,hich prk rapi atratins in physigica stats

    thrgh nra innratin f n rgans. Fr xap,th sypath-arnary ar can rapiy (in sc-ns) incras hart rat an b prssr by xcitingth cariascar syst1. Iprtanty, xcitatin f thANS ans qicky ing t rfx parasypathticactiatin rsting in shrt-i rspnss.

    Actiatin f th hypthaaic-pititary-arncr-tica (HPA) axis rsts in atins in circating g-ccrticis (BOX 1). Pak pasa gccrtici sccr tns f ints aftr th initiatin f strss2. Tht-stp hrna chanis f HPA inctin (BOX 1)is sggish rati t th atncy f th synaptic cha-niss that ri sypath-arnary actiatin,

    an it nsrs that thr is an apifi an ratiyprtract scrtry pis.

    Th brain triggrs strss rspnss that ar cn-srat ith th natr f th stis. Physica strssrs sch as b ss, infctin an pain rqir aniiat systic ractin that is triggr by rfx-i chaniss. Th brain as rspns t nn-physicar psychgnic strssrs bas n prir xprinc rinnat prgras3. Ths rspnss rqir prcssingin th frbrain an can ccr in anticipatin f r inractin t strssf nts.

    This Ri arsss th brain circits that rgatANS an HPA axis rspnss t strss. Th first sctinris th nrcircitry, fcsing n ascning inptsfr th brainst, scning infncs fr th limbicfrbrain, an hypthaaic chaniss that intgratibic an brainst inpt ith rspct t hstaticfback(FIG. 1). Th scn sctin args that th

    strss-cntr circitry is rrganiz in th chronicallystrssd brain, ining th rcritnt f s rginsan iinish infnc f thrs. Th fina sctiniscsss rap f strss circits an ths cntr-ing ry an rar, an anatica arrangntthat pris pprtnity fr ta intractin in thtiat nra intrprtatin f strssr significanc.

    Stress triggers: brainstem and hypothalamus

    Brainstem systems. Th brainst rcis inpts thatsigna ar hstatic prtrbatins, sch as bss, rspiratry istrss, iscra r satic pain aninfaatin3. Sypathtic rspnss t ths inpts

    Department of Psychiatry,

    University of Cincinnati,

    Cincinnati, Ohio

    452370506, USA.

    Correspondence to J.P.H.

    email:[email protected]

    doi:10.1038/nrn2647

    Publishd onlin 13 May 2009

    Limbic system

    Th collction of highly

    intrconnctd forbrain

    structurs that ar involvd in

    procssing motion and

    mmory.

    Chronic stress

    Ongoing or rpatd xposur

    to on or mor typs of strss

    stimuli ovr a priod ranging

    from days to months.

    Neural regulation of endocrineand autonomic stress responsesYvonne M. UlrichLai and James P. Herman

    Abstract | The survival and well-being of all species requires appropriate physiological

    responses to environmental and homeostatic challenges. The re-establishment and

    maintenance of homeostasis entails the coordinated activation and control of

    neuroendocrine and autonomic stress systems. These collective stress responses are

    mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and thebrainstem, so that the respective contributions of the neuroendocrine and autonomic

    systems are tuned in accordance with stressor modality and intensity. Limbic regions that are

    responsible for regulating stress responses intersect with circuits that are responsible for

    memory and reward, providing a means to tailor the stress response with respect to prior

    experience and anticipated outcomes.

    REVIEWS

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |397

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

    mailto:[email protected]:[email protected]
  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    2/13

    |

    Intermediolateralcolumn (T1L2)

    Hindbrain

    Sacral spinal cord

    Cardiovascular system

    Abdominal viscera

    Adrenalmedulla

    Adrenal cortex

    Pituitary

    PVN

    Medianeminence

    CRH, AVP

    and others

    ACTH

    Preganglionic

    Rlating to th first nuron in

    th two-nuron chains that

    mdiat autonomic rsponss.

    Postganglionic

    Rlating to th scond nuron

    in th two-nuron chains that

    mdiat autonomic rsponss.

    in rfx arcs that cnicat ith aras in tha (fr xap, th rstra ntratra a)an prganglionic sypathtic nrns in th intr-iatra c cn f th spina cr 1(FIG. 2).Crinat atinf th parasypathtic branchf th ANS as ccrs fing strss, t atr th agatn t th hart an ngs1 an t hp cntr th ra-tin f atnic rspnss. This parasypathticrspns t strss is iat by th ncs abigs

    an th rsa tr ncs f th ags nr, pssi-by thrgh inpt fr th ncs f th sitary tract(NTS)1(FIG. 2). In aitin, ary an spina crsysts infr highr-rr atnic intgratisits in th hinbrain (fr xap, th raph pais,th atra parabrachia ncs an th Kikr-Fsncs), ibrain an frbrain (fr xap, thrsia hypthaas (DmH))1, hich atth atnic rspns t strssrs in accranc ith

    Box 1 | HPA axis and autonomic nervous system responses to stress

    The sympatho-adrenomedullary (see the left-hand side of the figure) and hypothalamic-pituitary-adrenocortical (HPA)

    (see the right-hand side of the figure) axes are the primary systems for maintaining or reinstating homeostasis during

    stress. Stressor exposure results in activation of preganglionic sympathetic neurons in the intermediolateral cell column

    of the thoracolumbar (T and L, respectively) spinal cord (shown in blue). These preganglionic neurons project to pre- or

    paravertebral ganglia that in turn project to end organs and to chromaffin cells of the adrenal medulla. This sympathetic

    activation represents the classic fight or flight response that was first characterized by Walter Cannon and colleagues in

    the early twentieth century152; it generally increases circulating levels of adrenaline (primarily from the adrenal medulla)

    and noradrenaline (primarily from sympathetic nerves), heart rate and force of contraction, peripheral vasoconstriction, andenergy mobilization. Parasympathetic tone can also be modulated during stress. In the parasympathetic system (shown in

    red), activation of craniosacral preganglionic nuclei activates postganglionic nuclei located in or near the end organs that

    they innervate; parasympathetic actions are generally opposite to those of the sympathetic system.

    For the HPA axis, stressor exposure activates hypophysiotrophic neurons in the paraventricular nucleus of the

    hypothalamus that secrete releasing hormones, such as corticotropin-releasing hormone (CRH) and arginine vasopressin

    (AVP), into the portal circulation of the median eminence. These releasing hormones act on the anterior pituitary to

    promote the secretion of adrenocorticotropic hormone (ACTH), which in turn acts on the inner adrenal cortex (that is, the

    zona fasciculata) to initiate the synthesis and release of glucocorticoid hormones (for example, corticosterone in rats and

    cortisol in humans). Circulating glucocorticoids then promote the mobilization of stored energy and potentiate numerous

    sympathetically mediated effects, such as peripheral vasoconstriction. Moreover, the adrenal cortex is directly innervated

    by the sympathetic nervous system, which can regulate corticosteroid release153. Thus, the HPA axis and sympathetic

    system have largely complementary actions throughout the body, including energy mobilization and maintenance of

    blood pressure during stress.

    r e V I e W s

    398 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    3/13

    |

    Stress signals Experiential factors Innate programmes

    Ongoing homeostaticfeedback

    Stress signals Homeostatic imbalance Pain Inflammation

    Top-down regulationLimbic forebrain

    Middle managementBST and hypothalamus

    Stress response triggersBrainstemHypothalamusCVO

    Output systems

    HPA activation (PVN)

    SAM activation (ANS)

    Subfornical organ

    A forbrain circumvntricular

    organ that lacks a bloodbrain

    barrir.

    Preautonomic

    Rlating to th CNS nurons

    that ar involvd in rgulating

    prganglionic sympathtic or

    parasympathtic nurons in

    th spinal cord and/or

    brainstm.

    FOS

    An immdiat arly gn,

    xprssion of which is tightly

    linkd to rcnt cllular

    xcitation.

    scning infratin fr th hypthaas anth ibic frbrain. Athgh a f ths circits par-ticipat in atnic intgratin, thir prcis r(s) instrss-inc rspnss is nt yt fin.

    Signas f hstatic ibaanc in th brainstas a t actiatin f th HPA axis: ascning brain-st (an prhaps spina) pathays prct haiyt th parcar iisins f th parantricarncs f th hypthaas (PvN) (FIG. 3). Fr xa-p, catchainrgic (sch as nrarnrgic anarnrgic) prctins t th hypphysitrphic znf th PvN riginat in th NTS an C1C3 rgins4,5an participat in HPA actiatin6. NTS prctins tthis ara ras aitina nracti factrs (inc-ing nrppti Y, gcagn-ik ppti 1, inhibin-,satstatin an nkphain79) that can rgat HPAactiatin. In s bt nt a NTS nrns ths factrsar ccaiz ith nrarnain an arnain8.

    Dstrctin f ascning nrarnain an arna-in nrns rcs HPA axis rspnss t stii thatsigna hstatic prtrbatins (fr xap, hypgy-

    caia r intrkin 1 inctin)10,11 bt s ntaffct psychgnic rspnss. Ths, it as prps thatascning catchainrgic pathays iat systic-strss rspnss3. Hr, s nn-catchainrgicNTS c grps (fr xap, gcagn-ik ppti 1nrns)12 ar in in gnrating HPA rspnss tbth psychgnic an systic strssrs, sggsting thatthr is s gr f fnctina spciaizatin angNTS an PvN pathays.

    Th parcar PvN as rcis srtnrgicinnratin fr th ian raph nci in th i-brain. Srtnin actiats th HPA axis13 by actiatingsrtnin 2A rcptrs n PvN nrns14. Srtnrgic

    fibrs prct qay t th PvN an srrningrgins15, raising th pssibiity that srtnin asinfncs ca circit nrns that prct t th PvN.

    Circumventricular organs: integration of peripheralsignals. Cpnnts f th aina trinais systin th frbrain (that is, th ian prptic ncs,th subfornical organ an th rgan ascs fth aina trinais) rspn t prtrbatins in fian ctryt baanc an b prssr. This systis ssntia fr th cntra rgatin f b prssrby angitnsin II. Th sbfrnica rgan16 has irctangitnsin II-cntaining prctins t th iaparcar PvN, hr it stiats HPA axis acti-ity by actiating th angitnsin II typ I rcptr 17. Thaina trinais as prcts t thr hypthaaicstrctrs, incing th antrntra prptic ncs,th DmH an th prautonomic PvN18, thrgh hichit can initiat strss-inc changs in cariascaractiity19.

    Paraventricular and dorsomedial hypothalamicnuclei. Ang sra hypthaaic nci that arircty in in rgating HPA axis an atnicrspnss t strssrs, th PvN stans t as a princi-pa intgratr f strss signas. Th PvN hss istinctppatins f nrns that prct t th ian i-nnc an t atnic targts in th brainst anspina cr sch as th intriatra c cn,th parabrachia ncs, th rsa tr ncsf th ags nr an th NTS20. Transnrna tracingstis inicat that parasypathtic an sypathticprctin nrns ar intring in th PvN, sg-gsting that ths nrns inpt int bth ars f ANSfnctin21.

    Th PvN is haiy innrat by GABA (-ain-btyric aci)-rgic inpts22, hich pri a sbstantiainhibitry tn23,24(FIGS 3,4). S f th GABArgicinnratin t th PvN cs fr nrns in thpri-PvN rgin25, hich in trn is targt by sraibic brain rgins, nabing it t transat ibic infr-atin int atin f th HPA axis r atnicactiatin26.

    Th DmH rgats atnic an prhaps as HPAaxis rspnss t psychgnic stii. lca stiatinf th DmH incrass hart rat, b prssr an HPAaxis rspnss t a psychgica strssr27, hras inhi-bitin attnats strss-inc incrass in hart rat an

    b prssr28. Hr, inactiatin f th DmH snt affct cariascar rspnss t harrhag28, ini-cating that hypaic stii ar prcss shr(st iky thrgh brainst rfx pathays). ThDmH ight as b in in gating PvN actiatin:ca inhibitin f th rsa DmH rcs arncrti-ctrpic hrn (ACTH) ras an nra xcitatin(as rfct by actiatin f th iiat ary gnFOS

    29) in th parcar PvN t psychgnic bt ntsystic stii30. mrr, th ntra DmH inhibitsnrna actiity in th PvN31, inicating that th DmHcntains anaticay sgrgat nrna ppatinsthat actiat r inhibit HPA axis actiity(FIG. 3).

    Figure 1 | Gna hm ban at-t gaty pathway. Stressors

    activate brainstem and/or forebrain limbic structures. The brainstem can generate rapid

    hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS)

    responses through direct projections to hypophysiotrophic neurons in the

    paraventricular nucleus of the hypothalamus (PVN) or to preganglionic autonomic

    neurons (stress response triggers). By contrast, forebrain limbic regions have no direct

    connections with the HPA axis or the ANS and thus require intervening synapses before

    they can access autonomic or neuroendocrine neurons (top-down regulation). A high

    proportion of these intervening neurons are located in hypothalamic nuclei that are also

    responsive to homeostatic status, providing a mechanism by which the descending

    limbic information can be modulated according to the physiological status of the animal

    (middle management). BST, bed nucleus of the stria terminalis; CVO, circumventricular

    organ; SAM, sympathoadrenomedullary system.

    r e V I e W s

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |399

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    4/13

    |

    IL

    CeA

    LC

    VLM

    aBST

    PL

    DMX

    NA

    NTS

    PVN

    DMH

    Preganglionic sympathetic nervoussystem: intermediolateral cell column

    Postganglionic parasympatheticnervous system: effector organs

    Bradycardic response

    A slowing of th hart rat.

    Top-down regulation: limbic stress circuits

    Bth psychgnic an systic stii ar prcss intip ibic frbrain strctrs, incing th ayg-aa, th hippcaps an th prfrnta crtx. Thsrgins rci assciatina infratin fr sbcrti-ca an crtica aras that ar in in highr-rrsnsry prcssing (fr xap, factry nci, thpirifr crtx an th insar crtx) an ry(th ia spt, th ntrhina crtx an th cing-at crtx). Thy as rci ascning inpts fr sitsin in attntin an arsa (fr xap, th cscrs an raph nci). Th tpt fr ths i-bic strctrs cnrgs n crcia sbcrtica ray sits,aing nstra prcssing f ibic infratin3.Ths ibic rgins rk in para t infnc thactiatin f th HPA axis an prbaby prfr siiarfnctins in th atnic rspnss t strss.

    Amygdala. Th aygaa is strctray cpx, ithnrs nstra targts that at atnican nrncrin strss rspnss (FIG. 4). Th cn-

    tra ncs f th aygaa (CA) has rci cn-sirab attntin as a ky n fr strss intgratin,ing t its innt in atnic rgatin an itsassciatin ith strss-rat bhairs (spcificay,far rspnss)32. Th CA is iffrntiay actiat

    by hstatic isrptin33,34 an systic strssrs35,bt it is nt actiat by psychgnic36,37 strssrs.Nnthss, CA sins ipair bradycardic rsponssring xpsr t psychgica strssrs38,39, sggst-ing that th CA has a r in intgrating th atniccpnnts f psychgnic strss. ora, th r fth CA ss t b spcific t stis aity anight b prfrntiay ight tars atnicrathr than HPA axis rspnss t strss.

    Th ia (mA) an basatra (BlA) aygaanci ar prfrntiay actiat by psychgicastrssrs33,40,41: sins f th mA prc sctificits in HPA axis rspnss t psychgnic bt nthstatic strssrs36, an BlA sins apn HPAaxis rspnss t rstraint42. Th ipact f th mAan BlA n HPA rspnss is prbaby iat byxtnsi intractins ith intrning PvN-prctingnrns, as thr ar f irct cnnctins btnth PvN an ths aygaa nci43. Th rs f thmA an BlA in rgating atnic strss rspnssha yt t b finitiy tst; hr, bas n

    th pacity f mA an BlA prctins t principaatnic tpt nci, it ss niky that thsrgins ircty at atnic strss rspnsst a significant xtnt.

    Hippocampus. Nrs stis ink th hippcapsith inhibitin f th HPA axis3,44. Hippcapa sti-atin crass gccrtici scrtin in rats anhans45,46, hras hippcapa aag incrassstrss-inc an, in s cass, basa gccrti-ci scrtin3,44. Ntaby, sin ffcts ar st pr-nnc ring th rcry phas f strss-incgccrtici scrtin, ipicating th hippcapsin rgating th trinatin f strss-initiat HPArspnss.

    Hippcapa rgatin f th HPA axis is rgin-an strssr-spcific. Th inhibitry ffcts f th hip-pcaps n th PvN ar sbsr by a ratiycircscrib ppatin f nrns in th ntrasbic47(FIG. 4). lsins f this ara rst in incrascrticstrn ras fing psychgnic bt ntsystic strssrs47, cnsistnt ith cntxt-spcificatin f strss rspnss by th hippcaps.

    Th hippcaps as infncs atnic tn.Hippcapa stiatin crass hart rat, bprssr an rspiratry rat in aak rats, ffcts that arbck by sins f th ia prfrnta crtx (PFC)48.

    Th hippcaps has n ar irct prctins t thbrainst bt s cnnct ith NTS-prcting rginsf th PFC, sch as th infraibic crtx49, sggstingthat hippcapa actins n atnic fnctin ightb rt thrgh th PFC.

    Medial prefrontal cortex. Th PFC is as cpx,ith iffrnt sbrgins cntribting t iffrntaspcts f strss tpt (FIG. 4). Th pribic PFCprfrntiay inhibits HPA axis rspnss t psych-gnic strssrs5053 an, ik th hippcaps, rgatsth ratin bt nt th pak s f gccrticiscrtin, sggsting that it is in in rspns

    Figure 2 | Th ban ty that gat atnm t pn.

    Stress-induced pre-autonomic outflow originates in multiple brain areas. The colours

    denote brain regions that are implicated in sympathetic activation (blue),

    parasympathetic activation (red) or both (bicoloured). The paraventricular nucleus of the

    hypothalamus (PVN) has substantial projections to both sympathetic and

    parasympathetic nuclei, including the nucleus of the solitary tract (NTS), the dorsal

    motor nucleus of the vagus nerve (DMX), the intermediolateral cell column (IML), thelocus coeruleus (LC) and the ventrolateral medulla (VLM) (the latter two sets of

    projections are not shown for clarity). The rostral VLM, LC and PVN directly innervate the

    IML and are thought to initiate sympathetic responses. The NTS in turn receives direct

    input from neurons in the infralimbic cortex (IL), the central amygdala (CeA) and the PVN.

    Other hypothalamic regions, most notably the dorsomedial hypothalamus (DMH),

    modulate autonomic nervous system activation through connections with the PVN (and

    possibly other descending pathways) (see main text). Parasympathetic outflow is

    mediated largely by descending outputs from the DMX and the nucleus ambiguus (NA)

    and is under the direct influence of the prelimbic cortex (PL), the PVN and possibly other

    descending relays (see main text). Parasympathetic effects of the anterior bed nucleus of

    the stria terminalis (aBST) are probably mediated by relays in the PVN or the NTS. The

    anatomical complexity of autonomic nervous system integration is underscored by the

    mixing of sympathetic and parasympathetic projection neurons in individual nuclei.

    r e V I e W s

    400 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    5/13

    |

    Third ventricle

    Third ventricle

    mPOA

    pPVNOptic chiasm

    pBST

    avBST

    Anteriorcommissure

    dmDMH

    vlDMH

    Arc

    C1

    NTS

    PVNmpd

    trinatin. Inhibitin f th pribic PFC rca inctin f nrarnain nhancs hart ratrspnss t psychgica stii54, cnsistnt ith ar fr th pribic PFC in inhibiting atnic strssrspnss.

    By cntrast, th infraibic PFC is in in initiat-ingatnic an HPA rspnss t psychgnic sti-i52,55. ectrica stiatin f th ntria PFC(hich ncpasss th infraibic crtx) incrassb prssr in nanasthtiz rats, hras sin-ing r inactiatin f this rgin inhibits cnitincariascar rspnss56,57. Inactiatin f this aras nt affct basin hart rat r b prssr,

    sggsting that th infraibic crtx is sctiyin in strss-inc cariascar rgatin,prhaps thrgh ificatin f th parasypathticcpnnt f th barrfx58. Cctiy, th atainicat that th pribic an infraibic crtics haiffrnt rs in crinating strss rspnss, ithtf fr th rsa PFC an th pribic cr-tx cnfrring inhibitin, an that fr th infraibiccrtx cnfrring stiatin. As a rst f its intrcn-nctins ith th hippcaps an th aygaa, thprfrnta crtx is psitin at th tp f th rspns-initiatin hirarchy an ight b a principa, bt nt ths, ibic crinatr f physigica ractiity.

    Figure 3 | Th ban ty that gat HPA ax t pn. Stress-induced activation of the dorsal part of

    the medial parvocellular paraventricular nucleus of the hypothalamus (PVNmpd) originates in several brain regions

    (excitatory inputs are coloured blue with solid lines and inhibitory (GABA (-aminobutyric acid)-ergic) inputs are colouredred with dashed lines). The paraventricular nucleus of the hypothalamus (PVN) receives direct noradrenergic, adrenergic

    and peptidergic innervation from the nucleus of the solitary tract (NTS). The dorsomedial components of the dorsomedial

    hypothalamus (dmDMH) and the arcuate nucleus (Arc) provide intrahypothalamic stress excitation. The anterior part of

    the bed nucleus of the stria terminalis (BST), particularly the anteroventralnucleus of the BST (avBST), activates hypotha-

    lamic-pituitary-adrenocortical (HPA) axis stress responses. The PVN also receives a stress-excitatory drive from the dorsal

    raphe, the tuberomammillary nucleus, the supramammillary nucleus and the spinal cord, among others (omitted in the

    interest of space). Activation of the PVNmpd is inhibited by numerous hypothalamic circuits, including the medial

    preoptic area (mPOA), the ventrolateral component of the dorsomedial hypothalamus (vlDMH) and local neurons in the

    peri-PVN region (pPVN), encompassing the PVN surround and the subparaventricular zone. The posterior subregions of

    the bed nucleus of the stria terminalis (pBST) provide a prominent forebrain inhibition of HPA axis responses; most of these

    inputs are GABAergic. Brain sections are modified, with permission, from ReF. 154 (1998) Academic Press.

    r e V I e W s

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |401

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    6/13

    |

    ANS and HPA axis(systemic stress)

    HPA axis(psychogenic stress)

    HPA axis(psychogenic stress)

    HPA axis(modality undefined)

    ANS andHPA axis(psychogenic stress)

    ANS and HPA axis(psychogenic stress)

    mPOA, amBST, pmBST,DMH, pPVN, PL, IL and LS

    avBST, DMH and NTS

    mPOA and BST

    BST, CeA and MeA

    DRN, PVT, pPVNand BLA

    BST, NTS, CeA,MeA and BLA

    MeA

    Limbic site Neurocircuits Primary action

    IL

    PL

    vSUB

    BLA

    CeA

    a

    b

    c

    Other limbic sites. Thr is as inc f strss-rgatry rs fr thr ibic sits, incing th atraspt, th spraaiary ncs an th antrirthaas40,59,60. Fr xap, th atra spt inhibitsHPA axis an atnic rspnss t act strssrs59 a r it shars ith its principa affrnt src, thhippcaps.

    Top-down integration of glucocorticoid negative feedback.Th HPA axis is sbct t fback inhibitin by itsprincipa prct, gccrticis (BOX 2). This fbackis iat at ast in part by ibic frbrain strctrs.Bth gccrtici rcptrs (GRs) an inra-crtici rcptrs (mRs) ar abnanty xprss inth hippcaps an ar prbaby ccaiz in snrns61. mRs an GRs ha iffrnt affinitis frcrticstrn (BOX 2), hich rnrs th hippcapsrspnsi t bth basa an strss-inc atinsf crticstrn62. GRs ar as highy xprss in thPFC, bt th xprssin f mRs is r iit hr,sggsting that th PFC ight b ss rspnsi t

    gccrtici s. Ipants f crticstris inth PFC inhibit HPA axis rspnss t rstraint btnt thr51, spprting a pssib r in fback inhi-bitin f psychgnic rspnss. Gin that bth thhippcaps an th PFC attnat strss-incincrass in hart rat an b prssr, it is pssibthat n r bth crticstri rcptrs infnc at-nic tf in aitin t HPA axis actiity, bt this

    pssibiity has yt t b instigat.Frbrain GRs ar in in rgating bth

    th basa HPA tn an th trinatin f th strssrspns. mic ith scti tin f th GR in thcrtx, th hippcaps an th BlA ha atbasa gccrticis an prng crticstrnrspnss t psychgnic bt nt systic strss63,64.Thy ar as rsistant t th inhibitry ffct fxgns gccrticis n HPA axis actiatin63.orxprssin f GR in th frbrain as t rcpak ACTH an crticstrn s fing strss,sggsting that frbrain GRs ar sfficint t rcstrss ractiity65,66. Frbrain mRs ha a r sbt

    Figure 4 | oganzatn mb tpt. Limbic modulation of stress responses occurs predominantly through

    oligosynaptic inputs to the paraventricular nucleus of the hypothalamus (PVN) and other preautonomic brain regions.

    Excitatory inputs are coloured blue and inhibitory (GABA (-aminobutyric acid)-ergic) inputs are coloured red. a | Theventral subiculum (vSUB) coordinates hippocampal stress output by providing glutamatergic input to primarily inhibitory

    PVN relays, thereby limiting psychogenic stress responses. b | GABAergic projections from the central amygdala (CeA)

    regulate responses to systemic stressors, whereas those from the medial amygdala (MeA) preferentially modulate

    responses to psychogenic stressors. Through glutamatergic projections in and outside the amygdala, the basolateral

    amygdala (BLA) plays a part in both the acute response to psychogenic stress and chronic-stress regulation. | The

    prelimbic cortex (PL) inhibits responses to psychogenic stress, and this inhibition is mediated predominantly by

    glutamatergic projections to inhibitory PVN relays. By contrast, the infralimbic cortex (IL) activates autonomic and possibly

    hypothalamic-pituitary-adrenocortical (HPA) axis responses to psychogenic stress, perhaps through direct projections (to

    the nucleus of the solitary tract (NTS)) or indirect projections (to the CeA). amBST, anteromedial BST; avBST, anteroventralBST; BST, bed nucleus of the stria terminalis; DMH, dorsomedial hypothalamus; DRN, dorsal raphe nucleus; LS, lateral

    septum; mPOA, medial preoptic area; pmBST, posteromedial BST; pPVN, peri-PVN; PVT, paraventricular nucleus of the

    thalamus; vSub, ventral subiculum. Brain sections are modified, with permission, from ReF. 154 (1998) Academic Press.

    r e V I e W s

    402 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    7/13

    Depressor response

    A dcras in blood prssur.

    Pressor response

    An incras in blood prssur.

    r in act HPA axis fback rgatin. Dtin

    f mRs in th ibic frbrain has n ffct n basaHPA tn r th pak rspns t rstraint (rcryas nt assss)67. orxprssin f mRs prcsa i spprssin f act-strss rspnss ny infa ic68.

    Cctiy, th ata ar cnsistnt ith a ibicintrfac btn gccrtici signas an fbackrgatin f th HPA axis. Th rati iprtanc fibic gccrtici signaing pns n th strssaity: it rgats HPA axis rspnss t psychgnicbt nt systic strss an s pris a cntxt-spcificfback signa that ifis HPA axis inhibitin.

    Middle management of stress responses

    libic strctrs ha itt irct anatica intr-actin ith priary strss ffctr systs. Intrningsynapss ar rqir t ray infratin fr thaygaa, th hippcaps an th PFC t th pri-ary strss ffctr nrns in th PvN, th caaa an th spina cr3(FIG. 4). In gnra, tptfr strss-xcitatry strctrs (sch as th CA, thmA an th infraibic crtx) ixs ith that fstrss-inhibitry rgins (th hippcaps an th pr-ibic crtx)3, priing pprtnity fr ca intgra-tin f ibic infratin bfr priary strss ffctrsar accss.

    mst ibicPvN cnnctins ray thrgh GABA-rich c grps in th b ncs f th stria trina-is (BST) an in th hypthaas3. Ths inhibitryrays pri trans-synaptic inhibitin, transatingxcitatry gtaatrgic tf fr th hippcapsan th pribic crtx int inhibitin f th PvN3.Dscning infratin fr th aygaa ss anyf th sa ray sits, bt hr th pstra nrnsin th CA an mA ar GABArgic69. Ths, actiatinf th PvN by ths aygaa strctrs prbabyrsts fr isinhibitin3. S gr f bisynapticintgratin f strss tf trarss xcitatry nt-rks as . Fr xap, th CA an infraibic

    crtx prct t th NTS, hich in trn xcits thHPA axis an th ANS70,71.

    Bed nucleus of the stria terminalis. Th BST has nr-s sbrgins that iffr arky in thir cntrib-tins t strss intgratin (FIGS 3,4). Antrntrasbrgins ar iprtant in HPA axis xcitatin, assins thr rc HPA axis rspnss an inhibitact actiatin f PvN nrns fing rstraint72,73(FIG. 4). Th antratra BST cntains crtictrpin-rasing hrn (CRH) nrns that prct t thPvN74,75, sggsting a chanis fr cntra xcitatryactins f CRH n th HPA axis. By cntrast, sinsf th pstria BST incras ACTH an crtic-strn scrtin, PvN FOS actiatin an PvN CRHRNA xprssin72,73, cnsistnt ith a ss f inhibi-try inpt t th HPA axis (FIG. 4). Tracing stis ini-cat that PvN-prcting nrns in this rgin arprinanty GABArgic76, sggsting that, in cn-trast t th antratra PvN, pstrir rgins inhibitHPA rspnss t strss.

    Th prcis r f th BST in atnic rgatinrains t b fin. In anasthtiz rats, chicar ctrica stiatin f th BST prcs pri-nantydprssor rsponss, particary hn th sti-atin is irct t th antria sbrgin7779.Hr, in aak anias, pharacgica actiatinf this rgin icits a rapi prssor rspons fby braycaria80,81, hras inactiatin xacrbatsrstraint-inc incrass in hart rat82. This inicatsthat BST signaing is ncssary fr inhibiting carias-car rspnss t strss. matin f th hart rat byBST stiatin r inhibitin ss t b iatby th parasypathtic nrs syst80,81.

    Hypothalamic nuclei. Sra hypthaaic rgins pr-i th ptntia fr intractin btn scningibic inpt an hstatic intgratin. Hypthaaicrays btn ibic sits an HPA an ANS tptnrns pri a ans t gat rspnss t strssrsith rspct t nging physigica stats.

    Th ia prptic hypthaas (PoA) sp-pis GABArgic innratin t th PvN (FIG. 3). PoAsins nhanc HPA axis rspnss t strssrs83, anca inactiatin nhancs ACTH ras. Bth fths ar cnsistnt ith a ss f inhibitry inpt tth PvN84. mrr, PoA sins bck th xcita-try ffct f aygaa stiatin n crticstrn

    ras85, sggsting that th aygaa is an pstraatr f PoA nrns that cntr th HPA axisrspns. In, th PoA is a prinnt targt fprctins fr th hippcaps an th mA an isiprtant in th intgratin f gnaa stri signas,by tpratr an sp86; it ths pris a sit frintractin btn ibic inpts an physigicargatry prcsss.

    libic ffrnts as innrat th ibasahypthaas, incing th arcat ncs87(FIG. 3),hich is a ky rgatr f nrgy baanc an ssth PvN as a nstra ffctr t rgat fingan nrgy xpnitr (thrgh nrpptirgic an

    Box 2 | Corticosteroid receptors and negative feedback

    Glucocorticoids have both genomic and non-genomic actions thoughout the body.

    Genomic actions occur following binding to glucocorticoid receptors (GRs) and, in the

    case of some tissues, mineralocorticoid receptors (MRs). These receptors act as

    ligand-activated transcription factors to affect broad, long-latency and biologically

    long-acting changes in gene transcription62. The MR has a high affinity for endogenous

    glucocorticoids and is extensively bound even during the circadian nadir of

    corticosteroid secretion. The GR has a lower affinity and is extensively bound only atrelatively high levels of corticosteroids, such as those that occur during stress

    responses121. The GR seems to be the primary mediator of delayed glucocorticoid

    inhibition of stress responses. By contrast, non-genomic effects occur within minutes of

    glucocorticoid release and probably involve action at the target cell membrane.

    Non-genomic signalling accounts for fast negative feedback-inhibition of the hypo-

    thalamic-pituitary-adrenal axis, which occurs within minutes of the rise in circulating

    glucocorticoids (far too fast to be mediated by genomic actions in any traditional

    sense). It is currently unclear whether this mechanism involves membrane actions of

    the known nuclear receptors (GRs and MRs) or an as yet unidentified membrane

    corticosteroid receptor.

    r e V I e W s

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |403

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2353&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2353&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    8/13

    Glutamic acid decarboxylase

    (GAD). Th nzym that

    synthsizs GABA. It xists in

    two isoforms, GAD65 and

    GAD67.

    GABArgic prctins)88. Th nt tpt fr th arc-at t th PvN is cpx, cnicating bth rxi-gnic (nrppti Y an Agti-rat ppti) ananrxic (fr xap, -ancyt-stiating hr-n)88 signas. Ntaby, any f ths pptis actiatth HPA axis, ipying that bth psiti an ngatinrgy baanc rprsnt hstatic strssrs89.

    latra hypthaaic nrns ar actiat by strs-srs40 an ths ar psitin t at atnican/r HPA tn. Th atra hypthaas is targt byhippcapa, prfrnta crtica an aygaar ffrntsan is iprtant in crinating ingsti bhairs86.Gtaatrgic, GABArgic an pptirgic nrns arhighy intring in this rgin, aking it iffict tprict its nt ipact n strss rspnss90,91.

    Th sprachiasatic ncs (SCN) has a sbstan-tia ipact n basa HPA an atnic tn an nrspnss t psychgnic strssrs9294. Th SCN hasf irct prctins t th PvN bt haiy innratsth ara srrning th PvN95, hr it can intrfacith inpt fr ibic sits. Th SCN is th priary

    crinatr f physigica rhyths an is ths psi-tin t at HPA axis tpt in cnnctin ithti-f-ay cs.

    Neural control of chronic-stress responses

    Chrnic strss xpsr physicay atrs th strctran fnctin f brain rgins in in cntring HPAan atnic rspnss t strss (TABLe 1). In th hip-pcaps an prfrnta crtx, chrnic rstraint cassrtractin f apica nrits an rcs spin nsityin pyraia cs96,97. Cnrsy, incras nriticbranching is bsr in th BlA98. Chrnic strss asincs changs in th PvN, incing incras xprs-sin fCRHan asprssin RNA99,100, rc GRxprssin99,100 an atr xprssin f nrs nr-transittr rcptr sbnits101,102. Finay, nrchicachangs ar sn in nrs strss rgatry pathays

    that prct t th PvN, incing incras glutamic aciddcarboxylas xprssin ( ipying incras GABAs) in th hypthaas an th BST103.

    Sensitization of stress responses. Nrchica i-nc sggsts that chrnic strss nhancs th xcit-abiity f th HPA an th sypath-arnarysysts. Faciitat ACTH an crticstrn rspnsst n strssrs ccr aftr chrnic ri by ithrhtypica r nprictab strss rgins104,105. Thisrspns faciitatin ccrs spit car inc frnging r cati atin in gccrtici -s, ipying that fback fficacy is iinish an/rri is incras.

    Chrnic strss can rcrit pathays that ar istinctfr ths in in act rspnss. Fr xap,sins f th parantricar thaas inhibit thpnt f chrnic-strss-inc faciitatin fHPA axis actiatin bt nt affct rspnss t actstrss106, inicating that this rgin is ngag ringrpat chrnic strss xpsr. By cntrast, sins

    f th hippcaps nt affct HPA axis rspnssassciat ith chrnic strss47, sggsting that its rin HPA axis rgatin is iinish by rpat strssxpsr. Th BST ss t b iffrntiay inin act- an chrnic-strss rspnss, as sins f thantratra BST rc HPA axis rspnss t actstrss bt nhanc chrnic-strss-inc faciitatin fHPA axis actiatin107.

    Rpat xpsr t c nhancs strss-incnrarnain ras in th frnta crtx an snsitizsth firing rat f cs crs nrns fing an strssr108110. Chrnic c strss as incrassth snsitiity f th cs crs t CRH, sggst-ing that sch strss incrass th rspnsinss t afactr that is ras ring strss109. Finay, chrnicstrss incrass th xprssin f tyrsin hyrxyas,th rat-iiting nzy in nrarnain synthsis, in

    Table 1 | Neuroplastic responses to chronic stress

    st chn-t-n patty et

    Hippocampus Dendritic atrophy and decreasedGRexpression

    Decreased HPA feedback and decreasedmemory

    Medial prefrontal cortex Dendritic atrophy and decreasedGRexpression

    Decreased HPA feedback, decreasedmemoryextinction and decreasedreward

    Central amygdala Increased CRH expression and release Increased HPA and autonomic excitability, andanxiety

    Basolateral amygdala Increased dendritic branching andincreasedstress excitability

    Increased HPA and autonomic excitability,increased emotional memory and decreasedreward

    Paraventricular nucleusof the thalamus

    Increased stress excitability Increased HPA excitability to novel stress anddecreasedHPA excitability to familiar stress

    Locus coeruleus Increased neurotransmitter releaseandincreasedstress excitability of projectionsto the cortex and hippocampus

    Increased HPA excitability to novel stress

    Paraventricular nucleusof the hypothalamus

    Increased secretagogue synthesis,increasedstress responsivenessanddecreasedGR expression

    Increased excitability to novel stress

    CRH, corticotropin-releasing hormone; GR, glucocorticoid receptor; HPA, hypothalamic-pituitary-adrenocortical; mPFC, medialprefrontal cortex.

    r e V I e W s

    404 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    9/13

    th cs crs, as as that f ccaiz nr-pptis (fr xap, gaanin). This is cnsistnt ithan nhanc capacity fr nrarnain ras 111,112(bt s as ReF. 113). Th cs crs s ntha sbstantia prctins t th PvN5, sggstingthat cntribtins t HPA axis rgatin ar i-at by pstra aras (fr xap, th hippcaps,th PFC an th aygaa) r nstra targts(th ntratra a an th spina cr).

    Th CA is ipicat in chrnic strss rgatinbcas f its snsitiity t crticstris. High sf gccrticis incras CRHRNA xprssin inth CA114, an ffct that is iick by s chrnicstrss rgins (fr xap, chrnic ibiiza-tin an chrnic pain)115 bt nt thrs (fr xap,chrnic rstraint, chrnic nprictab strss anrpat pratr xpsr)116. In shp, rpatstrss (g xpsr) cass CRH ras in th CA,hich ss t b crcia fr snsitizatin f bthth CRH rspns in th PvN an crtis ras nrpat xpsr117. Th aygaar CRH rspns

    t rpat strss is bck by prtratnt ith a GRantagnist, ipying that crticstris ar rqirfr th nhanc CRH ras that ccrs in th CAring rpat strss117,118.

    Athgh gccrtici scrtin c b ipr-tant fr strss snsitizatin f th aygaa, chrnicstrss prcs ark rctins in gccrticisignaing in thr brain rgins. Nrs chrnic-strss rgins cas nrgatin f GR an, t assr xtnt, mR RNA, bining an prtin s inth PFC an th hippcaps99,119121. This nrg-atin c b assciat ith a ss f gccrticingati-fback snsitiity, at ast in trs f inhibit-ing th circaian ris in crticstrn s120,121. Ths,chrnic strss ss t b sfficint t bth apnngati-fback signaing by strss-inhibitry path-ays an nhanc psiti ri thrgh rgins schas th CA hich, tgthr r an, c cntribt tan nhanc ri f th PvN.

    Snsitizatin f atnic rspnss is bsr ins chrnic strss s. In rats, chrnic i strssprcs xaggrat hart rat an prssr rspnsst a n strssr 122. Hr, th nra sbstrats fANS snsitizatin ar nt knn.

    Habituation of stress responses. Rspns habitatinhas bn bsr n rpat xpsr t i strs-

    srs. In this cas th agnit f th rspns iin-ishs ith ach xpsr, n as rspnss t nstrssrs ar faciitat104,123. Th cras physi-gica rspnss ar para by a cras in cntrastrss-inc FOS xprssin124. Th habitatin pr-css ss t in mRs, as systic tratnt ithmR antagnists rrss th rc crticstrnrspnss t rpat rstraint125. lsins f th paran-tricar thaas inhibit habitatin f crticstrnrspnss t rpat rstraint126 (hr, s ReF. 127)itht affcting act rspning. In cbinatin ithth ffcts f sins in this rgin n faciitatin106, thparantricar thaas ss t b iprtant in

    transcing infratin rgaring th chrnicity fstrss xpsr. Ntaby, this rgin rcis hay pr-

    ctins fr th ntra sbic an th PFC76,128,129an prcts haiy t th CA130,131, priing a ps-sib intriary ray btn strss-inhibitry anstrss-xcitatry brain rgins.

    Habitatin f atnic rspnss is highy pn-nt n th strss rgin. Chrnic scia strss cassiit habitatin f hart rat rspnss t attack insbissi bt nt inant ic132. Chrnic strssas prcs ng-tr changs in atnic fnctin,incing incras hart rat, cras hart rat ari-abiity (in rats)122 an cras b prssr ariabiity(in ic)133. As is th cas fr rspns faciitatin, thnra chaniss that nri habitatin f at-nic changs by chrnic strss ha yt t b xpr.

    Memory, reward and stress responses

    Emotional learning and memory. Intrprting th pr-icti significanc f nirnnta stii is crciafr apprpriat cntr f physigica rspnss t

    strssrs: th rspns t stii assciat ith a highysaint ngati (r psiti) tc sh b appr-priat fr cping ith ths stii, hras a rspnsgnrat t inncs stii b infficint antabicay csty. Ths, crtain ris ncragrspnss t sitatins that ar iky t ha an arstc an iscrag rspnss t irrant rhabitat stii.

    libic sits that rgat HPA an ANS rspnss incing th aygaa, th hippcaps an thPFC ar in in cnitining bhairarspnss t tina stii (ri in ReFS 134137) an ar ths as pis t iat cnitiningf HPA an ANS actiity. In spprt f this, cni-tin HPA actiatin aftr cnitin tast arsin(s Sppntary infratin S1 (bx)) is bck byhippcapcty138, an th xprssin f cnitinHPA rspnss aftr cntxta- r tn-ftshck cn-itining is bck by CA sins139. Cnitin prs-sr an tachycaria rspnss t cntxta ftshckcnitining ar as rc by prtrating th ntraPFC ith CC

    2(a nn-scti synaps bckr), an

    NmDA (N-thy-d-aspartat) rcptr antagnist rnrna nitric xi synthas inhibitrs57,140.

    Thr is as inc fr cnitining f strssrspnss at th f th ray aras t HPA an at-nic ffctrs. lsins f th BST bck crticstrn

    rspnss t cntxta bt nt tn cnitining, ps-siby ing t cnnctins btn th BST an thhippcaps139. lsins f th prifrnica hypthaa-s an f th atra hypthaas isrpt s typsf cnitin strss rspnss141144, raising th pssi-biity that cnitin HPA an ANS actiatin ightas b intgrat at th f ibic-hypthaaicray aras, hich in trn sggsts that bth ibic anhstatic signas ar in in gnrating arnrspnss.

    Stress and reward. Thr ss t b a rciprcaratinship btn rar an strss prcssing

    r e V I e W s

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |405

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.html
  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    10/13

    in th brain. expsr t natra rars bffrs thffct f strssrs n HPA actiity, an strss incrassrar-sking bhair (fr xap, intakf paatab f r rinstatnt f rg-takingbhair). exprincs ith raring stii gn-ray k strss-ik HPA an ANS rspnss (sSppntary infratin S2 (bx)). Th ffcts

    ary pning n hthr th rar is natra (frxap, sxa bhair, ntary h rnning rpaatab f intak) r pharacgica (fr xa-p, rgs f abs), an n hthr th xprincsr sf-ainistr (fr xap, by r prss) rinstigatr-ir.

    Th priary brain rar circit cnsists fpainrgic prctins fr th ntra tgntaara t th ncs accbns (NAc) an has xtnsicnnctins ith th BlA an PFC (ri in ReFS145147). Th NAc, BlA an PFC ar iy rcg-niz as ky iatrs f rspnss t natra rarsan rgs f abs145147. As th PFC an BlA rg-at strss rspnss an ar in in cnitining t

    saint tina stii, ths strctrs ar ikyt rgat HPA an ANS rspnss t bth ncni-tin an cnitin rar xpsr. It is nt carhthr th NAc as rgats HPA axis an ANS acti-ity, bt prctins fr th NAc cr an sh t brainrgins sch as th atra hypthaas, th BST, thatra prptic ara an th parabrachia ncs148,149pri an anatica sbstrat fr ptntia physigi-ca ffcts n th HPA axis an ANS. Ths, thr is cn-sirab anatica rap ang th brain rginsthat sbsr rar prcssing, tina arning anstrss rspnss.

    Overlapping circuits that mediate stress, memory andreward: functional significance. Strss rspnss ath ania t cp ith arsi stii that rprsntra r anticipat thrats t hstasis, bt ntinga strss rspns is nrgticay aning. Ths, thris an aantag t arning hn a particar sitatin isnt a thrat an t pr-ptiy rcing an nsingstrss rspns; rr, it is aantags t b abt assciat spcific nirnnta cs ith a partic-ar strssr s that strss rspnss can b nt inanticipatin f prict strssrs, thrby iniizinghstatic isrptin.

    Raring stii (particary ths that ar n,nprict an/r nt sf-ainistr) can b cn-

    sir strssf bcas thy isrpt hstasis. Inparticar, rgs f abs icit strng ncnitinan cnitin actiatin f th HPA axis an ANSthat ar ink t th aictin prcss150,151. Hr,raring stii pri fnantay iffrntxprincs fr thr typs f strssrs bcas ani-as ar tiat t btain th. In fact, chrnic -ntary ngagnt in natray raring bhairs,sch as paatab f intak, rcs strss rspnss;ths fnantay pasrab xprincs s tha anti-strss ffcts. Ths, th brain can tair strssrspnss bas n th ccti xprincs f aniniia.

    Conclusions and future directions

    Nra cntr f strss is a cpx prcss thatrqirs th intgratin f infratin rgaring bthacta an ptntia tcs. Highr-rr prcssingf strss ins stiating th ptntia significanc fa gin stis. Th pysynaptic rganizatin fstrss pathays frthr sggsts that inpts that rayinfratin n th physigica stats f th aniacan cntribt t th nta ncrin r atnicrspns t th strssr.Th ast arity f ci-sins rgaring th initiatin f physigica strssrspnss s t b a at th f ibic strc-trs, hich cnicat infratin t sbcrticasits psitin t intrfac ith nging hstaticfback.

    onging fnctina stis sggst that thr is acnsirab iisin f abr ang ibic sits.Cnnctins btn th infraibic crtx, th CA,th ntratra BST, th PvN an th NTS an at-nic ffctrs sggst a ans by hich th iprtantiiat ffctr th sypath-arnary

    syst

    is brght nin. Rspnss f th thrffctr th HPA axis in a ntrk that cn-ncts th pribic crtx, th mA, th hippcaps,th pstrir BST, th prptic ara an thr hyptha-aic nci ith hypphysitrphic nrns f thPvN; ths cnnctins sr t initiat as as tr-inat gccrtici ras in rspns t nra anhrna fback. Th physica sparatin f at-nic an HPA strss ffctr circits prts sgr f inpnnc f th t strss-atrycascas, aing fr apprpriat tning f nra anhrna rspnss t spcific an charactristicsf th acta r anticipat nt. Hr, ths tphysigica systs as rk tgthr, bth in trsf rap in thir nrying nra circitry an intrs f thir physigica fnctins. Ftr grthf th strss physigy fi i n t inc rrk that brigs th prrbia HPA rss ANSii, thrby priing a r cpt pictr fh an iniia arns t anticipat an thriscp ith strss.

    whras th ffctr circits that cntr strss arprbaby har-ir, th ra ighting f infra-tin is sbct t cnsirab iniia ariatin. It isiky that ysfnctins f infratin prcssing acrssths circits, rsting fr nirnnta arsityan/r gntic factrs, i at th rt f aaapti

    strss ractins that can cinat in affcti isas(fr xap, prssin an pst-traatic strss isr-r) an physica infiritis. Iprtanty, strss rsarchgnray fcss n th s f ngati stii as strs-srs (that is, sitatins that iniias ai ifpssib). Hr, psiti stii (sch as nrars) can cas cparab physigica strssrspnss spit th fact that iniias ar tiatt btain th. An nrstaning f h an hy thisapparnt cntraictin ccrs is ncssary t apprciathy iniias ak th chics that thy , an hth brain an by cp ith th cnsqncs f thrsting actins.

    r e V I e W s

    406 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

    http://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.html
  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    11/13

    1. Iversen, S., Iversen, L. & Saper, C. B. in Principles of

    Neural Science (eds Kandel, E. R., Schwartz, J. H. &

    Jessell, T. M.) (McGraw-Hill, New York, 2000).

    2. Droste, S. K. et al. Corticosterone levels in the brain

    show a distinct ultradian rhythm but a delayed

    response to forced swim stress. Endocrinology149,

    32443253 (2008).

    3. Herman, J. P. et al. Central mechanisms of stress

    integration: hierarchical circuitry controlling

    hypothalamo-pituitary-adrenocortical responsiveness.

    Front. Neuroendocrinol.24, 151180 (2003).

    4. Cunningham, E. T. Jr, Bohn, M. C. & Sawchenko, P. E.Organization of adrenergic inputs to the

    paraventricular and supraoptic nuclei of the

    hypothalamus in the rat.J. Comp. Neurol.292,

    651667 (1990).

    5. Cunningham, E. T. Jr & Sawchenko, P. E. Anatomical

    specificity of noradrenergic inputs to the

    paraventricular and supraoptic nuclei of the rat

    hypothalamus.J. Comp. Neurol.274, 6076

    (1988).

    6. Plotsky, P. M., Cunningham, E. T. Jr & Widmaier, E. P.

    Catecholaminergic modulation of corticotropin-

    releasing factor and adrenocorticotropin secretion.

    Endocr. Rev.10, 437458 (1989).

    An excellent review of a large body of work on

    catecholaminergic regulation of the HPA axis.

    7. Hokfelt, T. et al. Coexistence of peptides with classical

    transmitters. Experientia43, 768780 (1987).

    8. Larsen, P. J., Tang-Christensen, M., Holst, J. J. &

    Orskov, C. Distribution of glucagon-like peptide-1 and

    other preproglucagon-derived peptides in the rat

    hypothalamus and brainstem. Neuroscience77,

    257270 (1997).

    9. Sawchenko, P. E., Arias, C. & Bittencourt, J. C. Inhibin

    beta, somatostatin and enkephalin immunoreactivities

    coexist in caudal medullary neurons that project to the

    paraventricular nucleus of the hypothalamus.J. Comp.

    Neurol.291, 269280 (1990).

    10. Buller, K., Xu, Y., Dayas, C. & Day, T. Dorsal and

    ventral medullary catecholamine cell groups

    contribute differentially to systemic

    interleukin-1-induced hypothalamic pituitary adrenal

    axis responses. Neuroendocrinology73, 129138

    (2001).

    11. Ritter, S., Watts, A. G., Dinh, T. T., Sanchez-Watts, G. &

    Pedrow, C. Immunotoxin lesion of hypothalamically

    projecting norepinephrine and epinephrine neurons

    differentially affects circadian and stressor-stimulated

    corticosterone secretion. Endocrinology144,

    13571367 (2003).

    Used a selective lesion method to establish clear

    differences in the role of the nucleus of the solitarytract noradrenaline and adrenaline pathways in the

    regulation of homeostatic versus psychological

    stressors.

    12. Kinzig, K. P. et al. CNS glucagon-like peptide-1

    receptors mediate endocrine and anxiety responses to

    interoceptive and psychogenic stressors.J. Neurosci.

    23, 61636170 (2003).

    13. Lowry, C. A. Functional subsets of serotonergic

    neurones: implications for control of the

    hypothalamic-pituitary-adrenal axis.

    J. Neuroendocrinol.14, 911923 (2002).

    14. Zhang, Y. et al. Evidence that 5-HT2A

    receptors in the

    hypothalamic paraventricular nucleus mediate

    neuroendocrine responses to ()DOI.J. Neurosci.22,

    96359642 (2002).

    15. Sawchenko, P. E., Swanson, L. W., Steinbusch, H. W. &

    Verhofstad, A. A. The distribution and cells of origin of

    serotonergic inputs to the paraventricular and

    supraoptic nuclei of the rat. Brain Res.277, 355360

    (1983).16. Krause, E. G. et al. Angiotensin type 1 receptors in the

    subfornical organ mediate the drinking and

    hypothalamic-pituitary-adrenal response to systemic

    isoproterenol. Endocrinology149, 64166424

    (2008).

    17. Plotsky, P. M., Sutton, S. W., Bruhn, T. O. & Ferguson,

    A. V. Analysis of the role of angiotensin II in mediation

    of adrenocorticotropin secretion. Endocrinology122,

    538545 (1988).

    18. Swanson, L. W. & Lind, R. W. Neural projections

    subserving the initiation of a specific motivated

    behavior in the rat: new projections from the

    subfornical organ. Brain Res.379, 399403 (1986).

    19. Johnson, A. K., Cunningham, J. T. & Thunhorst, R. L.

    Integrative role of the lamina terminalis in the

    regulation of cardiovascular and body fluid

    homeostasis. Clin. Exp. Pharmacol. Physiol.23,

    183191 (1996).

    20. Swanson, L. W. & Kuypers, H. G. The paraventricular

    nucleus of the hypothalamus: cytoarchitectonic

    subdivisions and organization of projections to the

    pituitary, dorsal vagal complex, and spinal cord as

    demonstrated by retrograde fluorescence double-

    labeling methods.J. Comp. Neurol.194, 555570

    (1980).

    21. Kreier, F. et al. Tracing from fat tissue, liver, and

    pancreas: a neuroanatomical framework for the role of

    the brain in type 2 diabetes. Endocrinology147,

    11401147 (2006).

    22. Decavel, C. & Van Den Pol, A. N. GABA: a dominantneurotransmitter in the hypothalamus.J. Comp.

    Neurol.302, 10191037 (1990).

    23. Cole, R. L. & Sawchenko, P. E. Neurotransmitter

    regulation of cellular activation and neuropeptide

    gene expression in the paraventricular nucleus of the

    hypothalamus.J. Neurosci.22, 959969 (2002).

    24. Park, J. B., Skalska, S., Son, S. & Stern, J. E. Dual

    GABAA

    receptor-mediated inhibition in rat

    presympathetic paraventricular nucleus neurons.

    J. Physiol.582, 539551 (2007).

    25. Roland, B. L. & Sawchenko, P. E. Local origins of some

    GABAergic projections to the paraventricular and

    supraoptic nuclei of the hypothalamus of the rat.

    J. Comp. Neurol.332, 123143 (1993).

    26. Herman, J. P., Cullinan, W. E., Ziegler, D. R. & Tasker,

    J. G. Role of the paraventricular nucleus

    microenvironment in stress integration. Eur.

    J. Neurosci.16, 381385 (2002).

    27. Bailey, T. W. & Dimicco, J. A. Chemical stimulation of

    the dorsomedial hypothalamus elevates plasma ACTH

    in conscious rats.Am. J. Physiol. Regul. Integr. Comp.

    Physiol.280, R8R15 (2001).

    28. Stotz-Potter, E. H., Willis, L. R. & DiMicco, J. A.

    Muscimol acts in dorsomedial but not paraventricular

    hypothalamic nucleus to suppress cardiovascular

    effects of stress.J. Neurosci.16, 11731179 (1996).

    One of several excellent papers from the DiMicco

    laboratory demonstrating the importance of the

    DMH in stress regulation. This study used a

    microinjection strategy to prove the primacy of the

    DMH in regulating cardiovascular stress responses.

    See other papers from this group for more

    information.

    29. Curran, T. et al. Inducible proto-oncogene transcription

    factors: third messengers in the brain? Cold Spring

    Harb. Symp. Quant. Biol.55, 225234 (1990).

    30. DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V. &

    Zaretsky, D. V. The dorsomedial hypothalamus and the

    response to stress: part renaissance, part revolution.

    Pharmacol. Biochem. Behav.71, 469480 (2002).

    31. Cullinan, W. E., Helmreich, D. L. & Watson, S. J. Fosexpression in forebrain afferents to the hypothalamic

    paraventricular nucleus following swim stress.

    J. Comp. Neurol.368, 8899 (1996).

    32. Davis, M. The role of the amygdala in fear and anxiety.

    Annu. Rev. Neurosci.15, 353375 (1992).

    33. Sawchenko, P. E. et al. The paraventricular nucleus of

    the hypothalamus and the functional neuroanatomy of

    visceromotor responses to stress. Prog. Brain Res.

    107, 201222 (1996).

    34. Sawchenko, P. E., Li, H. Y. & Ericsson, A. Circuits and

    mechanisms governing hypothalamic responses to

    stress: a tale of two paradigms. Prog. Brain Res.122,

    6178 (2000).

    A review that highlights groundbreaking work from

    the Sawchenko laboratory, summarizing studies

    that demonstrate stressor specificity in central

    neurocircuit activation.

    35. Xu, Y., Day, T. A. & Buller, K. M. The central amygdala

    modulates hypothalamic-pituitary-adrenal axis

    responses to systemic interleukin-1 administration.Neuroscience94, 175183 (1999).

    36. Dayas, C. V., Buller, K. M. & Day, T. A. Neuroendocrine

    responses to an emotional stressor: evidence for

    involvement of the medial but not the central

    amygdala. Eur. J. Neurosci.11, 23122322 (1999).

    37. Prewitt, C. M. & Herman, J. P.

    Hypothalamo-pituitary-adrenocortical regulation

    following lesions of the central nucleus of the

    amygdala. Stress1, 263280 (1997).

    38. Roozendaal, B., Koolhaas, J. M. & Bohus, B.

    Differential effect of lesioning of the central amygdala

    on the bradycardiac and behavioral response of the

    rat in relation to conditioned social and solitary stress.

    Behav. Brain Res.41, 3948 (1990).

    39. Roozendaal, B., Koolhaas, J. M. & Bohus, B. Central

    amygdala lesions affect behavioral and autonomic

    balance during stress in rats. Physiol. Behav.50,

    777781 (1991).

    40. Cullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H.

    & Watson, S. J. Pattern and time course of immediate

    early gene expression in rat brain following acute

    stress. Neuroscience64, 477505 (1995).

    41. Dayas, C. V., Buller, K. M., Crane, J. W., Xu, Y. & Day,

    T. A. Stressor categorization: acute physical and

    psychological stressors elicit distinctive recruitment

    patterns in the amygdala and in medullary

    noradrenergic cell groups. Eur. J. Neurosci.14,

    11431152 (2001).

    A key paper from the Day laboratory,

    demonstrating that lesions of the MeA but not theCeA block ACTH responses and PVN activation by

    psychogenic stress.

    42. Bhatnagar, S., Vining, C. & Denski, K. Regulation of

    chronic stress-induced changes in

    hypothalamic-pituitary-adrenal activity by the

    basolateral amygdala.Ann. NY Acad. Sci.1032,

    315319 (2004).

    43. Prewitt, C. M. & Herman, J. P. Anatomical interactions

    between the central amygdaloid nucleus and the

    hypothalamic paraventricular nucleus of the rat: a dual

    tract-tracing analysis.J. Chem. Neuroanat.15,

    173185 (1998).

    44. Jacobson, L. & Sapolsky, R. M. The role of the

    hippocampus in feedback regulation of the

    hypothalamo-pituitary-adrenocortical axis. Endocr.

    Rev.12, 118134 (1991).

    45. Rubin, R. T., Mandell, A. J. & Crandall, P. H.

    Corticosteroid responses to limbic stimulation in man:

    localization of stimulation sites. Science153,

    12121215 (1966).

    46. Dunn, J. D. & Orr, S. E. Differential plasma

    corticosterone responses to hippocampal stimulation.

    Exp. Brain Res.54, 16 (1984).

    47. Herman, J. P. & Mueller, N. K. Role of the ventral

    subiculum in stress integration. Behav. Brain Res.

    174, 215224 (2006).

    48. Ruit, K. G. & Neafsey, E. J. Cardiovascular and

    respiratory responses to electrical and chemical

    stimulation of the hippocampus in anesthetized and

    awake rats. Brain Res.457, 310321 (1988).

    49. Ruit, K. G. & Neafsey, E. J. Hippocampal input to a

    visceral motor corticobulbar pathway: an anatomical

    and electrophysiological study in the rat. Exp. Brain

    Res.82, 606616 (1990).

    50. Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M.

    & Herman, J. P. The medial prefrontal cortex

    differentially regulates stress-induced c-fos expression

    in the forebrain depending on type of stressor. Eur.

    J. Neurosci.18, 23572364 (2003).

    51. Diorio, D., Viau, V. & Meaney, M. J. The role of the

    medial prefrontal cortex (cingulate gyrus) in theregulation of hypothalamo-pituitary-adrenal responses

    to stress.J. Neurosci.13, 38393847 (1993).

    52. Radley, J. J., Arias, C. M. & Sawchenko, P. E. Regional

    differentiation of the medial prefrontal cortex in

    regulating adaptive responses to acute emotional

    stress.J. Neurosci.26, 1296712976 (2006).

    The most recent paper on the role of the medial

    prefrontal cortex in stress regulation, showing

    differential actions of the dorsal and the

    ventromedial prefrontal cortex in HPA axis

    inhibition and activation of PVN preautonomic

    neurons, respectively.

    53. Gerrits, M. et al. Increased stress vulnerability after a

    prefrontal cortex lesion in female rats. Brain Res. Bull.

    61, 627635 (2003).

    54. Akana, S. F., Chu, A., Soriano, L. & Dallman, M. F.

    Corticosterone exerts site-specific and state-

    dependent effects in prefrontal cortex and amygdala

    on regulation of adrenocorticotropic hormone, insulin

    and fat depots.J. Neuroendocrinol.13, 625637(2001).

    55. Sullivan, R. M. & Gratton, A. Behavioral effects of

    excitotoxic lesions of ventral medial prefrontal cortex

    in the rat are hemisphere-dependent. Brain Res.927,

    6979 (2002).

    56. Frysztak, R. J. & Neafsey, E. J. The effect of medial

    frontal cortex lesions on cardiovascular conditioned

    emotional responses in the rat. Brain Res.643,

    181193 (1994).

    57. Resstel, L. B., Joca, S. R., Guimaraes, F. G. & Correa,

    F. M. Involvement of medial prefrontal cortex neurons

    in behavioral and cardiovascular responses to

    contextual fear conditioning. Neuroscience143,

    377385 (2006).

    58. Resstel, L. B., Fernandes, K. B. & Correa, F. M. Medial

    prefrontal cortex modulation of the baroreflex

    parasympathetic component in the rat. Brain Res.

    1015, 136144 (2004).

    r e V I e W s

    NATuRe RevIewS |NeuroscieNce volume 10 | juNe 2009 |407

    f oc us on s tr e s s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    12/13

    59. Dobrakovova, M., Kvetnansky, R., Torda, T. & Murgas, K.

    Changes of plasma and adrenal catecholamines and

    corticosterone in stressed rats with septal lesions.

    Physiol. Behav.29, 4145 (1982).

    60. Suarez, M., Maglianesi, M. A. & Perassi, N. I.

    Involvement of the anterodorsal thalami nuclei on the

    hypophysoadrenal response to chronic stress in rats.

    Physiol. Behav.64, 111116 (1998).

    61. Han, F., Ozawa, H., Matsuda, K., Nishi, M. & Kawata, M.

    Colocalization of mineralocorticoid receptor and

    glucocorticoid receptor in the hippocampus and

    hypothalamus. Neurosci. Res.51, 371381 (2005).62. De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M.

    Brain corticosteroid receptor balance in health and

    disease. Endocr. Rev.19, 269301 (1998).

    63. Boyle, M. P. et al. Acquired deficit of forebrain

    glucocorticoid receptor produces depression-like

    changes in adrenal axis regulation and behavior. Proc.

    Natl Acad. Sci. USA102, 473478 (2005).

    Used a region-specific knockout mouse to indicate

    the requirement of the hippocampal and cortical

    GR in normal stress termination and glucocorticoid

    negative feedback.

    64. Furay, A. R., Bruestle, A. E. & Herman, J. P. The role of

    the forebrain glucocorticoid receptor in acute and

    chronic stress. Endocrinology149, 54825490 (2008).

    65. Wei, Q. et al. Overexpressing the glucocorticoid

    receptor in forebrain causes an aging-like

    neuroendocrine phenotype and mild cognitive

    dysfunction.J. Neurosci.27, 88368844 (2007).

    66. Wei, Q. et al. Glucocorticoid receptor overexpression

    in forebrain: a mouse model of increased emotional

    lability. Proc. Natl Acad. Sci. USA101, 1185111856

    (2004).

    67. Berger, S. et al. Loss of the limbic mineralocorticoid

    receptor impairs behavioral plasticity. Proc. Natl Acad.

    Sci. USA103, 195200 (2006).

    68. Rozeboom, A. M., Akil, H. & Seasholtz, A. F.

    Mineralocorticoid receptor overexpression in forebrain

    decreases anxiety-like behavior and alters the stress

    response in mice. Proc. Natl Acad. Sci. USA104,

    46884693 (2007).

    69. Swanson, L. W. & Petrovich, G. D. What is the

    amygdala? Trends Neurosci.21, 323331 (1998).

    70. Schwaber, J. S., Kapp, B. S., Higgins, G. A. & Rapp,

    P. R. Amygdala and basal forebrain direct connections

    with the nucleus of the solitary tract and the dorsal

    motor nucleus.J. Neurosci.2, 14241438 (1982).

    71. van der Kooy, D., Koda, L. Y., McGinty, J. F., Gerfen,

    C. R. & Bloom, F. E. The organization of projections

    from the cortex, amygdala, and hypothalamus to the

    nucleus of the solitary tract in rat.J. Comp. Neurol.

    224, 124 (1984).72. Choi, D. C. et al. Bed nucleus of the stria terminalis

    subregions differentially regulate

    hypothalamic-pituitary-adrenal axis activity:

    implications for the integration of limbic inputs.

    J. Neurosci.27, 20252034 (2007).

    A paper from our group demonstrating selective

    involvement of distinct BST cell populations in

    activation and inhibition of HPA axis stress

    responses.

    73. Gray, T. S. et al. Ibotenic acid lesions in the bed

    nucleus of the stria terminalis attenuate conditioned

    stress-induced increases in prolactin, ACTH and

    corticosterone. Neuroendocrinology57, 517524

    (1993).

    74. Dong, H. W., Petrovich, G. D., Watts, A. G. & Swanson,

    L. W. Basic organization of projections from the oval

    and fusiform nuclei of the bed nuclei of the stria

    terminalis in adult rat brain.J. Comp. Neurol.436,

    430455 (2001).

    75. Champagne, D., Beaulieu, J. & Drolet, G. CRFergicinnervation of the paraventricular nucleus of the rat

    hypothalamus: a tract-tracing study.

    J. Neuroendocrinol.10, 119131 (1998).

    76. Cullinan, W. E., Herman, J. P. & Watson, S. J. Ventral

    subicular interaction with the hypothalamic

    paraventricular nucleus: evidence for a relay in the bed

    nucleus of the stria terminalis.J. Comp. Neurol.332,

    120 (1993).

    This study used dual tracing methods to

    demonstrate innervation of PVN-projecting

    neurons by ventral subiculum (that is, hippocampal)

    efferents. It also documented the predominantly

    GABAergic phenotype of most PVN-projecting

    regions in the BST.

    77. Ciriello, J. & Janssen, S. A. Effect of glutamate

    stimulation of bed nucleus of the stria terminalis on

    arterial pressure and heart rate.Am. J. Physiol.265,

    H1516H1522 (1993).

    78. Gelsema, A. J. & Calaresu, F. R. Chemical

    microstimulation of the septal area lowers arterial

    pressure in the rat.Am. J. Physiol.252, R760R767

    (1987).

    79. Hatam, M. & Nasimi, A. Glutamatergic systems in the

    bed nucleus of the stria terminalis, effects on

    cardiovascular system. Exp. Brain Res.178, 394401

    (2007).

    80. Alves, F. H., Crestani, C. C., Resstel, L. B. & Correa,

    F. M. Cardiovascular effects of carbachol microinjected

    into the bed nucleus of the stria terminalis of the rat

    brain. Brain Res.1143, 161168 (2007).81. Crestani, C. C., Alves, F. H., Resstel , L. B. & Correa,

    F. M. Both 1

    and 2-adrenoceptors mediate the

    cardiovascular responses to noradrenaline

    microinjected into the bed nucleus of the stria

    terminal of rats. Br. J. Pharmacol.153, 583590

    (2008).

    82. Crestani, C. C., Alves, F. H., Tavares, R. F. & Correa,

    F. M. Role of the bed nucleus of the stria terminalis in

    the cardiovascular responses to acute restraint stress

    in rats. Stress 10 Oct 2008 (doi:10.1080/10253890

    802331477).

    83. Viau, V. & Meaney, M. J. The inhibitory effect of

    testosterone on hypothalamo-pituitary-adrenal

    responses to stress is mediated by the medial preoptic

    area.J. Neurosci.16, 18661876 (1996).

    84. Zaretsky, D. V., Hunt, J. L., Zaretskaia, M. V. &

    DiMicco, J. A. Microinjection of prostaglandin E2 and

    muscimol into the preoptic area in conscious rats:

    comparison of effects on plasma adrenocorticotrophic

    hormone (ACTH), body temperature, locomotor

    activity, and cardiovascular function. Neurosci. Lett.

    397, 291296 (2006).

    85. Feldman, S., Conforti, N. & Saphier, D. The preoptic

    area and bed nucleus of the stria terminalis are

    involved in the effects of the amygdala on

    adrenocortical secretion. Neuroscience37, 775779

    (1990).

    86. Swanson, L. W. in Handbook of Chemical

    Neuroanatomy (eds Bjrklund, A., Hkfelt, T. &

    Swanson, L. W.) 1124 (Elsevier, Amsterdam, 1987).

    87. Canteras, N. S., Simerly, R. B. & Swanson, L. W.

    Organization of projections from the medial nucleus of

    the amygdala: a PHAL study in the rat.J. Comp.

    Neurol.360, 213245 (1995).

    88. Sawchenko, P. E. Toward a new neurobiology of energy

    balance, appetite, and obesity: the anatomists weigh

    in.J. Comp. Neurol.402, 435441 (1998).

    89. Woods, S. C. The eating paradox: how we tolerate

    food. Psychol. Rev.98, 488505 (1991).

    90. Swanson, L. W., Sanchez-Watts, G. & Watts, A. G.

    Comparison of melanin-concentrating hormone andhypocretin/orexin mRNA expression patterns in a new

    parceling scheme of the lateral hypothalamic zone.

    Neurosci. Lett.387, 8084 (2005).

    91. Ziegler, D. R., Cullinan, W. E. & Herman, J. P.

    Distribution of vesicular glutamate transporter mRNA

    in rat hypothalamus.J. Comp. Neurol.448, 217229

    (2002).

    92. Cascio, C. S., Shinsako, J. & Dallman, M. F. The

    suprachiasmatic nuclei stimulate evening ACTH

    secretion in the rat. Brain Res.423, 173178

    (1987).

    93. Kalsbeek, A., La Fleur, S., Van Heijningen, C. & Buijs,

    R. M. Suprachiasmatic GABAergic inputs to the

    paraventricular nucleus control plasma glucose

    concentrations in the rat via sympathetic innervation

    of the liver.J. Neurosci.24, 76047613 (2004).

    94. Buijs, R. M., Wortel, J., Van Heerikhuize, J. J. &

    Kalsbeek, A. Novel environment induced inhibition of

    corticosterone secretion: physiological evidence for a

    suprachiasmatic nucleus mediated neuronalhypothalamo-adrenal cortex pathway. Brain Res.758,

    229236 (1997).

    95. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G.

    Efferent projections of the suprachiasmatic nucleus:

    studies using anterograde transport ofPhaseolus

    vulgaris leucoagglutinin in the rat.J. Comp. Neurol.

    258, 204229 (1987).

    96. Magarinos, A. M. & McEwen, B. S. Stress-induced

    atrophy of apical dendrites of hippocampal CA3c

    neurons: involvement of glucocorticoid secretion and

    excitatory amino acid receptors. Neuroscience69,

    8998 (1995).

    One of an excellent series of papers from the

    McEwen group demonstrating the ability of stress

    to alter the structure of hippocampal neurons.

    Knowledge of this subject is vital for understanding

    potential mechanisms of chronic stress-induced

    plasticity of stress circuitry.

    97. Radley, J. J. et al. Repeated stress alters dendritic

    spine morphology in the rat medial prefrontal cortex.

    J. Comp. Neurol.507, 11411150 (2008).

    98. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. &

    Chattarji, S. Chronic stress induces contrasting patterns

    of dendritic remodeling in hippocampal and amygdaloid

    neurons.J. Neurosci.22, 68106818 (2002).

    99. Herman, J. P., Adams, D. & Prewitt, C. M. Regulatory

    changes in neuroendocrine stress-integrative circuitry

    produced by a variable stress paradigm.

    Neuroendocrinology61, 180190 (1995).

    100. Makino, S., Smith, M. A. & Gold, P. W. Increasedexpression of corticotropin-releasing hormone and

    vasopressin messenger ribonucleic acid (mRNA) in the

    hypothalamic paraventricular nucleus during repeated

    stress: association with reduction in glucocorticoid

    receptor mRNA levels. Endocrinology136,

    32993309 (1995).

    101. Cullinan, W. E. GABAA

    receptor subunit expression

    within hypophysiotropic CRH neurons: a dual

    hybridization histochemical study.J. Comp. Neurol.

    419, 344351 (2000).

    102. Ziegler, D. R., Cullinan, W. E. & Herman, J. P.

    Organization and regulation of paraventricular nucleus

    glutamate signaling systems: N-methyl-d-aspartate

    receptors.J. Comp. Neurol.484, 4356 (2005).

    103. Bowers, G., Cullinan, W. E. & Herman, J. P. Region-

    specific regulation of glutamic acid decarboxylase

    (GAD) mRNA expression in central stress circuits.

    J. Neurosci.18, 59385947 (1998).

    104.Akana, S. F. et al. Feedback and facilitation in the

    adrenocortical system: unmasking facilitation by

    partial inhibition of the glucocorticoid response to

    prior stress. Endocrinology131, 5768 (1992).

    105. Ulrich-Lai, Y. M. et al. Daily limited access to

    sweetened drink attenuates

    hypothalamic-pituitary-adrenocortical axis stress

    responses. Endocrinology148, 18231834 (2007).

    106. Bhatnagar, S. & Dallman, M. Neuroanatomical basis

    for facilitation of hypothalamic-pituitary- adrenal

    responses to a novel stressor after chronic stress.

    Neuroscience84, 10251039 (1998).

    The first paper to document possible neural

    mechanisms of chronic stress facilitation of HPA

    axis stress responses.

    107. Choi, D. C. et al. The anteroventral bed nucleus of the

    stria terminalis differentially regulates

    hypothalamic-pituitary-adrenocortical axis responses

    to acute and chronic stress. Endocrinology149,

    818826 (2008).

    108. Nisenbaum, L. K. & Abercrombie, E. D. Presynaptic

    alterations associated with enhancement of evoked

    release and synthesis of norepinephrine inhippocampus of chronically cold-stressed rats. Brain

    Res.608, 280287 (1993).

    109. Jedema, H. P., Finlay, J. M., Sved, A. F. & Grace, A. A.

    Chronic cold exposure potentiates CRH-evoked

    increases in electrophysiologic activity of locus

    coeruleus neurons. Biol. Psychiatry49, 351359

    (2001).

    110. Mana, M. J. & Grace, A. A. Chronic cold stress alters

    the basal and evoked electrophysiological activity of

    rat locus coeruleus neurons. Neuroscience81,

    10551064 (1997).

    111. Holmes, P. V., Blanchard, D. C., Blanchard, R. J. ,

    Brady, L. S. & Crawley, J. N. Chronic social stress

    increases levels of preprogalanin mRNA in the rat

    locus coeruleus. Pharmacol. Biochem. Behav.50,

    655660 (1995).

    112. Watanabe, Y. et al. Effects of chronic social stress on

    tyrosine hydroxylase mRNA and protein levels. Brain

    Res. Mol. Brain Res.32, 176180 (1995).

    113. Smith, M. A., Brady, L. S., Glowa, J., Gold, P. W. &Herkenham, M. Effects of stress and adrenalectomy

    on tyrosine hydroxylase mRNA levels in locus

    coeruleus by in situ hybridization. Brain Res.544,

    2632 (1991).

    114. Makino, S., Gold, P. W. & Schulkin, J. Corticosterone

    effects on corticotropin-releasing hormone mRNA in

    the central nucleus of the amygdala and the

    parvocellular region of the paraventricular nucleus of

    the hypothalamus. Brain Res.640, 105112 (1994).

    115. Ulrich-Lai, Y. M. et al. Limbic and HPA axis function in

    an animal model of chronic neuropathic pain. Physiol.

    Behav.88, 6776 (2006).

    116. Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas,

    C. M. & Herman, J. P. Stress integration after acute

    and chronic predator stress: differential activation of

    central stress circuitry and sensitization of the

    hypothalamo-pituitary-adrenocortical axis.

    Endocrinology144, 52495258 (2003).

    r e V I e W s

    408 | juNe 2009 | volume 10 www.nat.m/w/n

    r e V I e W s

    2009 Macmillan Publishers Limited. All rights reserved

  • 7/30/2019 Regulacin neural de las respuestas endocrinas y autonmicas al estrs - Nature Neurosc 2009

    13/13

    117. Cook, C. J. Stress induces CRF release in the

    paraventricular nucleus, and both CRF and GABA

    release in the amygdala. Physiol. Behav.82,

    751762 (2004).

    118. Cook, C. J. Glucocorticoid feedback increases the

    sensitivity of the limbic system to stress. Physiol.

    Behav.75, 455464 (2002).

    119. Gomez, F., Lahmame, A., de Kloet, E. R. & Armario, A.

    Hypothalamic-pituitary-adrenal response to chronic

    stress in five inbred rat strains: differential responses

    are mainly located at the adrenocortical level.

    Neuroendocrinology63, 327337 (1996).120. Mizoguchi, K., Ishige, A., Aburada, M. & Tabira, T.

    Chronic stress attenuates glucocorticoid negative

    feedback: involvement of the prefrontal cortex and

    hippocampus. Neuroscience119, 887897 (2003).

    121. Reul, J. M. & de Kloet, E. R. Two receptor systems for

    corticosterone in rat brain: microdistribution and

    differential occupation. Endocrinology117,

    25052511 (1985).

    A classic paper that demonstrated the existence

    and differential binding affinities of MRs and GRs

    in the brain.

    122. Grippo, A. J., Moffitt, J. A. & Johnson, A. K.

    Cardiovascular alterations and autonomic imbalance

    in an experimental model of depression.Am.

    J. Physiol. Regul. Integr. Comp. Physiol.282,

    R1333R1341 (2002).

    A demonstration of the influence of chronic stress

    on autonomic function in the rat.

    123. Dhabhar, F. S., McEwen, B. S. & Spencer, R. L.

    Adaptation to prolonged or repeated stress

    comparison between rat strains showing intrinsic

    differences in reactivity to acute stress.

    Neuroendocrinology65, 360368 (1997).

    124. Stamp, J. & Herbert, J. Corticosterone modulates

    autonomic responses and adaptation of central

    immediate-early gene expression to repeated restraint

    stress. Neuroscience107, 465479 (2001).

    125. Cole, M. A. et al. Selective blockade of the

    mineralocorticoid receptor impairs

    hypothalamic-pituitary-adrenal axis expression of

    habituation.J. Neuroendocrinol.12, 10341042

    (2000).

    126. Bhatnagar, S., Huber, R., Nowak, N. & Trotter, P.

    Lesions of the posterior paraventricular thalamus

    block habituation of hypothalamic-pituitary-adrenal

    responses to repeated restraint.J. Neuroendocrinol.

    14, 403410 (2002).

    127. Fernandes, G. A. et al. Habituation and cross-

    sensitization of stress-induced

    hypothalamic-pituitary-adrenal activity: effect of

    lesions in the paraventricular nucleus of the thalamusor bed nuclei of the stria terminalis.

    J. Neuroendocrinol.14, 593602 (2002).

    128. Hurley, K. M., Herbert, H., Moga, M. M. & Saper, C. B.

    Efferent projections of the infralimbic cortex of the rat.

    J. Comp. Neurol.308, 249276 (1991).

    129. Sesack, S. R., Deutch, A. Y., Roth, R. H. & Bunney,

    B. S. Topographical organization of the efferent

    projections of the medial prefrontal cortex in the rat:

    an anterograde tract-tracing study with Phaseolus

    vulgaris leucoagglutinin.J. Comp. Neurol.290,

    213242 (1989).

    130. Li, S. & Kirouac, G. J. Projections from the

    paraventricular nucleus of the thalamus to the

    forebrain, with special emphasis on the extended

    amygdala.J. Comp. Neurol.506, 263287 (2008).

    131. Moga, M. M., Weis, R. P. & Moore, R. Y. Efferent

    projections of the paraventricular thalamic nucleus in

    the rat.J. Comp. Neurol.359, 221238 (1995).

    132. Bartolomucci, A. et al. Chronic psychosocial stress

    persistently alters autonomic function and physicalactivity in mice. Physiol. Behav.80, 5767 (2003).

    133. Farah, V. M., Joaquim, L. F., Bernatova, I. & Morris, M.

    Acute and chronic stress influence blood pressure

    variability in mice. Physiol. Behav.83, 135142

    (2004).

    134. LeDoux, J. The amygdala. Curr. Biol.17, R868R874

    (2007).

    135. Bishop, S. J. Neurocognitive mechanisms of anxiety:

    an integrative account. Trends Cogn. Sci.11, 307316

    (2007).

    136. Sanders, M. J., Wiltgen, B. J. & Fanselow, M. S. The

    place of the hippocampus in fear conditioning. Eur.

    J. Pharmacol.463, 217223 (2003).

    137. Shors, T. J. Stressful experience and learning across

    the lifespan.Annu. Rev. Psychol.57, 5585 (2006).

    138. Smotherman, W. P., Kolp, L. A., Coyle, S. & Levine, S.

    Hippocampal lesion effects on conditioned taste

    aversion and pituitary-adrenal activity in rats. Behav.

    Brain Res.2, 3348 (1981).

    One of the first papers to show that conditioned

    HPA responses to an anticipated stressor (in a

    conditioned taste-aversion paradigm) depend on

    an intact hippocampus.

    139. Sullivan, G. M. et al. Lesions in the bed nucleus of the

    stria terminalis disrupt corticosterone and freezing

    responses elicited by a contextual but not by a specific

    cue-conditioned fear stimulus. Neuroscience128,

    714 (2004).

    Demonstrated that the CeA is required for both

    contextual- and cue-conditioned HPA axis

    responses, whereas the BST is only necessary for

    contextually conditioned HPA axis responses.

    140. Resstel, L. B., de Aguiar Correa, F. M. & Silveira

    Guimaraes, F. The expression of contextual fear

    conditioning involves activation of an NMDA receptor

    nitric oxide pathway in the medial prefrontal cortex.

    Cereb. Cortex18, 20272035 (2007).

    141. Kosten, T. & Contreras, R. J. Deficits in conditioned

    heart rate and taste aversion in area postrema-

    lesioned rats. Behav. Brain Res.35, 921 (1989).

    142. Supple, W. F. Jr & Leaton, R. N. Lesions of thecerebellar vermis and cerebellar hemispheres: effects

    on heart rate conditioning in rats. Behav. Neurosci.

    104, 934947 (1990).

    143. Furlong, T. & Carrive, P. Neurotoxic lesions centered

    on the perifornical hypothalamus abolish the

    cardiovascular and behavioral responses of

    conditioned fear to context but not of restraint. Brain

    Res.1128, 107119 (2007).

    144. Iwata, J., LeDoux, J. E. & Reis, D. J. Destruction of

    intrinsic neurons in the lateral hypothalamus disrupts

    the classical conditioning of autonomic but not

    behavioral emotional responses in the rat. Brain Res.

    368, 161166 (1986).

    145. Berridge, K. C. & Robinson, T. E. What is the role of

    dopamine in reward: hedonic impact, reward learning,

    or incentive salience? Brain Res. Brain Res. Rev.28,

    309369 (1998).

    146. Wise, R. A. Brain reward circuitry: insights from

    unsensed incentives. Neuron36, 229240 (2002).

    147. Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neuralmechanisms of addiction: the role of reward-related

    learning and memory.Annu. Rev. Neurosci.29,

    565598 (2006).

    148. Heimer, L., Zahm, D. S., Churchill, L., Kalivas, P. W. &

    Wohltmann, C. Specificity in the projection patterns of

    accumbal core and shell in the rat. Neuroscience41,

    89125 (1991).

    149. Usuda, I., Tanaka, K. & Chiba, T. Efferent projections

    of the nucleus accumbens in the rat with special

    reference to subdivision of the nucleus: biotinylated

    dextran amine study. Brain Res.797, 7393

    (1998).

    150. Goeders, N. E. Stress and cocaine addiction.

    J. Pharmacol. Exp. Ther.301, 785789 (2002).

    151. Koob, G. & Kreek, M. J. Stress, dysregulation of drug

    reward pathways, and the transition to drug dependence.

    Am. J. Psychiatry164, 11491159 (2007).

    152. Cannon, W. B. Bodily changes in pain, hunger, fear

    and rage; an account of recent researches into the

    function of emotional excitement(D. Appleton and

    Co., New York, London, 1929).

    153. Ulrich-Lai, Y. M. & Engeland, W. C. in Handbook of

    Stress and the Brain (eds Steckler, T., Kalin, N. H. &

    Reul, J.) 419435 (Elsevier, Amsterdam, 2005).

    154. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic

    Coordinates 4th edn (Academic, San Diego, 1998).

    AcknowledgementsThe authors thank present and past members of the Herman

    laboratory for their contributions to this work, and S. Woods

    for his comments on the Review. The authors work c ited in

    this Review was supported by US National Institutes of Health

    grants MH049698, MH069860, MH069725, AG12962

    and DK078906.

    DATABASESez G:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

    FOS

    FURTHER INFORMATION

    Jam P. Hma hmpag:www.psychiatry.uc.edu/hermanlab

    SUPPLEMENTARY INFORMATIONs li ail:S1 (box) | S2 (box)

    All liNks Are AcTive iN THe oNliNe Pdf

    r e V I e W s f oc us on s tr e s s

    http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2353&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.psychiatry.uc.edu/hermanlabhttp://www.psychiatry.uc.edu/hermanlabhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.nature.com/nrn/journal/vaop/ncurrent/suppinfo/nrn2647.htmlhttp://www.psychiatry.uc.edu/hermanlabhttp://www.psychiatry.uc.edu/hermanlabhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2353&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genehttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene