Regression with Time Series Data Judge et al Chapter 15 and 16.

23
Regression with Time Series Data Judge et al Chapter 15 and 16

Transcript of Regression with Time Series Data Judge et al Chapter 15 and 16.

Page 1: Regression with Time Series Data Judge et al Chapter 15 and 16.

Regression with Time Series Data

Judge et al Chapter 15 and 16

Page 2: Regression with Time Series Data Judge et al Chapter 15 and 16.

Distributed Lag

1 2( , , , , )t t t t t ny f x x x x

0 1 1 2 2 , 1, ,t t t t n t n ty x x x x e t n T

Page 3: Regression with Time Series Data Judge et al Chapter 15 and 16.

Polynomial distributed lag2

0 1 2

( ), 0, ,t

it i

E yi i i n

x

0 0

1 0 1 2

2 0 1 2

3 0 1 2

4 0 1 2

2 4

3 9

4 16

Page 4: Regression with Time Series Data Judge et al Chapter 15 and 16.

Estimating a polynomial distributed lag

0 1 1 2 2 3 3 4 4 , 5, ,t t t t t t ty x x x x x e t T

0 0

1 0 1 2

2 0 1 2

3 0 1 2

4 0 1 2

2 4

3 9

4 16

0 0 1 2 1 0 1 2 2

0 1 2 3 0 1 2 4

0 0 1 1 2 2

( ) ( 2 4 )

( 3 9 ) ( 4 16 )t t t t

t t t

t t t t

y x x x

x x e

z z z e

0 1 2 3 4

1 1 2 3 4

2 1 2 3 4

2 3 4

4 9 16

t t t t t t

t t t t t

t t t t t

z x x x x x

z x x x x

z x x x x

20 1 2 , 0, ,i i i i n

Page 5: Regression with Time Series Data Judge et al Chapter 15 and 16.

Geometric Lag

0t i t i t

i

y x e

If change in xt is sustained for another period:

, | | 1ii

Impact Multiplier: change in yt when xt changes by one unit:

0 1 1 2 2 3 3

2 31 2 3( )

t t t t t t

t t t t t

y x x x x e

x x x x e

Long-run multiplier:

2 3(1 )1

Page 6: Regression with Time Series Data Judge et al Chapter 15 and 16.

The Koyck Transformation2 3

1 1 2 3

2 31 2 3 4 1

1

[ ( ) ]

[ ( ) ]

(1 ) ( )

t t t t t t t

t t t t t

t t t

y y x x x x e

x x x x e

x e e

1 1

1 2 1 3

(1 ) ( )t t t t t

t t t

y y x e e

y x v

1 2 3(1 ), ,

1( )t t tv e e

Page 7: Regression with Time Series Data Judge et al Chapter 15 and 16.

Autoregressive distributed lag

ARDL(1,1)

0 1 1 1 1t t t t ty x x y e

Represents an infinite distributed lag with weights:

10

t i t ti

y x u

0 0

1 1 1 0

2 1 1 1 0 1 1

23 1 1

11 1

ss

01 1

p q

t t i t i i t i ti i

y x x y e

ARDL(p,q)

Approximates an infinite lag of any shape when p and q are large.

Page 8: Regression with Time Series Data Judge et al Chapter 15 and 16.

Stationarity

• The usual properties of the least squares estimator in a regression using time series data depend on the assumption that the variables involved are stationary stochastic processes.

• A series is stationary if its mean and variance are constant over time, and the covariance between two values depends only on the length of time separating the two values

tE y

2var ty

cov , cov ,t t s t t s sy y y y

Page 9: Regression with Time Series Data Judge et al Chapter 15 and 16.

Stationary Processes

10.5 0.5 (0,1)t ty y N

10.5 0.9 (0,1)t ty y N

Page 10: Regression with Time Series Data Judge et al Chapter 15 and 16.

Non-stationary processes

1 0.5 (0,1)t ty y N

1 (0,1)t ty y N

Page 11: Regression with Time Series Data Judge et al Chapter 15 and 16.

Non-stationary processes with drift

10.1 0.5 (0,1)t ty y N

10.1 0.5 (0,1)t ty y N

Page 12: Regression with Time Series Data Judge et al Chapter 15 and 16.

• AR(1)

• Random walk

• Random walk with drift

• Deterministic trend

Summary of time series processes

11

t

t t t t ii

y y v y t v

11

t

t t t t ii

y y v y v

1t t ty y v

t ty t v

Page 13: Regression with Time Series Data Judge et al Chapter 15 and 16.

Trends

• Stochastic trend– Random walk

– Series has a unit root

– Series is integrated I(1)

– Can be made stationary only by first differencing

• Deterministic trend– Series can be made stationary either by first

differencing or by subtracting a deterministic trend.

Page 14: Regression with Time Series Data Judge et al Chapter 15 and 16.

Real data

Page 15: Regression with Time Series Data Judge et al Chapter 15 and 16.

Spurious correlation

Page 16: Regression with Time Series Data Judge et al Chapter 15 and 16.

Spurious regression

Variable DF B Value Std Error T ratio Approx prob

Intercept 1 14.204040 0.5429 26.162 0.0001

RW2 1 -0.526263 0.00963 -54.667 0.0001

R2 0.7495D-W 0.0305

Page 17: Regression with Time Series Data Judge et al Chapter 15 and 16.

Checking/testing for stationarity

• Correlogram– Shows partial correlation

observations at increasing intervals.

– If stationary these die away.

• Box-Pierce• Ljung-Box• Unit root tests

Table 16.2 Correlogram for s2 Autocorrelation s AC Q-Stat Prob

.|*******| 1 0.900 813.42 0.000 .|****** | 2 0.803 1461.0 0.000 .|****** | 3 0.718 1979.1 0.000 .|***** | 4 0.629 2377.9 0.000 .|**** | 5 0.545 2677.4 0.000 .|**** | 6 0.470 2900.7 0.000 .|*** | 7 0.408 3068.7 0.000 .|*** | 8 0.348 3191.2 0.000 .|** | 9 0.299 3281.8 0.000 .|** | 10 0.266 3353.2 0.000

Table 16.3 Correlogram for rw1 Autocorrelation s AC Q-Stat Prob

.|******** 1 0.997 997.31 0.000 .|******** 2 0.993 1988.8 0.000 .|******** 3 0.990 2973.9 0.000 .|******** 4 0.986 3953.2 0.000 .|******** 5 0.983 4926.3 0.000 .|******** 6 0.979 5893.4 0.000 .|******** 7 0.975 6854.4 0.000 .|*******| 8 0.972 7809.4 0.000 .|*******| 9 0.968 8758.3 0.000 .|*******| 10 0.965 9701.0 0.000

Page 18: Regression with Time Series Data Judge et al Chapter 15 and 16.

Unit root test1t t ty y v

2var t vy t

1 1 1

1

1

1t t t t t

t t t

t t

y y y y v

y y v

y v

0 0

1 1

: 1 : 0

: 1 : 0

H H

H H

Page 19: Regression with Time Series Data Judge et al Chapter 15 and 16.

Dickey Fuller Tests• Allow for a number of possible models

– Drift– Deterministic trend

• Account for serial correlation

0 1t t ty y v

0 1 1t t ty t y v

0 11

m

t t i t i ti

y y a y v

Drift

Drift against deterministic trend

Adjusting for serial correlation (ADF)

Page 20: Regression with Time Series Data Judge et al Chapter 15 and 16.

Table 16.4 Critical Values for the Dickey-Fuller Test

Model 1% 5% 10%

2.56 1.94 1.62

3.43 2.86 2.57

3.96 3.41 3.13

Standard critical values 2.33 1.65 1.28

Critical values

1t t ty y v

0 1t t ty y v

0 1 1t t ty t y v

Page 21: Regression with Time Series Data Judge et al Chapter 15 and 16.

Example of a Dickey Fuller Test

1ˆ 1.5144 .0030

( tau) (-0.349) (2.557)t tPCE PCE

1ˆ 2.0239 0.0152 0.0013

( tau) (0.1068) (0.1917) (0.1377)t tPCE t PCE

1 1 2ˆ 2.111 0.00397 0.2503 0.0412

( tau) ( 0.4951) (3.3068) ( 4.6594) ( 0.7679)t t t tPCE PCE PCE PCE

210.9969

( tau) ( 18.668)t tPCE PCE

Page 22: Regression with Time Series Data Judge et al Chapter 15 and 16.

Cointegration

• In general non-stationary variables should not be used in regression.

• In general a linear combination of I(1) series, eg: is I(1).

• If et is I(0) xt and yt are cointegrated and the regression is not spurious

• et can be interpreted as the error in a long-run equilibrium.

1 2t t te y x

Page 23: Regression with Time Series Data Judge et al Chapter 15 and 16.

Example of a cointegration test

0 1ˆ ˆt t te e v

Model 1% 5% 10%

3.90 3.34 3.04

ˆ 390.7848+1.0160

(t-stats) (-24.50) (252.97)t tPCE DPI

1ˆ ˆ0.188250 0.120344

(tau) (0.1107) ( 4.5642)t te e