REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J....

38
REFERENCES

Transcript of REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J....

Page 1: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

REFERENCES

Page 2: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

220

Page 3: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

References

Anibas, C., Fleckenstein, J.H., Volze, N., Buis, K., Verhoeven, R., Meire, P. and Batelaan, O., 2009. Transient or steady-state? Using vertical temperature profiles to quantify groundwa-ter-surface water exchange. Hydrological Processes, 23(15): 2165-2177.

Arriaga, M. and Leap, D., 2006. Using solver to determine vertical groundwater velocities by tem-perature variations, Purdue University, Indiana, USA. Hydrogeology Journal, 14(1): 253-263.

Arnold C.L. jr. and Gibbons, C.J., 1996. Impervious surface coverage: The emergency of a key environmental indicator: Journal American Planning Association, Vol. 62, No 2., pp. 243-258.

Ashley R.M., Blackwood D., Butler D., Jowitt P., Davies J., Smith H., Gilmour D., Oltean-Dum-brava C., 2008. Making Asset Investment Decisions For Wastewater Systems That Include Sustainability. ASCE J Env. Engineering. Vol. 161. No. 3, March 1. DOI: 10.1061/ ASCE 0733-9372 2008 134:3 200.

Ashley, R., Christensson, A., de Beer, J., Walker, L., Moore, S. and Saul, A., 2012. SKINT Water series II. Selling sustainability in SKINT (SSIS). Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 55.

Åsvold, J.P., 2008. The Fløygarage Regulation Plan, Hydrogeological Mapping (In Norwegian only). Multiconsult Rapport 611859-1, April 29, 2008.

Barbosa, A.E., Fernandes, J.N. and David, L.M., 2012. Key issues for sustainable urban stormwa-ter management. Water Research 46 (2012), 6787-6798.

Barrett, M.E., Walsh, P.M., Malina, J.F. and Charbeneau, R.J., 1998. Performance of Vegetative Controls for Treating Highway Runoff. Environmental Engineering, 124(11), 1121-1128.

Basberg. L. 2011. Bryggen i Bergen. Grunnvannsrestaurering. sporstoff-forsøk host 2011. Norcon-sult rapport LBA_001. pp. 37.

Batu, V., 1988. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis, John Wiley & Sons, Inc., 727 pp., New York.

Beck, M.B., 2011. Cities as Forces for Good in the Environment: Sustainability in the Water Sector, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia (ISBN: 978-1-61584-248-4).

Beldring, S., Engeland, K., Roald, L. A., Sælthun, N.R., and Voksø, A., 2003. Estimation of pa-rameters in a distributed precipitation runoff model for Norway. Hydrol. Earth Syst. Sci., 7, 304-316.

Beldring, S., Roald, L.A. and Voksø, A., 2002. Avrenningskart for Norge: Årsmiddelverdier for avrenning 1961-1990. In Norwegion only. Map of annual runoff for Norway for the period 1961-1990. Norwegian Water Resources and Energy Directorate Doc. 2/2002, 49 pp.

Bergen kommune, 2012. Grunnforholdene i Vågsbunnen. Byrådssak 1470-12, 8. november 2012 (in Norwegian only).

Besluit ruimtelijke ordening (Bro), 2008. In Dutch only. The Spatial Planning Decree, in force 01.07.2008, last revision 01.07.201. http://wetten.overheid.nl/BWBR0023798/2017-07-01.

Bierkens, M.F.P., Gehrels, J.C. and Kovar, K., 2006. Calibration and reliability in groundwater modelling: from uncertainty to decision making. Proceedings of ModelCARE 2005, IAHS Publication 304, ISBN 1-901502-58-9, 316 pp.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. and Çöltekin, A., 2015. Applications of 3D City

221

Page 4: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889.Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial decay of waterlogged archaeological wood

found in Sweden Applicable to archaeology and conservation, International Biodeteriora-tion & Biodegradation, Volume 43, Issues 1-2, 1999, pp. 63-73, ISSN 0964-8305. https://doi.org/10.1016/S0964-8305(98)00070-5.

Blanchette, R., 2000. A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioration & Biodegradation 46 (2000) 189-204.

Blanksby, J., Poole, T. and Simpson, S., 2012. Flood alleviation at Devonshire Park and Mayfield Road, Bradford, West Yorkshire, England. In: De Beer, J., Christensson, A. and Boogaard, F., 2012. SKINT Waterseries I: Sustainable water management across boundaries. Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 45-55.

Boogaard, F.C. and Stockel, G., 2012. Flood mapping and flood control in Bergen, the Nether-lands. In: De Beer, J., Christensson, A. and Boogaard, F. (eds.), 2012. SKINT Waterseries I: Sustainable water management across boundaries. Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 56-61.

Boogaard, F.C., Lucke, T., Sommer, H., de Beer, J., van de Giesen, N.C. and van de Ven, F.H.M., 2014a. Lessons learned from over two decades of global swales use. Conference paper 13th International Conference on Urban Drainage, Sarawak, Malaysia, 7-12 September 2014.

Boogaard, F.C., Van der Giesen, N., Lucke, T. and Van de Ven, F.H.M., 2014b. Evaluating the Infiltration Performance of Eight Dutch Permeable Pavements Using a New Full-Scale Infil-tration Testing Method. Water 6(7): 2070-2083. DOI: 10.3390/w6072070.

Boogaard, R., Wentink, R., Vorenhout, M. and De Beer, J., 2016. Implementation of Sus-tainable Urban Drainage Systems to Preserve Cultural Heritage - Pilot Motte Mont-ferland, Conservation and Management of Archaeological Sites, 18:1-3, 328-341, DOI: 10.1080/13505033.2016.1182767.

Brassington, F.C. and Rushton, K.R., 1987. A rising water table in central Liverpool. Quaterly Journal of Engineering Geology, London, 1987, Vol 20., pp. 151-158.

Bredehoeft, J.D. and Papadopulos, I.S., 1965. Rates of vertical groundwater movement estimated from the Earth's thermal profile. Water Resour. Res., 1(2): 325-328.

Brown R.R., Ashley R.M., and Farrelly M., 2011. Political and Professional Agency Entrapment: An Agenda for Urban Water Research. Water Resources Management. Vol. 23, No.4. Europe-an Water Resources Association (EWRA) ISSN 0920-4741. DOI 10.1007/s11269-011-9886-y.

Brugnach, M., Dewulf, A., Pahl-Wostl, C. and Taillieu, T., 2008. Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know. Ecology and Society 13(2): 30. http://www.ecologyandsociety.org/vol13/iss2/art30/ (accessed, 24.02.2018).

Butterworth J., McIntyre, P. and Da Silva Wells, C. (Eds.), 2011. SWITCH in the city: putting urban water management to the test. The Hague, The Netherlands, IRC International Water and Sanitation Centre IRC International water and sanitation centre. The Netherlands. ISBN 9798066870789.

Caple, C., 1996. Parameters for monitoring anoxic environments. In: Corfield, M., Hinton, P., Nixon, T., Pollard, M. (Eds.), Preserving Archaeological Remains in Situ. Museum of London

222

Page 5: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Archaeology Service, London, pp. 113-123.Cettner, A., Ashley, R.M., Hedström, A. and Viklander, M., 2014. Sustainable development and

urban stormwater practice. Urban Water Journal, 2014, Vol. 11, No. 3, 185-197. http://dx.doi.org/10.1080/1573062X.2013.768683.

Christensen, S. and Danielsen, S.W., 2010. Bryggen i Bergen. Vurdering av Multiconsult's tiltaks-beskrivelse for tetting av grunnvannslekkasje. (In Norwegian only). SINTEF rapport nr. SBF IN 10410, prosjekt 3C0644, September 3, 2010. Not public.

Christensson, A., de Beer, J., Dunlop, R. and Matthiesen, H., 2012. The water that buoys up Bryggen in Bergen, Norway. In: De Beer, J., Christensson, A. and Boogaard, F. (eds.), 2012. SKINT Waterseries I: Sustainable water management across boundaries. Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 24-33.

Christensson, A., Dunlop, R., Matthiesen, H., Jensen, J.A., de Beer, J., 2007. Safeguarding a World Heritage Site: Bryggen in Bergen, Norway. In: Geoarchaeological and Bioarchaeologi-cal Studies. Proceedings from the conference “Preserving Archaeological Remains in situ 3”, Amsterdam, December 2006.

Christensson, A., Paszkowski, Z., Spriggs, J.A., Verhoef, L. (Eds.), 2004. Safeguarding Historic Waterfront Sites. Bryggen in Bergen as a Case Study, first ed. Stiftelsen Bryggen and Poly-technika Szczecinska, Bergen, Norway.

CIRIA, 2015. Woods Ballard, B., Wilson, S., Udale-Clark, H., Illman, S., Scott, T., Ashley, R. and Kellagher, R. The SUDS Manual 2015. Construction Industry Research and Information Association (CIRIA), London, 2015, ISBN: 978-0-86017-760-9.

CNT, 2010. The value of green infrastructure. A guide to recognize its economic, environmen-tal and social benefits. http://www.cnt.org/repository/gi-values-guide.pdf (last accessed, 25.02.2018).

COST Action TU1206 Sub-Urban, 2017. Sub-urban toolbox. A set of examples of products and good practices that can serve as inspiration for your city, that helps you with your process in moving upwards. http://sub-urban.squarespace.com/toolbox.

Council of Europe, 1992. Malta Convention. The European Convention About Protection of the Archaeological Heritage. In: European Treaty Series No 143. Council of Europe, Valetta. 16 January 1992.

Council of Europe, 2005. Council of Europe Framework Convention on the Value of Cultural Heritage for Society. Council of Europe Treaty 199 (Faro Convention).

Cripps, P.J., 2012. Places, People, Events and Stuff; building blocks for archaeological information systems. In: Archaeology in the Digital Era Volume II, e-Papers from the 40th Conference on Computer Applications and Quantitative Methods in Archaeology, Southampton, 26-30 March 2012.

Culshaw, M.G., 2005. From concept towards reality: developing the attributed 3D geological mod-el of the shallow subsurface. Quarterly Journal of Engineering Geology and Hydrogeology 38, 231-284.

Dalrymple, B., 2012. Bioretention myths busted!!. In: Proc. 2012 Stormwater Industry Association Queensland State conference, raining a revolution, 30-31 May 2012, Brisbane, Australia.

Davis, A.P. and Jamil, E., 2008. Field Evaluation of Hydrologic and Water Quality Benefits of

223

Page 6: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Grass Swales with Check Dams for Managing Highway Runoff. Low Impact Development for Urban Ecosystem and Habitat Protection, pp. 1-8.

Davis, A.P., Stagge, J.H., Jamil, E. and Kim, H., 2012. Hydraulic performance of grass swales for managing highway runoff. Water Research, 46(20), 6775-6786.

De Beer, J., 2005. Hydrogeologisk modellering Bryggen, Bergen. Midlertidig rapport. NGU-re-port 2005.080 (in Norwegian only).

De Beer, J., 2008. Statusrapport grunnvannsovervåking og hydrogeologisk modellering ved Bryg-gen i Bergen. NGU-report 2008.069 (in Norwegian only).

De Beer, J., 2010. Notat vedrørende første resultater heving drenssystem v/ SAS hotellet, Novem-ber 2010. NGU-notat 10/00067-30 (in Norwegian only), December 1, 2010.

De Beer, J. and Boogaard, F.C., 2016. Good practices in cultural heritage management and the use of subsurface knowledge in urban areas. Conference paper. Urban Subsurface Planning and Management Week, SUB-URBAN 2017, 13-16 March 2017, Bucharest, Romania. Procedia Engineering 209 (2017) 34-41. DOI: 10.1016/j.proeng.2017.11.127.

De Beer, J., Jensen, J.A., Matthiesen, H. And Christensson, A., 2006. Bryggen World Heritage Site; A numerical model to support archaeological preservation strategies. Award-winning poster at conference “Preserving Archaeological Remains in situ 3”, Amsterdam, December 2006.

De Beer, J. and Matthiesen, H., 2008. Groundwater Monitoring and Modelling from an Archae-ological Perspective: Possibilities and Challenges. NGU Special Publication, 11, pp. 67-81.

De Beer, J. and Matthiesen, H., 2011. Overvåkningsplan for undergrunnen ved Bryggen i Bergen, NGU-report 2010.040. (in Norwegian only).

De Beer, J., 2016. Cultural Heritage. A review of good practices in cultural heritage manage-ment and the use of subsurface knowledge in urban areas. TU1206 Sub-Urban WG2 report. TU1206-WG2.7-008. http://sub urban.squarespace.com/s/TU1206-WG27-008-Cultural-heri-tage.pdf.

De Beer, J., Christensson, A. and Boogaard, F. (eds.), 2012. SKINT Waterseries I: Sustainable water management across boundaries. Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 87.

De Beer, J., Matthiesen, H. & Christensson, A. 2012. Quantification and Visualization of in situ degradation at the World Heritage Site of Bryggen in Bergen, Norway. Conservation and man-agement of archaeological sites, 14(1–2): 214-226 (2012).

De Beer, J., Seither, A, Vandrup Martens, V., Matthiesen, H. and Vorenhout M. 2015. Monitoring and modelling in Urban Watch. In: Harvold, K., Larsen, K. (ed.), de Beer, J., Boogaard, F., Vandrup Martens, V., Matthiesen, H., Muthanna, T.M., Seither, A., Skogheim, R. and Voren-hout, M., 2015. Protecting the Past and Planning for the Future: Results from the project “Cul-tural Heritage and Water Management in Urban Planning” (Urban WATCH). CIENS-report 1-2015, ISBN 978-82-92935-11-8: 30-42.

De Beer, J., Seither, A. and Vorenhout, M., 2016. Effects of a new hydrological barrier on the tem-peratures in the organic archaeological remains at Bryggen in Bergen, Norway, Conservation and Management of Archaeological Sites, 18:1-3, 99-115, DOI: 10.1080/13505033.2016.1182749.

De Beer. J. and Seither. A. 2015. Groundwater Balance. In: J. Rytter and I. Schonhowd. eds. Moni-toring. Mitigation. Management. The Groundwater Project - Safeguarding the World Heritage

224

Page 7: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Site of Bryggen in Bergen. Riksantikvaren. Oslo. 105-123.De Beer. J., Price. S.J. and Ford. J.R. 2012. 3D modelling of geological and anthropogenic depos-

its at the World Heritage Site of Bryggen in Bergen. Norway. Quaternary International. 251. February: pp. 107-116. https://doi.org/10.1016/j.quaint.2011.06.015

De Gruijter J.J., McBratney, A.B., and Taylor. J., 2010. Sampling for High-Resolution Soil Map-ping. In: Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1, DOI: 10.1007/978-90-481-8859-8_1. Springer Science+Business Media BV., 2010.

De Roo B., Ooms K., Bourgeois J., De Maeyer P., 2014: Bridging Archaeology and GIS: Influenc-ing Factors for a 4D Archaeological GIS. In: Ioannides M., Magnenat-Thalmann N., Fink E., Žarnić R., Yen AY., Quak E. (eds.) Digital Heritage. Progress in Cultural Heritage: Documen-tation, Preservation, and Protection. EuroMed 2014. Lecture Notes in Computer Science, vol 8740. Springer, Cham., pp. 186-195.

De Roo, B., Bourgeois, J. and De Maeyer. P., 2013. On the Way to a 4D Archaeological GIS: State of the Art, Future Directions and Need for Standardization. Proceedings of the 2013 Digital Heritage International Congress. Ed. Alonzo C Addison et al. Vol. 2. New York, NY, USA: Institute of Electrical and Electronics Engineers (IEEE), 2013. 617-620.

De Vries, D.A. (1963) Thermal Properties of Soils. In: W.R. van Wijk (ed.) Physics of Plant Envi-ronment. North-Holland Publishing Company, Amsterdam.

Deletic, A. 2005. Sediment transport in urban runoff over grassed areas. Journal of Hydrology, 301(1-4), 108-122.

Diersch, H.-J. G., 2014. Feflow. Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer - Verlag Berlin Heidelberg 2014. ISBN 978-3-642-38138-8, pp. 996.

Digman, C., Ashley, R., Balmforth, D., Balmforth, D., Stovin, B., and Glerum, J., 2012. Retrofit-ting to manage surface water. CIRIA C713. London, United Kingdom.

Direktoratet for Byggkvalitet, 2017. Byggteknisk forskrift (TEK17). In Norwegian only. https://dibk.no/byggereglene/byggteknisk-forskrift-tek17/, last revision 15.09.2017.

Direktoratet for byggkvalitet, 2017. Veiledning om tekniske krav til byggverk. Byggteknisk forskrift (TEK17) med veiledning (in Norwegian only). Building Technical Regulation.

Duffy, A., Berwick, N. and Jefferies, C., 2012. Drainage improvements to facilitate expansion of the Eastern Dunfermline, Scotland. In: De Beer, J., Christensson, A. and Boogaard, F. (eds.), 2012. SKINT Waterseries I: Sustainable water management across boundaries. Project report Skills Integration and New Technologies (SKINT), Interreg IVB North Sea Region Programme, pp. 16-23.

Dunlop, A.R., 2006. Archaeological recording in connection with monitoring in Norways me-dieval towns. Conference Proceedings, Preserving Archaeological Remains in situ 3, VU University, Amsterdam, the Netherlands.

Dunlop, A.R., 2008a. The Bryggen Monitoring Project, Part 2: Archaeological Investigations in Connection with Monitoring Project, Bredsgården Tenement, Bryggen, Bergen, 2002-3 NIKU Arkivrapport 66/2008, Bergen, Norway.

Dunlop, A.R., 2008b. The Bryggen Monitoring Project, Part 4: Report on the Archaeological Investigation of Five Dipwell Boreholes, 2005 NIKU Arkivrapport 28/2008, Bergen, Norway.

Dunlop, A.R., 2008c. The Bryggen Monitoring Project, Part 5: Report on the Investigations at the

225

Page 8: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Rear of Nordre Bredsgården, 2006 NIKU Arkivrapport 22/2008, Bergen, Norway.Dunlop, A.R., 2008d. The Bryggen Monitoring Project, Part 6: Report on the Archaeological In-

vestigation of Three Dipwell Boreholes, 2006 NIKU Arkivrapport 63/2008, Bergen, Norway.Dunlop, A.R., 2008e. The Bryggen Monitoring Project, Part 7: Report on the Archaeological In-

vestigation of Five Dipwell Boreholes, 2007 NIKU Arkivrapport 64/2008, Bergen, Norway.Dunlop, A.R., 2009a. The Bryggen Monitoring Project, Part 8: Report on the Archaeological

Investigation of Two Dipwell Boreholes, Holmedalsgården and Svensgården, 2009 NIKU Op-pdragsrapport 43/2009, Bergen, Norway.

Dunlop, A.R., 2009b. The Bryggen Monitoring Project, Part 9: Report on the Archaeological In-vestigation of Two Dipwell Boreholes, Schøtstuene, 2009 NIKU Oppdragsrapport 222/2009.

Dunlop, A.R., 2010a. The Bryggen Monitoring Project, Part 10: Report on the Archaeological Investigation of Three Dipwell Boreholes, Bugården/Bredsgården, Bryggen, 2009 NIKU Op-pdragsrapport 36/2010, Bergen, Norway.

Dunlop, A.R., 2010b. The Bryggen Monitoring Project, Part 11: report on the archaeological in-vestigation of two dipwell boreholes, Bryggen and Finnegårdsgaten, 2010. NIKU Oppdrags-rapport 246/2010.

Dunlop, A.R., 2011. The Bryggen Monitoring Project, Part 14. Report on the archaeological inves-tigation of four monitoring-well boreholes, Bryggen, 2011-2. NIKU Oppdragsrapport 70/2012.

Dunlop, A.R., 2012a. The Bryggen Monitoring Project, Part 15. Report on the archaeological investigation of two boreholes, Bredsgården, Bryggen, 2011. NIKU Oppdragsrapport 71/2012.

Dunlop, A.R., 2012b. The Bryggen Monitoring Project, Part 17. Report on the archaeological investigation of two test-pits, Schøtstuene, Bryggen, 2012. NIKU Oppdragsrapport 92/2012.

Dunlop, A.R., 2015. Archaeological aspects. In: J. Rytter and I. Schonhowd. eds. Monitoring. Mitigation. Management. The Groundwater Project - Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren. Oslo. 105-123.

Dutch Government, 1965. Ontgrondingenwet. In Dutch only. Earth Removal Act, last revision 01.07.2016. http://wetten.overheid.nl/BWBR0002505/2016-07-01.

Dutch government, 1965. Wet bodembescherming. In Dutch only. Soil protection Act. Last revi-sion 2016. http://wetten.overheid.nl/BWBR0003994/2017-01-01/0.

Dutch government, 1979. Wet milieubeheer. In Dutch only. Environment Act. Last revision 2017. http://wetten.overheid.nl/BWBR0003245/2017-08-30.

Dutch Government, 1988. Monumentenwet 1988. In Dutch only. Monuments and historic build-ings act 1988. Expired after July 1, 2016. http://wetten.overheid.nl/BWBR0004471/2016-04-14.

Dutch Government, 2006. Wet op de archeologische monumentenzorg. In Dutch only. Ar-chaeological Heritage Management Act, in force 01.09.2007. http://wetten.overheid.nl/BWBR0021162/2008-01-01/0/.

Dutch Government, 2006. Wet Ruimtelijke Ordening. In Dutch only. Spatial Planning Act, last revised 2016. http://wetten.overheid.nl/BWBR0020449/2016-04-14/0.

Dutch Government, 2009. Waterwet. In Dutch only. Water Act, in force 22.12.2009, last revision 01.01.2018. http://wetten.overheid.nl/BWBR0025458/2018-01-01.

Dutch Government, 2015. Erfgoedwet. In Dutch only. Heritage Act, in force 01.07.2016, last revi-sion 01.07.2017. http://wetten.overheid.nl/BWBR0037521/2017-09-01.

226

Page 9: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Elberling, B., 2003. Seasonal trends of soil CO2 dynamics in a soil subject to freezing, Journal of Hydrology, 276(1-4), 159-75.

Elberling, B., 2005, Subsurface oxygen consumption, Dr. Scient. thesis, Faculty of Natural Scienc-es, University of Copenhagen.

Ellingsen, K., 1987. Beskrivelse til hydrogeologisk kart 1115 I, 1:50.000. Geological Survey of Norway. Rapport 24(342). Universitetsforlaget.

European Parliament, 2000. Directive 2000/60/EC of the European Parliament and of the Coun-cil of 23 October 2000 establishing a framework for Community action in the field of water policy. http://data.europa.eu/eli/dir/2000/60/oj.

European Parliament, 2006. Directive 2006/118/EC of the European Parliament and of the Coun-cil of 12 December 2006 on the protection of groundwater against pollution and deterioration. http://eur lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:372:0019:0031:EN:PDF.

European Parliament, 2007. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. http://data.europa.eu/eli/dir/2007/60/oj.

Everard M., 2011. Why does “good ecological status matter” matter? Water and Environment journal. ISSN 1747-6585. pp. 1-10.

FISRWG, 1998. Stream Corridor Restoration: Principles, Processes, and Practices. By the Fed-eral Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencies of the US gov't). GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN 3/PT.653. ISBN-0-934213-59-3.

Fletcher, T.D., Andrieu, H. and Hamel, P., 2013. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Advances in Water Resources 251 (2013) 261-279.

Fletcher, T.D., Peljo, L., Wong, T. and Weber, T., 2002. The performance of vegetated swales for urban stormwater pollution control. Global Solutions for Urban Drainage. Edited by E.W. Strecker and W.C. Huber. Reston, VA: ASCE.

Ford, J., Kessler, H., Cooper, A.H., Price, S.J., Humpage, A.J., 2006. An Enhanced Classification for Artificial Ground British Geological Survey internal report, IR/04/38.

Fossen, H., 1989. Geology of the minor Bergen arc, west Norway. NGU-bulletin 416.Fossen, H., Ragnhildstveit, J., 2008. Berggrunnskart Bergen 1115 I, 1:50.000, Geological Survey

of Norway.Foster S.S.D., Morris, B.L. and Chilton, P.J., 1999. Impacts of Urban Growth on Surface Wa-

ter and Groundwater Quality (Proceedings of IUGG 99 Symposium HS5, Birmingham, July 1999). IAHS Publ. no. 259, 1999.

Foster, S. S. D., 1990. Impacts of urbanization on groundwater. In: Hydrological Processes and Water Management in Urban Areas (Proceedings of the Duisberg Symposium, April 1988), 187-207. IAHS Publ. no. 198.

Foulquier, A., Malard, F., Barraud, S. and Gibert, J., 2009. Thermal influences of urban ground-water recharge from stormwater infiltration basins. Hydrological Processes, 23, 1701-1713 (2009). DOI: 10.1002/hyp.7305.

Fraser, E.D.G., Dougill, A.J., Mabee, W.E., Reed, M., and McAlpine, P., 2006. Bottom up and top down: analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. Journal of

227

Page 10: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

environmental management, 78, 114-127.Freeze R.A. and Cherry J.A., 1979. Groundwater. Prentice Hall, NJ.Furbish, D.J., 1991. The response of water-level in a well to a time series of atmospheric loading

under confined conditions, Water Resour. Res., 27(4), 557–568, doi:10.1029/90WR02775.Garcia-Fresca, B. and Sharp, J.M. jr., 2005. Hydrogeologic considerations of urban development

- urban-induced recharge: In: Humans as Geologic Agents: GSA, Reviews in Engineering Geology, Boulder, CO, Vol. 16, pp. 123-136.

Gersonius B., 2012. The resilience Approach to climate adaptation. PhD thesis TU Delft. ISBN 978-0-415-62485-5

Gierløff, C.W., Magnussen, K., Eide, L.S., Iversen, E.K., Ibenholt, K., Dombu, S.V., Navrud, S. and Strand, J., 2017. Verdien av kulturarv. En samfunnsøkonomisk analyse med utgangspunkt i kulturminner og kulturmiljøer (In Norwegian only). Menon-publikasjon nr. 72/2017, pp. 97.

Göbel, P., Stubbe, H., Weiner, M., Zimmermann, J., Fach, S., Dierkes, C., Kories, H., Messer, J., Mertsch, V., Geiger, W.F. and Coldewey, W.G., 2004. Near-natural stormwater management and its effects on the water budget and groundwater surface in urban areas taking account of the hydrogeological conditions. Journal of Hydrology 299 (2004) 267-283.

Gonthier, G.J., 2007. A graphical method for estimation of barometric efficiency from continuous data - concepts and application to a site in the Piedmont, Air Force Plant 6, Marietta, Georgia. U.S. Geological Survey Scientific Investigations Report 2007-5111, 29 p., web-only publica-tion. http://pubs.usgs.gov/sir/2007/5111/ (last accessed 01.05.2018).

Gray, D.A. and Foster, S.S.D., 1972. Urban influences upon groundwater conditions in Thames Flood Plane deposits of Central London. Phil. Trans. R. Soc. Lond. A. 272, 245-257 (1972).

Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. and Aureli, A. 2011. Beneath the surface of global change: Impacts of climate change on ground-water (2011). Journal of Hydrology, Volume 405, Issues 3-4, pp. 532-560.

Gremmertsen, C., 2013. Characterisation of the stormwater in the Bryggen catchment. A thorough study of Norwegian urban pollutants and its impact on decomposition of archaeological re-mains. Master thesis geotechnology, Norwegian University of Science and Technology, Dept. of Hydraulic and Environmental Engineering, Trondheim, June 2013, 107 pp.

Haberer, C.M., Rolle, M., Cirpka, O. A., and Grathwohl, P., 2013, Impact of heterogeneity on oxy-gen transfer in a fluctuating capillary fringe, Groundwater, doi: 10.1111/gwat.12149.

Haberer, C.M., Rolle, M., Liu, S.H., Cirpka, O.A., and Grathwohl, P., 2011. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater, Journal of Contaminant Hydrology, 122 (2011), 26-39.

Hansen, G., 2004. Bergen c 800 - c 1170 The Emergency of a Town. The Bryggen Papers. Main series no. 6. Fagbokforlaget Vigmostad & Bjørke AS, 2005.

Hare, P.W. and Morse, R.E., 1997. Water-level fluctuations due to barometric pressure changes in an isolated portion of an unconfined aquifer, Ground Water, 35(4), 667-671.

Harvold, K., Larsen, K. (ed.), de Beer, J., Boogaard, F., Vandrup Martens, V., Matthiesen, H., Muthanna, T.M., Seither, A., Skogheim, R. and Vorenhout, M., 2015. Protecting the Past and Planning for the Future: Results from the project “Cultural Heritage and Water Management in Urban Planning” (Urban WATCH). CIENS-report 1-2015, ISBN 978-82-92935-11-8, pp. 47.

Hatch, C.E., Fisher, A.T., Revenaugh, J.S., Constantz, J. and Ruehl, C., 2006. Quantifying surface

228

Page 11: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

water - groundwater interactions using time-series analysis of streambed thermal records: Method development. Water Resour. Res., 42(10): W10410.

Haukedal, J., 2017. Setningsutvikling i Bergen sentrum: Urban hydrogeologi, InSAR, setning og kulturlag. Masteroppgave i Naturgeografi, mai 2017, Universitet i Bergen, Institutt for Geogra-fi, pp. 100.

Healy R.W. and Cook P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeol J. 10:91-109.

Herteig, A.E., (ed.) 1985. The Archaeological Excavations at Bryggen, "The German Wharf", in Bergen, 1955-68: Excavation, Stratigraphy, Chronology, Field-documentation. Bryggen Pa-pers. Main Series. Volume. 1. Universitetsforlaget, Oslo, Norway.

Herteig, A.E., (ed.) 1990. The buildings at Bryggen. Their topographical and chronological de-velopment. The Bryggen Papers. Main series. Volume 3. Part 1. University of Bergen, 1990.

Herteig, A.E., (ed.) 1991. The Buildings at Bryggen. Their topographical and chronological devel-opment. The Bryggen Papers. Main Series. Vol. 3, part 2 + plates. University of Bergen, 1991.

Herteig. A.E., (ed.) 1969. Kongers havn og handels sete. Fra de arkeologiske undersøkelser på Bryggen i Bergen 1955–68. Aschehoug. Oslo. 224 pp.

Hibbs, B.J. and Sharp, J.M. jr., 2012. Hydrogeological Impacts of Urbanization: Environmental & Engineering Geoscience, Vol. XVIII, No. 1, Feb. 2012, pp. 3-24.

Hill, M.C. and Tiedeman, C.R., 2007. Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Hoboken, NJ. 480 pp. ISBN: 978-0-471-77636-9.

Hinze, C., Sobisch, H., Voss, H., 1999. Spatial modelling in geology and its practical use. Fortschritte Der Geoinformatik ¼ Progress in Geoinformatics, 51-60.

Hisdal, H., Stahl, K., Tallaksen, L.M. and Demuth, S., 2001: Have streamflow droughts in Europe become more severe or frequent? Int. J. Climatol., 21, 317–333. DOI: 10.1002/joc.619.

Historic England, 2016. Preserving archaeological remains: Decision-taking for sites under devel-opment. Swindon. Historic England.

Holden, J., Howard, A.J., West, L.J., Maxfield, E., Panter, I., Oxley, J., 2009. A critical review of hydrological data collection for assessing preservation risk for urban waterlogged archae-ology: a case study from the city of York, UK. Journal of Environmental Management 90, 3197-3204.

Holden, J., West, L.J., Howard, A.J., Maxfield, E., Panter, I., Oxley, J., 2006. Hydrological controls of in situ preservation of waterlogged archaeological deposits. Earth-Science Reviews 78, 59-83.

Hollesen, J. and Matthiesen, H., 2015. The Influence of Soil Moisture, Temperature and Oxygen on the Oxic Decay of Organic Archaeological Deposits. Archaeometry, 57: 362-377. doi:10.1111/arcm.12094

Hollesen. J., Matthiesen, H., Møller, A.B and Elberling, B., 2015. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Climate Change. 5(6). pp.574-578. DOI: 10.1038/nclimate2590.

Huisman, D.J. (Ed.), 2009. Degradation of Archaeological Remains. Sdu Uitgevers b.v., Den Haag, the Netherlands.

Huisman, D.J., Manders, M.R., Kretschmar, E.I., Klaassen, R.K.W.M. and Lamersdorf, N., 2008.

229

Page 12: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Burial conditions and wood degradation at archaeological sites in the Netherlands, Inter-national Biodeterioration & Biodegradation, Volume 61, Issue 1, 2008, Pages 33-44, ISSN 0964-8305.

I. Hanssen-Bauer, E.J. Førland, I. Haddeland, H. Hisdal, S. Mayer, A. Nesje, J.E.Ø. Nilsen, S. Sandven, A.B. Sandø, A. Sorteberg and B. Ådlandsvik (ed.), 2015. Klima i Norge 2100. Kunnskapsgrunnlag for klimatilpasning oppdatert i 2015. Miljødirektoratet, rapport 2/2015, ISSN 2387-3027.

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solo-mon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 996.

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. http://www.climatechange2013.org/.

Jacob, C. E., 1940. On the flow of water in an elastic artesian aquifer, Eos Trans. AGU, 21, 574–586.

Jensen, J.A., 2009. Bryggen i Bergen, grunnvannsprosjektet. Forprosjekt for tetting av grunn-vannslekkasje. Tiltaksbeskrivelse. (In Norwegian only). Multiconsult rapport 6010706-1-2, July 10, 2009. Not public.

Jensen, J.A., 2015. Subsidence at the Bryggen site. In: J. Rytter and I. Schonhowd. eds. Monitor-ing. Mitigation. Management. The Groundwater Project – Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren. Oslo. 151-164.

Jensen, J.A., Stordal, A.D., 2004. Miljøovervåkningsprosjekt Bugården - Bryggen i Bergen FoU-prosjekt. Grunnundersøkelser og setningsmålinger. Multiconsult report 400962 - 1, Ber-gen, Norway

Jeppesen, J., Christensen, S., and Ladekari, U.L., 2011. Modelling the historical water cycle of the Copenhagen area 1850-2003: Journal of Hydrology, Vol. 404, pp. 117-129.

Jin, Y., and Juri, W.A., 1996. Characterizing the dependence of gas diffusion coefficient on soil properties, Soil Science Society of America Journal, 60, 66-71.

Kalbus, E., Reinstorf, F. and Schirmer, M., 2006. Measuring methods for groundwater: surface water interactions: a review. Hydrol. Earth Syst. Sci. 10:873-887.

Keery, J., Binley, A., Crook, N. and Smith, J.W.N., 2007. Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method us-ing temperature time-series. Journal of Hydrology, 336(1–2): 1-16.

Kenward, H.K., Hall, A.R., 2000. Decay of delicate organic remains in shallow urban deposits: are we at a watershed? Antiquity 74, 519-525.

Kessler, H., Mathers, S.J., 2004. Maps to models. Geoscientist 14, 4-6.Kibblewhite M., Tóth G., and Hermann T., 2015. Predicting the preservation of cultural artefacts

and buried materials in soil, Science of The Total Environment, Volume 529, 2015, pp 249-263, https://doi.org/10.1016/j.scitotenv.2015.04.036.

230

Page 13: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Kitterød, N.-O., 2015. Archaeological deposits and tunnel constructions: Simulations of ground-water head at the Old Wharf of Bergen, Norway, Quaternary International 368 (2015) 51-67. http://dx.doi.org/10.1016/j.quaint.2014.10.045.

Klaassen, R.K.W.M., 2008a. Water flow through wooden foundation piles: A preliminary study. International Biodeterioration & Biodegradation 61 (2008) 61–68.

Klaassen, R.K.W.M., 2008b. Bacterial decay in wooden foundation piles: patterns and causes. A study on historical pile foundations in the Netherlands, International Biodeterioration & Bio-degradation, 61 (2008), 45–60.

Klaassen, R.K.W.M., (ed.), 2005. Preserving cultural heritage by preventing bacterial decay of wood in foundation poles and archaeological sites. Bacpoles, Final report EVK4-CT-2001–00043, pp. 223 + 8 appendices.

Kracht, O., and Dagestad, A., 2013. Experiences and issues with the implementation of micro-screen multilevel groundwater samplers in glaciofluvial aquifers in Southern Norway. Geo-physical Research Abstracts vol. 15 p. EGU2013-13156. Copernicus publications.

Kruseman, G.P. and De Ridder, N.A., 1994. Analysis and evaluation of pumping test data, 2nd edition. ILRI Publication 47, ILRI, Wageningen, The Netherlands.

Lapham, W.W., 1989. Use of temperature profiles beneath streams to determine rates of vertical groundwater flow and vertical hydraulic conductivity. U.S. Geological Survey, Water-Supply Paper 2337.

Lelliott, M., Bridge, D.M., Kessler, H., Price, S.J., Seymour, K.J., 2006. The application of 3D geological modelling to aquifer recharge assessments in an urban environment. Quarterly Journal of Engineering Geology & Hydrogeology 39, 293-302.

Leopold L.B., 1968. Hydrology for urban Land Planning: A Guidebook on the Hydrological Ef-fects of Urban Land Use: USGS Circular 554, pp. 18.

Lerner, D.N., 1986. Leaking pipes recharge groundwater. Ground Water, 24: 654-662. doi:10.1111/j.1745-6584.1986.tb03714.x.

Lerner, D.N., 1990. Groundwater recharge in urban areas. Hydrological process and water man-agement in urban areas (Proceedings of the Duisberg Symposium, April 1988). IAHS Publ. no. 198, 1990.

Lerner, D.N., 2002. Identifying and quantifying urban recharge: a review. Hydrogeology Journal (2002) 10:143-152, DOI 10.1007/s10040-001-0177-1.

Lien, B.K., and Ford, R.G., 2014. Quantifying Seepage Flux using Sediment Temperatures. EP-A/600/R-15/454, December 2014. www.epa.gov/research.

Lijzen, J.P.A., Otte, P. and van Dreumel, M., 2014. Towards sustainable management of ground-water: Policy developments in The Netherlands, Science of The Total Environment, Volumes 485–486, 2014, pp. 804-809, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2014.02.081.

Loska, A. and Christensson, A., 2012. Take the right decision everybody. In: Conservation and Management of Archaeological Sites, Volume 14, 2012, Issue 1-4, pp. 294-302. https://doi.org/10.1179/1350503312Z.00000000025.

Malim, T., Panter, I. and Swain, M., 2015. The hidden heritage at Nantwich and York: Groundwa-ter and the urban cultural sequence. In: Quaternary International 368 (2015) 5-18. https://doi.org/10.1016/j.quaint.2014.08.006.

Malmqvist, P-A., Kärrman, E., and Heinicke, G., eds., 2006. Strategic planning of sustainable

231

Page 14: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

urban water management. IWA Publishing, London.Marstein, N., Paludan-Müller, C., Loska, A., Christensson, A., Dunlop, A.R., Molaug, P.B., Reed,

I.W., Edvardsen, G., Jensen, J.A., Matthiesen, H., Ringsted, J.P., Nilsson, T., Martens, V., Ri-san, T., Eriksson, J.G., 2007. The Monitoring Manual. Procedures & Guidelines for the Mon-itoring, Recording and Preservation/management of Urban Archaeological Deposits, http://www.riksantikvaren.no/filestore/Veileder_komp.pdf.

Mathers, S.J., Kessler, H., 2010. GSI3D - Version 2.6. User Manual. British Geological Survey Open report OR/10/007, United Kingdom, http://gsi3d.com.

Matthiesen, H., 2007, Preservation conditions above the groundwater level at Bugården, Bryggen in Bergen: results from MB21 and a testpit from September 2006, report no. 10832-0011-1, Department of Conservation, National Museum Denmark, Copenhagen.

Matthiesen, H., 2007. Preservation conditions of urban deposits studied through detailed chemi-cal analysis of ground water from Bryggen in Bergen. Journal of Archaeological Science 35, 1378-1388.

Matthiesen, H., 2008. Detailed chemical analyses of groundwater as a tool for monitoring urban archaeological deposits: results from Bryggen in Bergen. Journal of Archaeological Science 35(5):1378-1388. DOI10.1016/j.jas.2007.10.003.

Matthiesen, H., Dunlop, R., Jensen, J.A., de Beer, J. and Christensson, A. 2008. Monitoring of preservation conditions and evaluation of decay rates of urban deposits – results from the first five years of monitoring at Bryggen in Bergen. In: H. Kars and R.M. van Heeringen. eds. Proceedings from the conference Preserving Archaeological Remains in situ 3. Amsterdam. Geoarchaeological and Bioarchaeological Studies. 10: pp. 163-174.

Matthiesen, H., R. V. Zimsen, and M. N. Mortensen. 2013. Measurement of oxygen, nitrate, sul-phate and redox potential in microcosms with waterlogged organic cultural deposits. National Museum of Denmark, Department of Conservation, Copenhagen. 11074722.

Matthiesen, H., Hollesen, J., Dunlop, J., Seither, A. and De Beer, J., 2016. Monitoring and Mit-igation Works in Unsaturated Archaeological Deposits, Conservation and Management of Archaeological Sites, 18:1-3, 86-98, DOI: 10.1080/13505033.2016.1182777.

Matthiesen, H., Hollesen, J., Dunlop, R. and de Beer, J. 2015. In situ Measurements of Oxygen Dynamics in Unsaturated Archaeological Deposits. Archaeometry, 57(6): 1078-1094.

Max-Neef, M.A., 2005. Foundations of transdisciplinarity. Ecological Economics 53 (2005), 5-16.McCallum, A.M., Andersen, M.S., Rau, G.C. and Acworth, R.I., 2012. A 1-D analytical method

for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time-series. Water Resources Research, 48(11): W11532.

McKeague, P., Corns, A. and Shaw, R., 2012. Developing a Spatial Data Infrastructure for Archae-ological and Built Heritage. Int. J. Spat. Data Infrastruct. Res. 7, 38–65 (2012).

McMillan, A.A., Powell, J.H., Evans, C.D.R., Irving, A.A.M., Merritt, J.W., Morigi, A.N., North-more, K.J., 1999. Classification of Artificial (Man-made) Ground and Natural Superficial De-posits Applications to Geological Maps and Datasets in the UK. British Geological Survey, United Kingdom. Report RR/99/004.

Milner, N., Conneller, C., Elliott, B., Koon, H.E.C., Panter, I., Penkman, K., Taylor, B., and Taylor, M., 2011, From riches to rags: organic deterioration at Star Carr, Journal of Archaeological Science, 38, 2818-32.

232

Page 15: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Ministry of Climate and Environment, 1978. Lov om kulturminner (kulturminneloven). In Nor-wegian only. Last revision 2017. https://lovdata.no/dokument/NL/lov/1978-06-09-50.

Ministry of Climate and Environment, 2008. The Government’s Environmental Policy and the State of the Environment in Norway Excerpts in English: Report. No. 26 (2006-2007) to the Storting.

Ministry of Climate and Environment, 2013. Framtid med fotfeste. St. meld. Nr. 35 (2012-2013). In Norwegian only. Report to the Storting (white paper).

Ministry of Climate and Environment, Norway, 1981. Lov om vern mot forurensninger og om avfall (forurensningsloven). In Norwegian only. The Pollution Control Act, last revision 2017. https://lovdata.no/dokument/NL/lov/1981-03-13-6?q=forurensningsloven.

Ministry of Climate and Environment, Norway, 2005. Living with our Cultural Heritage. Meld. St 16 (2004-2005) Report to the Storting (white paper).

Ministry of Climate and Environment, Norway, 2006. Forskrift om rammer for vannforvaltnin-gen. In Norwegian only. The Water Regulation, last revision 2015. https://lovdata.no/doku-ment/SF/forskrift/2006-12-15-1446.

Ministry of Climate and Environment, Norway, 2013. Climate change adaptation in Norway, Meld. St. 33 (2012–2013) Report to the Storting (white paper).

Ministry of Infrastructure and the Environment and Ministry of Economic Affairs, the Nether-lands, 2015. National water plan 2016-20121 (NWP). https://www.government.nl/documents/policy-notes/2015/12/14/national-water-plan-2016-2021.

Ministry of Justice and Public Security, Norway, 1961. Lov om rettshøve mellom grannar (gran-nelova). In Norwegian only. The Neighbouring Properties Act, last revision 2016. https://lov-data.no/dokument/NL/lov/1961-06-16-15?q=granneloven.

Ministry of Local Government and Modernisation, 2008. Lov om planlegging og byggesaksbe-handling (plan- og bygningsloven). In Norwegian only. Last revision 2017. https://lovdata.no/dokument/NL/lov/2008-06-27-71.

Ministry of Petroleum and Energy, Norway, 1996. Forskrift om oppgaveplikt ved brønnbor-ing og grunnvannsundersøkelser. In Norwegian only. https://lovdata.no/dokument/SF/forskrift/1996-11-19-1066.

Ministry of Petroleum and Energy, Norway, 2000. Lov om vassdrag og grunnvann (vannressurs-loven). In Norwegian only. Water Resources Act, last revision 2017. https://lovdata.no/doku-ment/NL/lov/2000-11-24-82?q=vannressursloven.

Mortensen, M. N., R. V. Zimsen, and H. Matthiesen. 2013. Oxygen and redox potential measure-ments related to decay of organic cultural deposits and infiltration of water - a laboratory study. National Museum of Denmark, Department of Conservation, Copenhagen. 11031566.

Mourato. S and Mazzanti, M. 2002. Economic valuation of Cultural Heritage: Evidence and Pros-pects: In: Assessing the Values of Cultural Heritage, Getty Conservation Institute, Los Ange-les (2002) 51-76.

Muthanna, T.M, Boogaard, F., de Beer, J. and Matthiesen, H., 2015, Sustainable water manage-ment to preserve cultural heritage. In: Harvold, K., Larsen, K. (ed.), de Beer, J., Boogaard, F., Vandrup Martens, V., Matthiesen, H., Muthanna, T.M., Seither, A., Skogheim, R. and Voren-hout, M., 2015. Protecting the Past and Planning for the Future: Results from the project “Cul-tural Heritage and Water Management in Urban Planning” (Urban WATCH). CIENS-report

233

Page 16: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

1-2015, ISBN 978-82-92935-11-8: 16-29.Muthanna, T.M., Viklander, M., Blecken, G. and Thorolfsson, S.T., 2007. Snowmelt pollutant re-

moval in bioretention areas. Water Research, Volume 41, Issue 18, 2007, p. 4061-4072, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2007.05.040.

Navrud, S. and Axelsen, L.K., 2003. Verdiregnskap for Bryggen i Bergen. Samfunnsøkonomisk nytteverdi av å bevare et UNESCO Verdensarvsted. Institutt for Økonomi og Ressursforvalt-ning, Norges Landbrukshøgskole (In Norwegian only).

Neale, C.N., Hughes, J.B., and Ward, C.H., 2000, Impacts of unsaturated zone properties on oxy-gen transport and aquifer reaeration, Ground Water, 38(5), 784-94.

Norsk Vann, 2008. Veiledning i klimatilpasset overvannshåndtering (in Norwegian only). Guid-ance for climate adapted stormwater management. Rapportnr. 162/2008.

Norwegian Centre for Climate Services (NCCS), 2018. Norsk klimaservicesenter (in Norwegian only). https://klimaservicesenter.no/, last accessed 18.02.2018.

Oslo kommune, 2014. Strategi for overvannshåndtering 2013-2030 (in Norwegian only). Strategy for stormwater management 2013-2030. https://www.oslo.kommune.no/vann-og-avlop/skje-ma-og-veiledere/#gref.

Post, V.E.A. and Von Asmuth, J., 2013. Review: Hydraulic head measurements-new technolo-gies, classic pitfalls. Hydrogeology Journal¸ Vol. 21 (4), pp. 737-750. DOI 10.1007/s10040-013-0969-0.

Post, V.E.A., Kooi, K. and Simmons, C.T., 2007. Using hydraulic head measurements in vari-able-density ground water flow analyses. Ground Water 45:664-671.

Potter, K., War, S., Shaw, D. MacDonald, N., White, I., Fisher, T., Butler, D. & Kellagher, R., 2011. Engineers and Planners: sustainable water management alliances. ICE Engineering Sustain-ability, 164, ES4, 239-247.

Price, M. and Reed, D.W., 1989. The influence of mains leakage and urban drainage on groundwa-ter levels beneath conurbations in the UK. Proceedings of the Institution of Civil Engineers, Part 1, 1989, 86, Feb. 31-39.

Price, S.J., Burke, H.F., Terrington, R.L., Reeves, H.J., Boon, D.P., Scheib, A.J., 2010. The 3D char-acterisation of the zone of human interaction and the sustainable use of underground space in urban and peri-urban environments: case studies from the UK. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften 161, 219-235.

Price, S.J., Ford, J.R., Kessler, H., Cooper, A.H., Humpage, A.J., 2004. Artificial ground: mapping our impact on the surface of the earth. Earthwise 20, 30-31.

Rasmussen, T.C., and Crawford, L A., 1997. Identifying and removing barometric pressure effects in confined and unconfined aquifers, Ground Water, 35(3), 502-511.

Rijkswaterstaat (RWS) and Rijksdienst voor Archeologie, Culturlandskap en Monumenten (RACM), 2007. Convenant RWS en RACM, 2007. Samenwerkingsovereenkomst tussen Ri-jkswaterstaat en de Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten betref-fende archeologisch onderzoek en vondsten bij de uitvoering van werken. In Dutch only, pp. 48.

Robinson, E.S., and Bell, R.T., 1971. Tides in confined well aquifer systems, J. Geophys. Res., 76(8), 1857-1869, doi:10.1029/JB076i008p0185.

Rojstaczer, S., 1988. Determination of fluid flow properties from the response of water levels in

234

Page 17: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

wells to atmospheric loading, Water Resour. Res., 24(11), 1927-1938.Rosenbaum, M.S., McMillan, A.A., Powell, J.H., Cooper, A.H., Culshaw, M.G., Northmore, K.J.,

2003. Classification of artificial (man-made) ground. Engineering Geology 69, 399-409.Rosenberry, D.O. and LaBaugh, J.W., 2008. Field techniques for estimating water fluxes between

surface water and ground water. US Geol. Surv. Tech. Methods 4-D2.Royse, K.R., Rutter, H.K., Entwisle, D.C., 2009. Property attribution of 3D geological models in

the Thames Gateway, London: new ways of visualising geoscientific information. Bulletin of Engineering Geology and the Environment 68, 1-16.

Rushton, K.R., Kawecki, M.W. and Brassington, F.C., 1988. Groundwater model of con-ditions in Liverpool sandstone aquifer. Water and Environment Journal, 2:67-84. doi:10.1111/j.1747-6593.1988.tb01250.x.

Rytter. J. and I. Schonhowd (eds)., 2015. Monitoring. Mitigation. Management. The Groundwater Project – Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren. Oslo.

Van Her, S., Zevenbergen, C., Rijke, J. and Ashley. R., 2011. Collaborative research to support transition towards integrating flood risk management in urban development. Journal of Flood Risk Management. Volume 4, Issue 4, pages 306-317, December 2011. Article first published online: 11 Oct 2011. DOI: 10.1111/j.1753-318X.2011.01113.

Schalla, R., Lewis. A.K. and Bates, D.J., 1992. Accuracy and precision of well casing surveys and water level measurements and their impact on water-level contour maps. In: Johnson, A.I., Pettersson, C.B. and Fulton, J.L. (eds.). Geographic information systems (GIS) and mapping: practices and standards, ASTM STP 1126, American Society for Testing and Materials, Phil-adelphia.

Schia, E., Høeg, H.I., 1987. "Søndre felt": stratigrafi, bebyggelsesrester og daterende funngrupper, bind 3. De Arkeologiske utgravninger i Gamlebyen, Oslo.

Schloen, D.J., 2001. Archaeological Data Models and Web Publication Using XML. Comput. Hum. 35, 123-152 (2001).

Schurgers, G., Dörsch, P., Bakken, L., Leffelaar, P. and Haugen, L.E., 2006. Modelling soil anaer-obiosis from water retention characteristics and soil respiration. Soil Biology and Biochemis-try, Volume 38, Issue 9, 2006, pp. 2637-2644, ISSN 0038-0717, https://doi.org/10.1016/j.soil-bio.2006.04.016.

Schmidt, C., Conant Jr, B., Bayer-Raich, M. and Schirmer, M., 2007. Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped stream-bed temperatures. Journal of Hydrology, 347(3–4): 292-307

Schute, I.A, Lobbes, M.E., Kroes, R. and Verbruggen, M., 2013. Archeologie voor de toekomst. Kwantitatieve analyse van het behoud van archeologische waarden (2007-2011). In Dutch only. RAAP rapport 2618.

Seither, A., 2014. Modelling water content and soil temperature in unsaturated urban deposits at Bryggen, Bergen. NGU report 2014.041. ISSN 0800-3416, pp. 49.

SIKB, 2016. Handreiking Waterbeheer en Cultuurhistorie. In Dutch only. Online guidance doc-ument. Released 2010, last revision 2016. https://www.waterbeheer-cultuurhistorie.nl/index.

Smit A., van Heeringen, R.M., and Theunissen, E.M., 2006. Standaard Archeologische Monitor-ing (SAM). Richtlijnen voor het non-destructief beschrijven en volgen van de fysieke kwaliteit van archeologische vindplaatsen. In Dutch only. Standard archaeological monitoring (SAM).

235

Page 18: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

Guidelines for non-desctructive documentation and monitoring of the fysical quality of archae-ological sites. Version 1.0, November 2006, SIKB Gouda, pp. 113. https://www.sikb.nl/doc/ar-cheo/leidraden/Leidraad%20Standaard%20Archeologische%20Monitoring%20(SAM).doc.

Spane, F.A., Jr., 1999. Effects of barometric fluctuations on well water-level measurements and aquifer test data, Rep. PNNL 13078, Pac. Northwest Natl. Lab., Dep. of Energy, Richland, Wash.

Spane, F.A., 2002. Considering barometric pressure in groundwater flow investigations, Water Resour. Res., 38(6), doi:10.1029/2001WR000701.

Stallman, R.W., 1963. Computation of ground-water velocity from temperature data. In Bentall, Ray, comp. Methods of collecting and interpreting groundwater data: U.S. Geological Survey Water-Supply Paper 1544-H, p. 36-46.

Stallman, R.W., 1965. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J. Geophys. Res., 70(12): 2821-2827.

Stagge, J.H., Davis, A.P., Jamil, E. and Kim, H., 2012. Performance of grass swales for improving water quality from highway runoff. Water Research, 46, 6731-6742.

Standard Norge, 2009. Kulturminner. Krav til miljøovervåking og -undersøkelse av kulturlag NS 9451:2009, Lysaker, Norway (in Norwegian only).

Statens vegvesen, 2014. Vegbygging (in Norwegian only). Road construction. Nr. N200 i Statens vegvesens håndbokserie. ISBN: 978-82-7207-672-5.

Statistics Norway, 2012-2018. Statistisk sentrabyrå. www.ssb.no, last accessed, 18.02.2018.Suzuki, S., 1960. Percolation measurements based on heat flow through soil with special reference

to paddy fields. Journal of Geophysical Research, 65(9): 2883-2885.Tallaksen, L.M., and van Lanen, H.A.J. (eds.), 2004. Hydrological Drought-Processes and esti-

mation methods for streamflow and groundwater. Developments in Water Sciences, Vol. 48, Elsevier Science, pp. 579.

Taylor, R.G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J.S., Edmunds, M., Konikow, L., Green, T.R., Chen, J., Taniguchi, M., Bi-erkens, M.F.P., MacDonald, A., Fan, Y., Maxwell, R.M., Yechieli, Y., Gurdak, J.J., Allen, D., Shamsudduha, M., Hiscock, K., Yeh, P.J.F., Holman, I. and Treidel, H., 2012. Ground water and climate change Nat. Clim. Change (2012), 10.1038/nclimate1744.

TEEB, 2011. The economics of ecosystems and biodiversity. TEEB Manual for Cities: Ecosystem Services in Urban Management. Available online: www.teebweb.org.

The Brundtland Commission, 1987. Report of the World Commission on Environment and Devel-opment: Our Common Future.

Council of Europe, 1985. Convention for the Protection of the Architectural Heritage of Europe (Granada, 1985). ETS No. 121.

The Mersey Forest, Natural Economy Northwest, CABE, Natural England, Yorkshire Forward, The Northern Way, Design for London, Defra, Tees Valley Unlimited, Pleasington Consulting Ltd, and Genecon LLP, 2010. GI-Val: the green infrastructure valuation toolkit. Version 1.5 (updated in 2017). http://bit.ly/givaluationtoolkit (last accessed 25.02.2018)

Tuttle, K., 2015. Groundwater level restauration. In: J. Rytter and I. Schonhowd. eds. Monitoring. Mitigation. Management. The Groundwater Project - Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren. Oslo. 126-133.

236

Page 19: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

References

UNESCO, 1954. Convention for the Protection of Cultural Property in the Event of Armed Con-flict with Regulations for the Execution of the Convention 1954 (the Hague Convention). http://portal.unesco.org/en/ev.php-URL_ID=13637&URL_DO=DO_TOPIC&URL_SEC-TION=201.html

UNESCO, 1972. Convention concerning the Protection of the World Cultural and Natural Heri-tage (the World Heritage Convention). https://whc.unesco.org/en/conventiontext/.

UNESCO, 1979. Operational guidelines for the implementation of the world heritage convention. https://whc.unesco.org/en/guidelines/.

Van Wijk W.R. and de Vries D.A. (1963): Periodic temperature variations in a homogenous soil. In: van Wijk W.R. (ed.): Physics of Soil Environment. North-Holland Publishing Company, Amsterdam, 102–143.

Van de Noort, R., Fletcher,W., Thomas, G., Carstairs, I., Patrick, D., 2001. Monuments at Risk in England’s Wetlands. University of Exeter, Exeter.

Von Asmuth, J.R., Maas. K., Bakker, M., Petersen, J., 2008. Modeling time series of groundwater head fluctuations subjected to multiple stresses. Ground Water 46:30-40. DOI:10.1111/j.1745-6584.2007.00382.x(1).

Vorenhout. M., 2015. Temperature. Reducing and Oxidizing Conditions. In: J. Rytter and I. Schon-howd. eds. Monitoring. Mitigation. Management. The Groundwater Project - Safeguarding the World Heritage Site of Bryggen in Bergen. Riksantikvaren. Oslo. 93–103.

Vorenhout. M., van der Geest. H.G. and Hunting. E.R., 2011. An improved datalogger and novel probes for continuous redox measurements in wetlands. International Journal of Environmen-tal Analytical Chemistry. 91.7–8: pp. 801–810. DOI:10.1080/03067319.2010.535123.

Weast, R.C., 1987. CRC Handbook of Chemistry and Physics, 67th edn, CRC Press, Boca Raton, FL.

Weeks, E. P., 1979. Barometric fluctuations in wells tapping deep unconfined aquifers, Water Re-sour. Res., 15(5), 1167-1176.

Werkgroep Watertoets, 2009. Handreiking Watertoetsproces 3. In Dutch only. A guidance doc-ument and protocol to avoid negative consequences of an incorrect or incomplete extraction advice. https://www.helpdeskwater.nl/onderwerpen/water-ruimte/watertoetsproces/.

Wilgocki, E., 2004. Wooden constructions found during archaeological excavations at Podzamcze area in Szczecin. In: Christensson, A., et al. (Eds.), Safeguarding Historic Waterfront Sites. Bryggen in Bergen as a Case Study, first ed. Stiftelsen Bryggen and Polytechnika Szczecins-ka, Bergen, Norway.

Willems and Brandt, 2004. Dutch archaeology quality standard (KNA).Winston, R.J., Hunt, W.F., Kennedy, S.G., Wright, J.D. and Lauffer, M.S., 2012. Field Evaluation

of Storm-Water Control Measures for Highway Runoff Treatment. Environmental Engineer-ing, 138(1), 101-111.

Wong, W.K., Beldring, S., Engen-Skaugen, T., Haddeland, I. and Hisdal, H., 2011. Climate change effects on spatiotemporal patterns of hydroclimatological summer droughts in Norway. Jour-nal of hydrometeorology, Vol. 12, pp. 1205-1220. DOI: 10.1175/2011JHM1357.1.

Wösten, J.H.M., Veerman, G.J., Stolte, J., 1994. Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks. Vernieuwde uitgave 1994. Tech-nical Document 18, DLO Staring Centre, Wageningen.

237

Page 20: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial
Page 21: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

SUMMARY

Page 22: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

240

Page 23: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Summary

Summary

European cities are growing. This growth threatens sustainable development of cities. In contrast to the attention given to the visible expressions of cities, there is a marked lack of appreciation of the subsurface among those who plan, develop and manage cities. This is manifested in a lack of co-ordinated policy on the subsurface. The area beneath the cities is used inefficiently at best and unsustainably at worst; safeguarding of subsurface ecosystem services and resources lacks robust-ness and conflicting uses of the subsurface are largely unaddressed. Archaeological heritage is one of our underground resources that is threatened by this development. The threat occurs because the resources and ecosystem services provided by the urban underground, i.e. space, materials, water and energy, are considered without vision for their future uses collectively. Research on in-situ conservation and management of archaeological sites has shown that cultural heritage and water management are interdependent. Unanticipated disruption of groundwater flow caused by urban development near or at archaeological sites may cause significant and irreversible damage. To safeguard waterlogged urban archaeological heritage in-situ as a subsurface cultural resource for future generations, it is necessary to understand, plan and manage its protection in conjunction with other use of the wider underground space and related processes above ground.

Norway and the Netherlands have both signed the European Convention on the Protection of the Archaeological Heritage and follow the main objective of the convention to protect and pre-serve archaeological heritage, preferably in-situ. Policy implementation and practice show clear differences between both countries. The comparative review described in chapter 2 shows that automatic legal protection of monuments and sites before a certain period by a single piece of legislation, such as in Norway, ensures unprecedented strong protection of a selection of cultural assets. Still, those assets may be endangered by spatial planning processes, as developers may be unaware of potentially damaging measures, such as groundwater lowering. A better integration in the spatial planning process will reduce the loss of archaeological heritage. An integrated water management approach has been a leading principle in the Netherlands since 2007. The approach, steered by comprehensive guidance and single legislation not only places water earlier in the planning process, but also facilitates the early inclusion of cultural heritage. It seems though that this early inclusion still is difficult to achieve in practice. Raising awareness among different dis-ciplines and providing guidance are viewed as essential steps to achieve successful integration. Both Norway and the Netherlands have much to gain from awareness raising efforts.

The objective of urban water management is to ensure that no damage is caused during peak periods of precipitation or during prolonged periods of drought. The urban water balance is fun-damentally important for the preservation conditions of organic archaeological remains primarily through its influence on oxygen supply. Increased pressure on urban areas has inspired and forced a shift in focus from water conveyance and transport towards re-establishing the natural (pre-ur-banised) water balance. Over the past several years, the traditional policy to rapidly discharge storm water to the surface water system has been changed. The aim is now to buffer, infiltrate and delay runoff of rainwater on-site, using so-called sustainable urban drainage systems (SuDS). This paradigm change provides a unique opportunity to improve preservation conditions in urban areas with organic archaeological deposits. Presenting the multiple benefits of sustainable solutions in relation to in-situ archaeological heritage preservation, ideally monetised and couched in “sustain-

241

Page 24: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Summary

ability” language, seems to offer the best possibility to get options taken up. Chapter 3 discusses the possibilities and provides suggestions to better assess and disseminate options for sustainable water management that include archaeological heritage preservation as a distinct benefit.

In chapter 4, the Bryggen case illustrates how multidisciplinary investigations and monitoring contribute to a holistic, integrated risk assessment and sustainable mitigation solutions for in-situ preservation of waterlogged archaeological remains. The UNESCO World Heritage Site Bryggen in Bergen is characterised by uniquely well-preserved archaeological deposits up to more than 8 meters in thickness below historic wooden tenements from 1702. All the archaeological re-mains and the historic buildings above are considered a single cultural monument. A fire in 1955 destroyed a third of the site. The area was redeveloped in 1979. In the last decades, increased degradation and subsidence by lowered groundwater levels caused by the redevelopment, formed a serious threat for the safeguarding of the site. A multidisciplinary investigation, including hy-drogeological monitoring and modelling, resulted in a deep understanding of the complex subsur-face conditions at the site and its wider surroundings. The identified natural and human-induced factors that affect in-situ degradation are primarily related to groundwater conditions. Mitigation measures, inspired by international sustainable integrated water management practices to store, retain and infiltrate storm water were designed and implemented. Evaluation shows significant im-provement in groundwater conditions and in-situ preservation conditions. The Bryggen case shows that sustainable water management and in-situ preservation of waterlogged urban archaeological sites are highly compatible when carried out on the basis of sound hydrogeological knowledge.

Sustainable urban planning in heritage cities requires a multidisciplinary approach to protect and preserve archaeological heritage and at the same time facilitate viable urban development. Chapter 5 describes the aims and benefits of 3D geological and anthropogenic framework mod-elling tools as part of a decision support system for archaeological heritage preservation and sustainable regeneration in cities. This is illustrated by presenting the results of application of 3D subsurface modelling to the assessment of the in-situ preservation potential of archaeological deposits at the case Bryggen in Bergen. The need for new and improved classifications for archae-ological deposits and their properties is addressed, something that at least partly could be realised through adaptation and extension of available classifications for other types of artificial ground. Such a classification would facilitate deposit and excavation modelling and contribute to objective decision support for the management of archaeological heritage.

A general discussion and synthesis related to the research objectives of this thesis is given in chapter 6, including conclusions and recommendations. Some key messages are:

• Risk assessment of urban archaeological sites requires a holistic and multidisciplinary perspective. It must include a wider understanding of the hydrogeological conditions in which the archaeological deposits are embedded. It is recommended that risk assessment always starts with building up a proper conceptual understanding of the site and its sur-roundings. Simple visualisations, ranging from hand-drawn drawings to conceptual 3D model animations, at the early stages in a project will engage stakeholders, improve com-mon understanding and effective communi¬cation.

• Risk assessment also requires combination of standardised archaeological observations with spatial information on e.g. groundwater saturation, head, flow and chemical com-position, preferably in a single, interrogable three-dimensional framework. Geological

242

Page 25: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Summary

framework modelling followed by or parallel with numerical groundwater modelling are tools that can contribute to improve the understanding of the often complex, three-dimen-sional build-up of an archaeological site. Cost-effective implementation of such informa-tion frameworks require standardisation across disciplines.

• Risk assessment of waterlogged archaeological sites is dependent on groundwater monitor-ing. Pitfalls and sensitivities in groundwater monitoring are related to commonly agreed monitoring procedures, instrument errors, conversion errors, construction of observation wells and time lag effects. The Bryggen case has shown that it is vital to have long-term and high frequency groundwater- and barometric pressure measurement series to assess groundwater levels and flow conditions within complex waterlogged urban archaeological deposits.

• Combining groundwater monitoring with geological and hydrogeological modelling, cre-ates a virtuous circle of knowledge improvement where both model(s) and monitoring systems are steadily improved.

• Other sources of information such as observed terrain or building subsidence from ge-otechnical investigations or satellite imagery can help to early identify areas that may undergo degradation processes in the subsurface and are important risk assess-ment tools, although they only document consequences of potential degradation.

• Improved management practice and better in-situ protection of archaeological heritage is dependent on increased awareness and knowledge among heritage and water managers, as well as among other urban decision makers. To carry out in-situ preservation of archae-ological deposits, heritage authorities, policy and decision makers as well as the wider research community require guidance and tools to make informed decisions. Chapter 6 gives examples of such guidance.

• Communication and knowledge dissemination should take the perspective of those who can benefit most from it and of those who can make a difference; planners, engineers, developers and other (urban) decision makers. Urban development generally threatens the co-existence of archaeological deposits in the subsurface and therefore stakeholders involved in urban development should be addressed. This perspective is much wider and more multidisciplinary than the expert perspective of the knowledge provider (i.e. the ar-chaeological, subsurface or water management specialist). Communication must therefore become more “outside and in”, rather than “inside and out”.

243

Page 26: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial
Page 27: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

SAMMENDRAG

Page 28: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

246

Page 29: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Sammendrag

Sammendrag

Europas byer vokser. Bærekraftig byutvikling er truet av denne veksten. I motsetning til oppmerk-somheten på det som er synlig i bybildet er det en markant mangel på forståelse av undergrunnen blant de som planlegger, utvikler og forvalter byene. Dette manifesterer seg som en mangel på samordnet politikk om undergrunnen. Byens undergrunn blir i beste fall brukt ineffektivt og i verste fall på en ikke bærekraftig måte; økosystemtjenestene og ressursene i undergrunnen man-gler god beskyttelse og motstridende bruk av undergrunnen får generelt ingen oppmerksomhet. Arkeologiske kulturminner er en av ressursene i undergrunnen som trues av denne utviklingen. Trusselen oppstår fordi bruken av ressursene og økosystemtjenestene som leveres av undergrun-nen, dvs. rom, materialer, vann og energi, blir vurdert uten en tydelig integrert visjon for deres fremtidige, samlede bruk. Forskning på in-situ bevaring av arkeologiske kulturminner har vist at kulturminneforvaltningen er avhengig av vannforvaltningen. Endringer i grunnvannsforhold forårsaket av byutvikling i nærheten av eller direkte ved arkeologiske kulturminner kan forårsake store og irreversible skader. Dersom vi skal beskytte vannmettede arkeologiske kulturminner for fremtidige generasjoner som en historisk kunnskapsressurs i undergrunnen, er det nødvendig å forstå, planlegge og forvalte dens beskyttelse i sammenheng med annen bruk av undergrunnen og relaterte byutviklingsprosesser over terreng.

Norge og Nederland har begge signert Europarådets konvensjon om vern av den arkeologiske kulturarven og følger hovedformålet i konvensjonen om å beskytte og bevare arkeologiske kul-turarv helst in-situ. Gjennomføring av denne politikken i praksis viser klare forskjeller mellom begge land. En sammenlignende gjennomgang er beskrevet i kapittel 2 og viser at automatisk fredning av kulturminner fra før en bestemt tidsalder gjennom ett lovverk, som i Norge, sikrer en enestående beskyttelse av et utvalg av kulturminner. Likevel kan disse ressursene bli truet av by- og arealplanleggingsprosesser, da utviklere kan være uvitende om potensielt skadelige tiltak, som for eksempel grunnvannsreduksjon. En bedre integrasjon av kulturminnevern i arealplanleggings-prosessen vil redusere tapet av arkeologiske kulturminner. I Nederland har en integrert vannfor-valtning vært et ledende prinsipp siden 2007. Tilnærmingen er styrt av omfattende veiledning og én sammenhengende vannressurslov som ikke bare plasserer vann tidligere i planprosessen, men også tilrettelegger for at kulturminner blir ivaretatt tidlig. Det ser derimot ut til at det i praksis fortsatt er vanskelig å ivareta arkeologisk kulturminnevern tidlig nok i planprosessen. En vellyk-ket integrasjon og tidlig ivaretakelse av vann og kulturminner i planprosesser er avhengig av at bevisstheten om temaet økes innenfor ulike fagområder, og at det utvikles gode veiledere. Når det gjelder bevisstgjøring av viktigheten for en integrert vann- og kulturminneforvaltning, har både Norge og Nederland fortsatt mye å ta tak i.

En av hovedformålene med urban vannforvaltning er å sørge for at det ikke oppstår skade under ekstreme nedbørshendelser eller under lengre tørkeperioder. Den urbane vannbalansen er svært viktig for bevaringsforhold til organiske arkeologiske kulturminner, hovedsakelig fordi den påvirker tilgang til oksygen. Økt press på byutvikling har medført et skifte i fokus fra bortledning og transport av vann til et fokus på å gjenopprette den naturlige (pre-urbaniserte) vannbalansen. I løpet av de siste årene har den tradisjonelle politikken med å lede overvann raskest mulig til nærmeste overflatevann, blitt endret. Målet er nå å fange opp, infiltrere og forsinke avrenning mest mulig lokalt, ved hjelp av såkalte bærekraftige urban dreneringssystemer (SuDS), på norsk

247

Page 30: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Sammendrag

også kalt lokal overvannsdisponering (LOD). Dette paradigmeskiftet gir en unik mulighet til å forbedre bevaringsforholdene i historiske byområder der det finnes organiske arkeologiske kul-turminner. Den gunstigste måten for å få beslutningstakere til å velge bærekraftige løsninger for overvannshåndtering der også bevaring av arkeologiske kulturminner er tatt med, er å presentere de flerfoldige fordelene av løsningene på en tydelig måte som gjør valget enkelt. Ideelt sett bør en slik presentasjon utføres på en standardisert måte, uttrykt i økonomiske gevinster og pakket inn i en "bærekraft"-terminologi. Kapittel 3 drøfter mulighetene og gir forslag til å forbedre vurdering og formidling av bærekraftige alternativer for vannforvaltning som inkluderer beskyttelse av ar-keologiske kulturminner som en egendefinert nytteverdi.

I kapittel 4 illustreres hvordan tverrfaglige undersøkelser og overvåkning bidrar til en helhet-lig, integrert risikovurdering og valg av bærekraftig løsninger for in-situ bevaring av vannmettede arkeologiske kulturminner ved Bryggen i Bergen. Verdensarvstedet Bryggen i Bergen kjenneteg-nes av ekstremt godt bevarte arkeologiske kulturlag med en tykkelse opp til over 8 meter under historisk trehusbebyggelse fra 1702. Alle kulturlag og historiske bygninger anses som et enkeltstå-ende kulturminne. Helt fra den naturlige fjellgrunnen og opp til toppen av hustakene. En storbrann i 1955 ødela en tredjedel av Bryggen. Området ble gjenoppbygd på nytt i 1979, der et hotell ble etablert. I de siste tiårene har økt nedbrytning og setninger som følge av lavere grunnvannsnivå etter nyutviklingen, resultert i en alvorlig trussel for verdensarvstedet. Tverrfaglige undersøkelser, inkludert hydrogeologisk overvåking og modellering, har resultert i en inngående forståelse av de komplekse grunn- og grunnvannsforholdene på stedet og i det omliggende området. Undersø-kelsene har kartlagt naturlige og menneskelige faktorer som påvirker nedbrytning, og som først og fremst er relatert til grunnvannsforhold. Tiltak for å heve og stabilisere grunnvannsnivået ble utformet, inspirert av internasjonal anerkjent og bærekraftig vannforvaltningspraksis. Løsninger for å fange opp, infiltrere og forsinke avrenning ble utformet og implementert. Evaluering viser en vesentlig økning i grunnvannsnivå og bedret bevaringsforhold. Bryggen-prosjektet viser at bæ-rekraftig vannforvaltning og in-situ bevaring av vannmettede arkeologiske kulturminner gir flere fordeler når tiltakene utføres basert på god hydrogeologisk kunnskap og data.

Bærekraftig byplanlegging i historiske byer krever en tverrfaglig tilnærming for å beskytte og bevare arkeologiske kulturminner og samtidige legge til rette for en levedyktig byutvikling. Kapittel 5 beskriver fordelene av 3D objekt-orienterte modelleringsverktøy for geologiske og an-tropogene avsetninger som en del av et beslutningsstøttesystem for arkeologisk kulturminnevern og bærekraftig byutvikling. Dette illustreres ved å presentere resultatene av en 3D-modellering av undergrunnen ved Bryggen i Bergen, for å kunne vurdere bevaringspotensialet til kulturlage-ne. Studien peker på behovet for ny og forbedret klassifisering av arkeologiske kulturminner og deres egenskaper. Dette kan delvis realiseres gjennom tilpasning og utvidelse av tilgjengelige klassifiseringer for andre typer menneskeskapte avsetninger. En slik klassifisering vil forenkle utgravings- og kulturlagsmodellering og bidra til en mer objektiv beslutningsstøtte for kulturmin-neforvaltningen.

En generell diskusjon og syntese relatert til forskningsspørsmålene til denne avhandlingen er gitt i kapittel 6, inkludert konklusjoner og anbefalinger. Noen viktige momenter er:

• Risikovurdering for in-situ bevaring ved steder med vannmettede arkeologiske kultur-minner krever et helhetlig og tverrfaglig perspektiv. Den må inneholde en bred forståelse av de hydrogeologiske forholdene som omkranser de arkeologiske kulturminnene. Det

248

Page 31: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Sammendrag

anbefales at risikovurdering alltid starter med å bygge opp en grundig konseptuell forstå-else av kulturarvstedet og området. Enkle visualiseringer, alt fra håndtegnede skisser til konseptuelle 3D-modell animasjoner, i en tidlig fase i prosjektet, vil engasjere interessen-ter, forbedre felles forståelse og effektiv kommunikasjon.

• Risikovurdering krever også en kombinasjon av standardiserte, arkeologiske observa-sjoner med romlig informasjon om f.eks. vannmetning, grunnvannstrykk og -strømning samt kjemisk sammensetning, fortrinnsvis i et enkeltstående tredimensjonalt digitalt ram-meverk. Geologisk modellering, fulgt av eller parallelt med, numerisk grunnvannsmodel-lering, er verktøy som kan bidra til å øke forståelsen av den ofte komplekse, tredimensjo-nale oppbyggingen av undergrunnen, inklusivt kulturlag. Kostnadseffektiv oppbygging av slike modeller krever mer standardisering på tvers av fagområder.

• Risikovurdering for in-situ bevaring av steder med vannmettede arkeologiske kulturmin-ner er avhengig av grunnvannsovervåkning. Fallgruver og feilkilder i grunnvannsovervå-king er relatert til overvåkingsprosedyrer, instrumentfeil, konverteringsfeil, konstruksjon av observasjonsbrønner og forståelse av effekter som skaper tidsforsinkelser i måleserier. Bryggen-prosjektet har vist at det er avgjørende å ha langsiktige og høyfrekvente måle-serier av grunnvanns- og barometrisk trykk for kunne å vurdere grunnvannsnivåer og strømningsforhold i relativt tette arkeologiske kulturlag.

• Det å kombinere grunnvannsovervåking samtidig med geologisk og hydrogeologisk mo-dellering, skaper økende kunnskap, der både modeller og overvåkingssystemer påvirker hverandre og kontinuerlig blir forbedret.

• Andre informasjonskilder, som setningsmålinger fra geotekniske undersøkelser eller sa-tellitter kan bidra til tidlig identifisering av setningsømfintlige områder, som mulig er forårsaket av nedbrytning av kulturlag med arkeologisk verdi. Disse kildene er dermed viktige å benytte i arbeidet med å kartlegge risiko, selv om de bare dokumenterer symp-tomer av potensiell nedbrytning.

• En bedre forvaltningspraksis og in-situ bevaring av arkeologiske kulturminner er av-hengig av økt bevissthet og kunnskap blant kulturminne- og vannforvaltere, samt andre beslutningstakere. For å kunne utføre in-situ bevaring av arkeologiske kulturminner be-høver kulturminneforvaltningen, politikere og andre beslutningstakere, samt det bredere forskningsmiljøet veiledning og verktøy for å kunne ta de riktige beslutningene. Kapit-tel 6 gir eksempler på slik veiledning.

• Byutvikling truer ofte arkeologiske kulturminner, og derfor bør kommunikasjon og for-midling rettes til interessenter og beslutningstakere som er involvert i byutvikling, som planleggere, ingeniører, byutviklere og andre beslutningstakere. Dette perspektivet er mye bredere og mer tverrfaglig enn kunnskapsperspektivet til kunnskapsleverandøren (dvs. arkeologen, geologen eller vannforvalter). Kommuni-kasjon må derfor bli mer "utenfra og in", snarere enn "innenfra og ut".

249

Page 32: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial
Page 33: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

ACKNOWLEDGEMENTS

Page 34: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

252

Page 35: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Acknowledgements

Acknowledgements

This thesis would not have been completed without the support, inspiration and patience of my colleagues, friends and family. Therefore, I would like to thank everyone that has contributed towards this PhD.

I am enormously grateful to my Supervisor Prof.dr. Henk Kars for giving me the opportunity to carry out this PhD. His supervision and guidance has been decisive to finish this work. I am particularly grateful to Prof.dr. Henk Kars for giving me the necessary guidance to synthesize complex and overarching research material into a coherent and meaningful dissertation. Even if our meetings due to practical reasons were relatively few, they were extremely productive and motivating.

My Co-Supervisor Dr. Henning Matthiesen is greatly acknowledged for his advice and support during many discussions over the last 10 years, particularly as a member of the core research team at the Bryggen Project. Our different scientific background has given inspiring discussions and has led to real progress in management and in-situ preservation of waterlogged archaeological sites. Since I was introduced to the field of archaeology back in 2005, he has taught me many things with great enthusiasm, humor and patience. I am forever grateful to Dr. Henning Matthiesen for giving me the opportunity to learn from his many years’ experience in scientific publishing, and sincerely hope we will have the possibility to join forces in future research projects.

I would thank all the friends and colleagues working in the Bryggen Project. My special thanks go to Ann Christensson, who has been the real driver for the project and the primus-motor for interdisciplinarity in archaeological in-situ preservation projects. Ann, who led the research at Bryggen, sadly passed away in 2013. She was a great inspiration for me. She taught me how to listen carefully to different opinions, dare to be critical and she pushed me to formulate clear answers that can be used by the archaeological management. I will never forget our energetic discussions, for example on how in-situ preservation fits in the sustainability concept, together with Prof.dr. Richard Ashley from the University of Sheffield. Ann showed me that laughter and criticism can go hand-in-hand. Many thanks to all the other members in the team of the Bryggen project that have not yet been mentioned; Iver Schonhowd, Jens Rytter, Rory Dunlop, Jann Atle Jensen, Dr. Kevin Tuttle, Michel Vorenhout and Dr. Floris Boogaard.

This PhD would not have been possible without the long-term support and funding from my employer, the Geological Survey of Norway (NGU), for which I am extremely grateful. The work at the Bryggen Project was funded by the Directorate for Cultural Heritage in Norway (Riksan-tikvaren). Without their interest and willingness to invest in research on archaeological heritage preservation, method development and guidance, this PhD would never have come to fruition.

Furthermore, I am very grateful to the members of the Doctorate committee that they were prepared to evaluate my thesis. These members are Prof.dr. Wim van Westrenen (Faculty of Sci-ence, VU Amsterdam), Prof.dr. Hans Huisman (Cultural Heritage Agency and University of Gron-ingen), Dr. Nils-Otto Kitterød (Norwegian University of Life Sciences, Ås), Prof.dr. Jan Kolen (Centre for Global Heritage and Development, Leiden University), Dr. Tone Merete Muthanna (Norwegian university of Science and Technology) and Dr. Knut Paasche (Norwegian Institute for Cultural Heritage Research).

I would like to express my sincere gratitude to many colleagues and friends at the Geological

253

Page 36: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Acknowledgements

Survey of Norway (NGU), British Geological Survey (BGS), National Museum of Denmark, Multiconsult, Norconsult, Norwegian Institute for Cultural Heritage Research (NIKU), VU University Amsterdam, University of Sheffield, University of Aberdeen and the Norwegian University of Science and Technology (NTNU) for discussions and good cooperation in national and international projects related to the topic of this thesis that have inspired me. Special thanks go to first author and co-authors in the key publications that have been integrated in this thesis; Anna Seither, Dr. Simon Price, Dr. Jonathan Ford, Prof.dr. Richard Ashley and again Dr. Henning Matthiesen, Dr. Floris Boogaard and Michel Vorenhout. I would also like to thank various anon-ymous reviewers for their comments and constructive criticism on some of the papers integrated in this thesis. Their feedback helped to improve the quality of these papers.

Special thanks to Dr. Diarmad Campbell, Dr. David Lawrence, Dr. Helen Bonsor (British Geological Survey, UK), Dr. Michiel van der Meulen, Dr. Jeroen Schokker (Geological Survey of the Netherlands, GSN-TNO, NL), Susie Mielby (Geological Survey of Denmark and Greenland, GEUS, DK), Ingelöv Eriksson (City of Oslo, NO), Ignace van Campenhout (City of Rotterdam, NL) and other colleagues from COST Action TU1206 for discussing planning, modelling, mon-itoring and guidance to open up the subsurface for the cities of tomorrow. I enjoyed building the bridge to close the gap between geoscientists and urban planners together with you. I hope this thesis helps heritage managers to cross that bridge.

I was fortunate with so many wonderful colleagues at the Geological Survey of Norway (NGU) that made the production of this thesis much easier. I would like to thank all my colleagues, and particularly Atle, Anna, Belinda, Bjørn, Jan, Pål and Øystein, who gave me good advice and sup-port, whether I asked for it or not.

I would like to thank my friends and family for their continuous support. My children, Mats, Sigri and Eirin, their mother and her family have been incredibly understanding and patient when I had to write. Finally, thank you my dear parents Jaap og Hanny and my sister Annelies for your love, support and interest in my PhD research. And last but not least, my fiancée Marianne, who seduced me in many ways to finish this project, and finally succeeded.

254

Page 37: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial

Acknowledgements

Ik ben Henk voor altijd dankbaar voor onze goede discussies, zijn wijze raad en

aanmoedigingen, en bovenal zijn fantastische enthousiasme voor de geo- en bioarcheologie.

Hier vallen de laatste puzzelstukjes van het promotiewerk op zijn plaats. Laren,

16 november 2018.

255

Page 38: REFERENCES - research.vu.nl matter.pdfReferences Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842-2889. Björdal, C.G., Nilsson, T., Daniel, G., 1999. Microbial